Lesson 12

Read Chapter 8

Composition

You have 720 m of fencing with which to build 3 enclosures. Two are identical squares and one is a rectangle that is twice as long as it is wide. What should the dimensions of the squares be, in order to to minimize the combined area of all three enclosures ? What should the dimensions of the squares be, in order to maximize the combined area of all three enclosures?

From Past time:

$$
A(x)=\frac{50}{9} x^{2}-640 x+28800
$$

How about maximizing area?
Domain of $A(x)$

$$
A(90)=16200
$$

square

Area is max when $x=0$

An American Airlines plane is flying North at a speed of 200 mph . At time $t=0$ it is located 100 mi South of a control tower. A United Airlines plane is flying in a straight line towards the control tower with a speed of $130 \mathrm{mi} /$ hour. At time $t=0$ it is located 50 mi East and 100 mi South of the control tower. When are the planes closest? How close do they get?

$$
\begin{aligned}
& d=\sqrt{50^{2}+120^{2}}=130 \\
& t_{2}=\frac{130}{130}=1
\end{aligned}
$$

VA: $\begin{aligned} & x(t)=50+\frac{0-50}{1-0} t \\ & y(t)=-120+\frac{0-(-12)}{1-0} t\end{aligned}$

$$
\begin{aligned}
& A A(0,-100+200 t) \quad O A=(50-50 t,-120+120 t) \\
& d(t)=\sqrt{(50-50 t)^{2}+(-100+200 t-(-120+120 t))^{2}} \quad \text { Minimize } d(t)
\end{aligned}
$$

Simplify

$$
d(t)=\sqrt{8900 t^{2}-1800 t+2900}
$$

1) For which value of t is $d(t)$ minimum?
2) What is minimum distance?
3) Trick Pook et $d^{2}(t)=8900 t^{2}-1800 t+2900$ min for $t=\frac{1800}{2.8900} \approx 0.1$ SAME t for $d(t)$ end $d^{2}(t) \quad t$
Why? For positive values squaring does not change order

Ex: | t | $f(t)$ | $f^{2}(t)$ |
| :---: | :---: | :---: |
| 1 | 5 | 25 |
| 2 | 2 | 4 |
| 3 | 1 | 1 |
| 4 | 7 | 49 |
| 5 | -8 | 64 |

2) Compute $d(0.1)=\sqrt{8900(0.1)^{2}-1800.0 .1+2900} \approx 53 \mathrm{miles}$

What is a function ?

$$
\begin{aligned}
& x \rightarrow f \rightarrow f(x)=y \\
& \xrightarrow{g(f(x)) \text { in pictures composition }}
\end{aligned}
$$

Example $f(\boldsymbol{*})=\boldsymbol{\sigma}^{2}+1, \quad g(x)=2 x+3$

$$
\begin{gathered}
g(f(x))=马\left(x^{2}+1\right)=2\left(x^{2}+1\right)+3=2 x^{2}+S \\
f(\underbrace{g(x)})=f(2 x+3)=(2 x+3)^{2}+1
\end{gathered}
$$

Suppose $f(x)$ is the profit made by selling x barrels of apples and $g(x)$ is the number of barrels of apples produced by x trees. Explain in words the meaning of $f(g(x))$

f (\# barrels produced by x trees)
= profit mode by selling the berrels produced by x trees

Example $f(x)=\left\{\begin{array}{ll}\boxtimes+1 & \text { if } \boxtimes \leq 0 \\ 2 \bigotimes^{2}+\boxtimes+1 & \text { if } \gg 0\end{array} \quad g(x)=2 x+3\right.$

$$
\begin{aligned}
& g(f(x))=\left\{\begin{array}{l}
g(x+1) \text { if } x \leq 0 \\
g\left(2 x^{2}+x+1\right) \text { if } x>0
\end{array}= \begin{cases}2(x+1)+3 \text { if } x \leq 0 \\
2\left(2 x^{2}+x+1\right)+3 \text { if } x>0\end{cases} \right. \\
& f(g(x))=\left\{\begin{array}{l}
(2 x+3)+1 \text { if }(2 x+3 \leq 0) \text { if } 4 x \leq-3 / 2 \\
2(2 x+3)^{2}+(2 x+3)+1 \quad \text { if }(2 x+3>0) x>-\frac{3}{2}
\end{array}\right.
\end{aligned}
$$

Write the following functions as composition of two functions:

$$
\begin{aligned}
& e^{x^{3}}=f(g(x))
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{x^{3}+1}=f(\rho(x)) \\
& x \rightarrow x^{3}+1=y \rightarrow \sqrt{y}=\sqrt{x^{3}+1} \\
& g(x)=x^{3}+1 \quad f(y)=\sqrt{y} \quad f(x)=\sqrt{x} \\
& \dot{x} \rightarrow \dot{x}^{3}=\bar{y} \rightarrow \sqrt{y+1}=\sqrt{x^{3}+1} \\
& \sqrt{g(x)}=x^{3} \cdot f(y)=\sqrt{y+1} \cdot f(x)=\sqrt{x+1}
\end{aligned}
$$

$f(x)=|1-|x||$ find a multipart formula for f (no 11 there) and draw the graph of f.

$$
\begin{array}{ll}
\text { Graphs } & \text { Algebra } \\
y=1-|x| & f(x)= \begin{cases}1-|x| & \text { if } 1-|x| \geqslant 0\end{cases}
\end{array}
$$

Third attempt

