Instructions

- You are allowed to consult the textbook and your notes.
- You are not allowed to discuss the exam with anybody, but of course, if anything is not clear you can email me your questions.
- Do not post questions or look for answers to any problem on the Web.
- Turn in your answer to Gradescope by Tuesday $3 / 16$ 11:59 pm, no late submissions will be accepted.

1. Let $M_{3 \times 3}(\mathbb{R})$ be the vector space of 3×3 real matrices and let

$$
U=\left\{M \in M_{3 \times 3}(\mathbb{R}): \text { the sum of the diagonal elements of } \mathrm{M} \text { is } 0\right\}
$$

(a) Show that U is a subspace of $M_{3 \times 3}(\mathbb{R})$.
(b) Find a basis for U. You need to justify (or it must be clear from your work) that your list of vectors is indeed a basis for U.
2. Let V be a vector space (not necessarily finite dimensional) and let S be a subset of V (not necessarily finite). Given a linear transformation $T: V \rightarrow V$, define the image of S under T to be the set

$$
T(S)=\{w \in V: \exists v \in S, w=T(v)\}
$$

(a) Prove that if $T(S)$ is linearly independent, then S is linearly independent.
(b) Is it true that if S is linearly independent then $T(S)$ must be linearly independent? Justify your answer.
3. Suppose V is a vector space over F and $T: V \rightarrow F$ is a linear transformation. Suppose $v \in V$ and $T(v) \neq 0$. Prove that

$$
V=\operatorname{ker}(T) \oplus \operatorname{span}(v)
$$

Recall $: \operatorname{span}(v)=\{k v: k \in F\}$.
4. Suppose $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation. Suppose v_{1}, v_{2}, v_{3} are nonzero vectors in \mathbb{R}^{3} such that:

$$
(T-2 I) v_{1}=0,(T-2 I) v_{2}=v_{1},(T-2 I) v_{3}=v_{2}
$$

Prove:
(a) $\lambda=2$ is the only eigenvalue for T.
(b) T is not diagonalizable.
(c) Find a basis B for \mathbb{R}^{3} such that $T_{B}^{B}=\left(\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$
5. Let V be a finite dimensional inner product space, and let U, W be subspaces of V. Prove that:

$$
(U+W)^{\perp}=U^{\perp} \cap W^{\perp}
$$

6. Let $U=\operatorname{span}((1,1,0),(1,1,1))$. Find a vector $u \in U$ such that $\|u-(1,0,0)\|$ is as small as possible. Here $\left\|\|\right.$ is the usual norm in \mathbb{R}^{3}.
