

Parabola through three points

Find the equation of the parabola through (1,2),(-1,1) and (2,3)

Start with standard form:

$$y = a x^{2} + bx + c$$

plug in all three points to get three equations.
 $2 = a \cdot l^{2} + b \cdot l + c$
 $l = a(-1)^{2} + b(-1) + c$
 $3 = a \cdot 2^{2} + b \cdot 2 + c$
Solve a system

5900

(日) (四) (로) (로) (로) (로)

$$\begin{array}{c}
2 = Q + b + C \\
1 = Q - b + C \\
3 = 4Q + 2b + C \\
2 = 2 - b - C \\
3 = 2 - b - C \\
3 = 2 - b - C \\
3 = 8 - 2b - 3c \\
3 = 8 - 2b - 3c \\
3 = 8 - 2 \\
3 = 8 - 2b - 3c \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3 = 8 - 2 \\
3$$

	€ doh.wa.gov	
Current Status Cases	Epidemiologic Curves Cumulative Counts Demographics Testing Componentiness Healthcare syste Hospitalizations Deaths R-effective Estimates Readiness Readiness	Count
COVID-19 This chart shows the referred to in the phrase	IN WASHINGTON STATE Cases and Deaths by Specimen Collection Date, and Hospitalizations by Admission Date DATA AS OF 10/ Data AS OF 10/ progression of the COVID-19 outbreak in Washington by cases, hospitalizations and deaths over time and is known as an epidemiologic curve. The epidem hrase, "flatten the curve." Learn More	/12/2021 11:59PM PT niologic curve is the curv
SELECT COUNTIES	CASE COUNTS	
Select all Adams County	Probable Cases Confirmed Cases Incomplete (Probable Cases) Incomplete (Confirmed Cases) Total Cases (7 day avg.) In Sooo	ncomplete (7 day avg.)
Asotin County Benton County Chelan County	4000	
Clallam County	350 0	\mathcal{M}
Columbia County	ity 3000	
Douglas County Ferry County Franklin County	2000	
Garfield County		anhkhäling.
Grays Harbor Co	ounty 0 Apr 2020 Jul 2020 Oct 2020 Jan 2021 Apr 2021 Jul 00	21 Oct 202
Click on "Tabular Vie to see and download	riew" O t = o t Specimen Collection Date	0
<i>data.</i> Tabular View	1,787 of 689,484 cases do not have an assigned county. Cases from the last 8 days may yet not be reported.	
rosoft Power Bl	County-level information can be found on Local Health Jurisdiction <u>(LHJ) websites</u> Pages	
Sum	nmary Data Tables	
Find e	quetion of parabola with Vertex at (5,40	00)
	through (5.25,1000)	
and	•	
and		
and 4 =	$\alpha (x-h)' + K$	
and y =	a (x-h) + K	
and		

2023-10-19 14:35:19

lesson11 (4/11)

 $600 = 2 \cdot 1$

600 × 16 = Q

$y = 600 \times 16 (X - S)^2 + Lioo$

To solve a min/max problem

- Choose your variables and find a formula for q. q=q(x).
- In 120 q(x) should involve a quadratic function. Usually you find max/min by finding the vertex.
- Pay attention whether the problem is asking for an x value (h) or a q value (k) or both.

5900

Issues-tricks

- The quantity is a distance given by a formula : $q = \sqrt{\cdots x \cdots}$.
- \triangleright q depends on more than one variable. q=q(x,y).
- Min/max not at vertex.

< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < ○ < ○

Rosalie is organizing a circus performance to raise money for a charity. She is trying to decide how much to charge for tickets. From past experience she knows that the number of tickets sold is a linear function of the price. If she charges 5 dollars per ticket , she can sell 1000 tickets, if she charges 7 dollars she can only sell 900 tickets. How much should she charge per ticket to make the most money ?

3

q(x): money Roselie makes. price of ficket

q(x) = n(x) - x

n(x) = the number of tickets Sold

$y = y_0 + m(x - x_0)$

y = 1000 + 1000 - 900 (x - 5)

y = 1000 - 50 (x - 5)

q(x) = 1000 - 50 (x - 5)

so h

You have 720 m of fencing with which to build 3 enclosures. Two are identical squares and one is a rectangle that is twice as long as it is wide. What should the dimensions of the squares be, in order to to minimize the combined area of all three enclosures ? What should the dimensions of the squares be, in order to maximize the combined area of all three enclosures ?

$\frac{720-8\times}{6}=3$

Area : $A(x) = 2x^2 + 2(720 - 8x)$

want to find x velue for that makes Area smallest.

Do elgebre --.

$A(x) = \frac{50}{9}x^2 - 640x + 28800$

15 problem asked for minimum

In this case I need k
1) Use for mula
2)
$$k = A(h) = A(57.6)$$

 $K = \frac{50}{9}(57.6)^{2} - 6(0 \cdot (57.6) + \frac{9}{28800})$

An American Airlines plane is flying North at a speed of 200 mph. At time t = 0 it is located 100 mi South of a control tower. A United Airlines plane is flying in a straight line towards the control tower with a speed of 1**3**0 mi/hour. At time t = 0 it is located 50 mi East and 100 mi South of the control tower. When are the planes closest ? How close do they get ?

$$Simplify$$

$$d(t) = \sqrt{8900t^2 - 1800t + 2900}$$