Lesson 15

Read Chapter 12

Logarithms

Other log functions

$\log _{a} x$ is the inverse of a^{x}

properties of log

$$
\begin{aligned}
& \text { - } \ln x^{y}=y \ln x \\
& \text { - } \log _{b} x=\frac{\ln x}{\ln b} \\
& \text { - } a^{x}=e^{(\ln a) x} \\
& \text { - } \ln (x y)=\ln (x)+\ln (y) \\
& \text { - } \ln \frac{x}{y}=\ln x-\ln y \\
& \text { - } \ln 1=0 \\
& \text { - } \ln \frac{1}{x}=-\ln x \\
& \ln \left(x^{-1}\right)=(-1) \ln x \\
& e^{y \cdot \ln x}=e^{(\ln x) \cdot y} \\
& x^{y}
\end{aligned}
$$

Solve the following equations

$$
\begin{aligned}
& 1.5 e^{x-4}=2 \\
& e^{x-4}=\frac{2}{5} \\
& \ln e^{x-4}=\ln \frac{2}{5} \\
& x-4=\ln \left(\frac{2}{5}\right)+4 \\
& 2.53^{x-4}=2 \\
& 3^{x-4}=2 / 5 \\
& \ln 3^{x-4}=\ln \left(\frac{2}{5}\right) \\
& (x-4) \cdot \ln 3=\ln \left(\frac{2}{5}\right) \\
& x-4=\frac{\ln (215)}{\ln (3)}+4
\end{aligned}
$$

$$
\begin{aligned}
& \ln \left(5 \cdot e^{x-4}\right)=\ln 2 \\
& \ln (5)+\ln e^{x-4}=\ln 2 \\
& x-4=\ln 2-\ln (5)+4 \\
& 3^{x-4}=2 / 5 \\
& \log _{3} 3^{x-4}=\log _{3}\left(\frac{2}{5}\right) \\
& x-4=\log _{3}\binom{2}{5}+4
\end{aligned}
$$

Solve the following equations

$$
\begin{aligned}
& \begin{array}{l}
\text { 1. } 5 \ln (5 x+2)=3 \\
e^{\ln (5 x+2)}=e^{3 / 5} \\
5 x+2=e^{3 / 5}
\end{array} \quad 8 x=\left(\frac{\left.e^{3 / 5}-2\right)}{5} \quad \begin{array}{l}
2^{3 .} \log _{2}(5 x+2)=3
\end{array}\right. \\
& 2^{\log _{2}(5 x+2)} \quad \begin{array}{l}
\log _{2} x \\
\text { inverse } \\
2^{x}
\end{array} \\
& 5 x+2=8
\end{aligned}
$$

Exponential functions in standard form

$$
\begin{aligned}
& f(x)=A_{0} a^{x}=A_{0}\left(e^{\ln a}\right)^{x}=A_{0} e^{\ln a \cdot x} \\
& f(x)=A_{0} e^{(\ln a) x}=A_{0} e^{k x}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Rewrite in e form } \\
& -y=57^{t}=S \cdot\left(e^{A_{0} e^{k t}}\right)^{\ln 7}=S e^{\operatorname{in} 7 \cdot t} \\
& -y=\frac{3}{2^{3 t-1}}=A_{0} e^{k t}
\end{aligned}
$$

1) Put in standard form to a^{t}

$$
\begin{aligned}
& 3 \cdot\left(\frac{1}{2}\right)^{3 t-1}=3 \cdot\left(\frac{1}{2}\right)^{3 t} \cdot\left(\frac{1}{2}\right)^{-1} \\
= & 3 \cdot 2 \cdot\left[\left(\frac{1}{2}\right)^{3}\right]^{t}=6\left(\frac{1}{8}\right)^{t}
\end{aligned}
$$

2) Put in "e form"

$$
6 \cdot\left(e^{\ln 1 / 8}\right) t=6 e^{(\ln 1 / 8) \cdot t}
$$

$$
\ln \left(\frac{1}{8}\right)<0
$$

Doubling time
Given an exponential function $f(t)=A_{0} a^{t}$, its doubling time is the period of time required for f to double in value.

$$
f(0)=A_{0} a^{0}=A_{0}
$$

Went function to double in value, that is reach $2 . A_{0}$

$$
\begin{aligned}
& 2 \not \%_{0}=\alpha_{0} a^{t} \\
& \ln 2=\ln Q^{t} \\
& \ln 2=t \ln a \\
& \ln 2 / \ln a=L
\end{aligned}
$$

The doubling time for $f(x)=A_{0} a^{x}$ is $\frac{\ln 2}{\ln a}$

Tripling time

Given an exponential function $f(t)=A_{0} a^{t}$, its tripling time is the period of time required for f to double in value.
The tripling time for $f(x)=A_{0} a^{x}$ is

Half life

Given an exponential function $f(t)=A_{0} a^{t}$, its half life is the period of time required for f to half in value.
The for $f(x)=A_{0} a^{x}$ is

Exponential modelling problems

Exponential modelling problems are problems that talk about a quantity that grows or decays exponentially. Your task is to find a formula $f(x)=A_{0} a^{x}$ for the quantity as a function of some variable x and use the formula to answer the questions in the problem.

Usually given

1) 2 points
2) 1 point and doubling / tripling... time

Find a formula for the exponential function that passes through the points $(0,2)$ and $(3,5)$

