Lesson 17

Read Chapter 13

Graphical tools

Motivation

$$
y=|1-|x||
$$

In an old problem we considered graphing $y=1-|x|$.
(1)

(2)
(3)

$$
\begin{aligned}
& y=1-|x| \\
& y_{\text {new }}=1+y_{\text {opd }}
\end{aligned}
$$

$$
y=|1-|x||
$$

Goals

Draw the graph of $a f(b x+c)+d$ from the graph of $f(x)$
Find the formula for the function whose graph is obtained from the graph of $f(x)$ by performing a series of graphical operations (shifts, reflections and scalings)

Which graphs should you know to start with?
Linear functions, quadratic functions, exponential functions, $\ln x$, $\sqrt{x} \quad,|x|$

Domain $[0,+\infty$)
Range $[0,+\infty)$

Given $f(x)=x^{2}$, what do the graph of

$$
f(x) \rightarrow f(x)-c
$$

$$
\begin{gathered}
y=f(x)+5 \text { and } \\
x^{2}+5 \\
\text { new }_{\text {new }}=y_{02 d}+5 \\
y=f(x)-5
\end{gathered}
$$

Vertical Reflections

$$
f(x)=-f(x)
$$

Given $f(x)=|x|$

what does the graph of $y=-|x|$ looks like ?

$$
y_{\text {new }}=-y_{o 2 d}
$$

Vertical scaling (expansion or compression)

$$
\begin{aligned}
& f(x)->c f(x) \\
& c>1,0<c<1
\end{aligned}
$$

Given $f(x)=\sin x$ what do the graphs of

$$
\begin{aligned}
y & =2 f(x) \text { and of } \\
y_{\text {new }} & =2 \cdot y_{\text {old }} \\
y & =\frac{1}{2} f(x) \\
y_{\text {new }} & =\frac{1}{2} y_{\text {old }}
\end{aligned}
$$

look like?

$$
\begin{aligned}
& y_{y}=-2 \delta(x)+3 \\
& y_{\text {new }}=-2 \text { yoed }+3
\end{aligned}
$$

Vertical transletion up 3 units

$$
\operatorname{reffectronn~}
$$

$$
\begin{aligned}
& \text { sceling } \\
& \text { verticel of gactor of } 2
\end{aligned}
$$

In which order?

1) First scele by 2
2) Then reglect across x exis 1
3) Then shift up 3units

$$
y=1-|x| \quad W R O N G \text { ORDER }
$$

(1)

(3)

reflect ecross x exis WRONG GRAPH:
when $x=1 \quad y$ should be 0

Horizontal translation
replace x with $x+c$
Given $f(x)=x^{2}$ what do the graph of

$$
g(x)=f(x+5)=\frac{(x+5)^{2}}{\underbrace{}_{2}}=1 \cdot(x-(-5))^{2}+0
$$

and $f(x-5)=(x-5)^{2}+0$

look like?

Horizontal Reflections
replacing x with $-x$
Given $f(x)=2^{x}$ what does the graph of $(-\lambda, 4)\left\{\begin{array}{l}(x, y) \\ (2,4)\end{array}\right.$
$g(x)=f(-x)=2^{-x}$ looks like? $\quad \rho(-2)=2^{-(-2)}=4$

replace $x \rightarrow \frac{x}{c}$ $c>0$ sceling lector
Horizontal scaling (expansion or compression)
Given $f(x)=x^{2}-1$ what do the graphs of

$$
\begin{aligned}
& p(x)=f\left(\frac{x}{2}\right)=\frac{x^{2}}{4}-1 \\
& c=2
\end{aligned}
$$

and of $q(x)=f\left(\frac{x}{\frac{1}{2}}\right)$

look like?

So is I replece x with $2 \cdot x$ I need to sey $2 x=\frac{x}{\frac{1}{2}}$

$$
\frac{d}{1} x=\frac{x}{\frac{1}{d}}
$$

$f\left(\frac{2}{3} x\right)$ what is my sceling jactor?

$$
\frac{2}{3} x=\frac{x}{\frac{1}{\frac{2}{3}}}=\frac{x}{\frac{3}{2}}=c
$$

How to graph af(bx+c)+d

1. Graph $y=f(x) \quad X$ Horizontally :
2. Shift $|c|$ units, left if c is positive, right if c is negative. $x+c$
3. Scale horizontally of a factor $\frac{1}{|b|}$ (compression if $|b|>1, \frac{x}{\frac{1}{|b|}}+C$
expansion if $|b|<1$)
4. Reflect across y axis if b is negative. Skip this step if b is $\begin{aligned} & \text { positive. } \\ & \text { Vertically: }\end{aligned} \quad \frac{x}{\frac{1}{|5|}}+c=b x+c$
5. Scale by a factor of $|a|$ (compression if $|a|<1$, expansion if $|a|>1)$
6. Reflect across x axis if a is negative. Skip this step if a is positive.
7. Shift $|d|$ units, up if c is positive, down if c is negative.

Note: the order is important.

