Lesson 18

Chapter 13

Midterm review

Write multipart formula

$$
\begin{aligned}
& A(-3,2) \\
& B(1,2) \\
& C(4,5) \\
& D(7,7)
\end{aligned}
$$

AB Semicircle
BC line
CD arc of perebole with vertex at
a) $y=y_{0}+\sqrt{r^{2}-\left(x-x_{0}\right)^{2}}$
(x_{0}, y_{0}) center $(-1,2)$
r radius 2
diameter $=1+3=1-(-3)=4$
radius $=4 / 2=2$
b)

$$
\begin{aligned}
& y=y_{0}+m\left(x-x_{0}\right) \\
& y=2+\frac{5-2}{4-1}(x-1)=2+x-1
\end{aligned}
$$

c)

$$
\begin{aligned}
& y=a(x-4)^{2}+5 \\
& 7=a(7-4)^{2}+5 \\
& 7=a \cdot 9+5 \\
& \frac{2}{9}=a
\end{aligned}
$$

$$
\begin{aligned}
& \text { Center } \begin{array}{ll}
x_{0}=-3+2=-1 \\
y_{0}= & 2
\end{array} \\
& \begin{cases}2+\sqrt{4-(x+1)^{2}} & \text { if }-3 \leq x \leq 1 \\
x+1 & \text { if } 1<x \leq 4 \\
\frac{2}{9}(x-4)^{2}+5 & \text { if } 4<x \leq 7\end{cases}
\end{aligned}
$$

$f(x)$ on $[1,7]$
Find $f^{-1}(3)=2$
Domain of $f^{-1}=$ Renge of $f[2,7]$
Renge of $f^{-1}=$ Domein of $f[1,7)$
Find $f(f(1))=f(2)=3$
graph $y=-2 f(3 x-1)+5$

horizontal
a) shigt

$$
f(x) \rightarrow f(x-1)
$$

Shigt right I unit
b) scaling

$$
f(x-1) \rightarrow f(3 x-1)
$$

horizontally of fector $c=\frac{1}{3}$

$$
3 x=\frac{x}{\frac{1}{3}}
$$

Vertrcel $y=-2 f(3 x-1)+5$
a) sceling of efector $C=2$

$$
f(x)=\left\{\begin{array}{ll}
2+\sqrt{4-(x+1)^{2}} & \text { if }-3 \leq x \leqslant 1 \\
x-1 & \text { if } 1<x \leqslant 5 \\
-\frac{2}{9}(x-4)^{2}+5 & \text { if } 5<x \leqslant 7
\end{array} \quad y=-2 f(3 x-1)+5\right.
$$

. You want to build two enclosures using exactly 3000 feet of fencing. One enclosure will length as the sides of the triangle. What should the side of the triangle be in order to
maximize the area of the two combined enclosures?

$$
\begin{aligned}
& h^{2}+\left(\frac{x}{2}\right)^{2}=x^{2} \\
& h^{2}=x^{2}-\frac{x^{2}}{4}=\frac{3}{4} x^{2}
\end{aligned}
$$

$$
A=x \cdot y+\frac{1}{2} \cdot \underbrace{2}_{b} \cdot \underbrace{\frac{v^{3}}{2}}_{h} x
$$

$$
h=\sqrt{\frac{3}{4} x^{2}}
$$

$$
=\frac{\sqrt{3}}{2} x
$$

$$
A=x y+\frac{\sqrt{3}}{4} x^{2}
$$

$$
\begin{aligned}
& 3000=2 x+2 y+3 x=5 x+2 y \\
& \frac{3000-5 x}{2}=y \\
& A=x \frac{3000-5 x}{2}+\frac{\sqrt{3}}{4} x^{2}
\end{aligned}
$$

$$
\begin{aligned}
& A=1500 x-\frac{5}{2} x^{2}+\frac{\sqrt{3}}{4} x^{2} \\
& =\underbrace{\left(\frac{\sqrt{3}}{4}-\frac{5}{2}\right) x^{2}+\underbrace{1500}_{b} x}_{a<0}
\end{aligned}
$$

The length of the side of triangle that maximizes Area is $x=h=-\frac{1500}{}$

$$
\frac{-b}{2 a} / 12\left(\frac{\sqrt{3}}{4}-\frac{5}{2}\right)
$$

spending

1. You want to build two enclosures exactly 3000 . One enclosure will be an equilateral triangle, the other a rectangle. The basis of the rectangle has the same length as the sides of the triangle. mime the of the two combined enclosures? The materiel for building The sides of the rectangle costs $\$ 2$ per foot. The material for building
 the order of the triangle costs $\$ 3$ per fort.

$$
\begin{aligned}
& \frac{x^{2}}{4}+h^{2}=x^{2} \quad h^{2}=\frac{3}{4} x^{2} \quad h=\frac{\sqrt{3}}{2} x \\
& A=x y+\frac{1}{2} \frac{x}{b} \frac{\frac{\sqrt{3}}{2} x}{h}=x y+\frac{\sqrt{3}}{4} x^{2}
\end{aligned}
$$ $3000=(2 x+2 y) \cdot 2+3 x \cdot 3$ $3000=4 x+4 y+9 x=13 x+4 y$

$\frac{3000-13 x}{4}=y$
$A(x)=$
3000-13x 4

$$
\begin{aligned}
& =\frac{3000}{4} x-\frac{13}{4} x^{2}+\frac{\sqrt{3}}{4} x^{2} \\
& =\underbrace{\left(\frac{\sqrt{3}}{4}-\frac{13}{4}\right) x^{2}+\underbrace{750}_{b} x}_{a<0}
\end{aligned}
$$

Problem wants maximum Area so k :
OPTION 1) $k=-\frac{b^{2}-4 a c}{4 a}$ $08 \operatorname{TION} 2) h=-\frac{b}{2 a}$.

$$
\begin{aligned}
& =-\frac{750}{4\left(\frac{\sqrt{3}}{8}-\frac{13}{8}\right)}=\frac{1500}{\sqrt{3}-13} \\
& k=A(h)= \\
& \frac{\sqrt{3}-13}{4} \cdot \frac{(1500)^{2}}{(\sqrt{3}-13) k}+\frac{750 \cdot 1500}{\sqrt{3}-13} \\
& =\frac{(1500)^{2}-4 \cdot 750 \cdot 1500}{4(\sqrt{3}-13)} \\
& =\frac{1500(1500-3000)}{4(\sqrt{3}-13)}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{15001500}{4(13-\sqrt{3})}= \\
& =\frac{750^{2}}{13-\sqrt{3}}
\end{aligned}
$$

