Lesson 1

Read Chapter 1

Units, Formulas,Coordinate Systems, Linear motion

Please familiarize yourself with the canvas page

Please login into WebAssign before your first quiz section

Word Problems

- Draw a picture (Ch 2)
- Identify useful formulas
- Pay attention to units

Convert 2 hrs 10 minutes and 57 seconds to hours.

$$
\begin{aligned}
& 2+\frac{10 \cdot \frac{1}{60}+57 \cdot \frac{1}{3600}=\frac{2 \times 3600+10 \times 60+57}{3600}=\frac{5857}{360 \times 60}}{\frac{\underbrace{n 600}_{\text {exact }}}{36}} \text { hrs } \\
& \approx \underbrace{2 \cdot 18}_{\text {approximation }} \text { hrs }
\end{aligned}
$$

Real numbers $2, \frac{1}{2} \frac{1}{3}, \pi \sqrt{2}, e$ in general here infinite decimal expension
3.1415..... .

$$
2+0.17+0.02=2.19
$$

Error tolerance in WebAssign

Convert 7857.31 seconds into hours, minutes and seconds.

$$
\begin{aligned}
& 1 \mathrm{hr}=\frac{1}{3600} \mathrm{sec} \\
& \frac{7857.31}{3600}=2.1826 \text { hrs } \cdot 2 \mathrm{hrs} \text { and } 0.1826 \text { hrs } \\
& 1 \mathrm{hr}=60 \mathrm{~min} \\
& 0.1826 \times 60=10.956 \text { min and } 0.956 \mathrm{~min} \\
& 1 \mathrm{~min}=60 \mathrm{xc} \\
& 0.956 \times 60=57.36 \mathrm{sec} .
\end{aligned}
$$

$$
\text { Approx: } 2 \text { hrs } 10 \text { min } 57 \mathrm{sec}
$$

Check handouts with Area and Volume formulas

Other formulas :

$$
d=v t, \text { for constant speed } / \text { velocity } v
$$

```
mass= density x volume
```

total change $=$ rate of change $\times \mathrm{t}$, for constant rate of change

$$
\mathrm{d}=\mathrm{vt}
$$

distance $=$ speed \times time displacement $=$ velocity \times time
speed is $\geqslant 0$
velocity is vector: it hes direction and magnitude in 120 velocity is a number, positive or negative

$$
\begin{gathered}
L= \\
\begin{array}{l}
\text { velocity } \\
\text { velocity } \\
-60 \mathrm{~km} / \mathrm{hr} \longrightarrow
\end{array}
\end{gathered}
$$

velocity could be portive or negative. rectilinear motion

$$
\left\lvert\, \begin{gathered}
+ \\
- \\
\downarrow
\end{gathered}\right.
$$

displacement $s\left(t_{2}\right)-s\left(t_{1}\right) \quad s(\epsilon)=$ postion $=$ ouer time intercel coordinete

$$
t_{1} \leq t \leq t_{2}
$$

displacement $s\left(t_{2}\right)-s\left(t_{1}\right)=-1-2=-3$

$$
d=v \underline{t}
$$

straight
Sarah can bicycle around a path, with constant speed, in two hours and 40 min . If she decreases her speed by $1 \mathrm{~km} / \mathrm{hr}$ her time increases by 4 min . How long is the path ?

$$
d
$$

$$
d=v t
$$

Next time.

