
Math 318 Homework 8

(1) (SVD of Symmetric and PSD matrices)
(a) Compute the SVD of the symmetric matrix (using Julia or otherwise)

B =
⎡⎢⎢⎢⎢⎢⎣

1 2 3
2 4 5
3 5 6

⎤⎥⎥⎥⎥⎥⎦
.

(b) If A is a symmetric matrix of size n × n, argue that σi = ∣λi∣ for all i. Here σi is
the ith singular value of A and λi is the ith eigenvalue of A.

(c) Based on what you just did, how would you convert a diagonalization of a
general symmetric matrix C to the SVD of C? Say in words what steps need
to be taken.

(d) If A is a PSD matrix of size n × n then what is the relationship between its
singular values and eigenvalues? What is the SVD of A?

(2) (Rank one matrices)
(a) Argue that for any two matrices A and B, rank(A +B) ≤ rank(A) + rank(B).

Hint: Think about how the dimension of Col(A +B) relates to the sum of the
dimensions of Col(A) and Col(B). Also, if S and T are two sets of vectors in
Rn then dim(span{S ∪ T}) ≤ dim(span{S}) + dim(span{T}).

(b) Use SVD to argue that every rank one matrix in Rm×n is of the form uv⊺ for
u ∈ Rm and v ∈ Rn.

(c) Find two rank one matrices whose sum is still rank 1 and two rank one
matrices whose sum has rank 2.

(d) If the columns of A ∈ Rm×k are a1, . . . ,ak and the rows of B ∈ Rk×n are
b⊺1, . . . ,b

⊺
k argue that AB = a1b

⊺
1 + a2b

⊺
2 +⋯ + akb

⊺
k.

Hint: You could show that the (i, j)-entry on the left side is the same at the
(i, j)-entry on the right side. Warm up by checking that if

A = [a b
c d

] and B = [e f g
h i j

]

then

AB = [a
c
] [e f g] + [b

d
] [h i j] .

(3) (Rank one decomposition of symmetric and PSD matrices)
(a) Argue that all rank one PSD matrices of size n × n can be written as bb⊺ for a

vector b ∈ Rn.
(b) Describe 3 × 3 PSD matrices of rank 1 that have 0s and 1s on the diagonal.

Hint: Use part (a) to deduce what any rank one matrix looks like, then find
necessary conditions for the diagonals of your psd matrix to be 0 or 1. You do
not need to explicitly give all matrices but you should argue how many you
could get (double counting is ok) and explain how you get them.

(c) Argue that a PSD matrix of rank r is the sum of r rank one PSD matrices.
This means that you can get an expression of the form M1 +M2 +⋯+Mr where
each Mi is PSD and rank one.

(d) Can a symmetric matrix of rank r also be written as M1 +M2 +⋯ +Mr where
each Mi is PSD and rank one? If yes, explain your reason. If no, what kind of
rank one decomposition is possible?



(4) † (Projection with an orthonormal basis) In class we learned that if V ⊆ Rn is
a subspace with basis a1, . . . ,ak and A ∈ Rn×k is the matrix with columns a1, . . . ,ak,
then projection onto V is achieved by the linear transformation with matrix
A(A⊺A)−1A⊺. In this exercise we are going to see how this formula simplifies if we
had started with an orthonormal basis of V .

(a) Suppose q1, . . . ,qk is an orthonormal basis of V and Q ∈ Rn×k is the matrix
with columns q1, . . . ,qk.

(i) Show that the projection matrix P = Q(Q⊺Q)−1Q⊺ is
q1q

⊺
1 + q2q

⊺
2 +⋯ + qkq

⊺
k.

(ii) Using (i) compute projV b, the projection of b ∈ Rn onto V . (Your answer
should be a linear combination of q1, . . . ,qk.)

(iii) From (ii), what are the coordinates of projV b in the basis q1, . . . ,qk?
(iv) Use your knowledge of orthogonal projectors to write down the matrix

that projects onto V ⊥.
(v) Using this projector to find projV ⊥b.

(b) Suppose we find additional vectors so that q1, . . . ,qk,qk+1, . . . ,qn is an
orthonormal basis of Rn. Check for yourself that {qk+1, . . . ,qn} is an
orthonormal basis of V ⊥.

(i) Apply what you learned in (a) to the basis {qk+1, . . . ,qn} of V ⊥ to
compute projV ⊥b, the projection of b onto V ⊥.

(ii) Equating your answer above and the answer in (a) (v), express b as a
linear combination of q1, . . . ,qn.

(iii) What are the coordinates of b in the basis q1, . . . ,qn?

(c) (4.1, #17) Let L be the line spanned by (1,1,1)⊺.
(i) Find a vector u so that projection onto L is x↦ uu⊺x.

(ii) Compute the projection of b =
⎛
⎜
⎝

2
3
4

⎞
⎟
⎠

onto L and L⊥. Show all work.

(5) Two Distances*
What is the largest number of points in R2 such that any two of them have the

same distance? Three points are ok, we can put them at the vertices of an
equilateral triangle, but there is no set of four points for which all pairwise
distances are the same. Do you see why?

What if we allow two possible distances? A regular pentagon has two distances
among pairs of vertices: all the diagonals have the same length and all the sides
have the same length.

Figure 1. A regular pentagon

Question: What is the maximum number n of points in Rd such that all pairwise
distances among the points are one of two (positive) numbers?



It seems that n should depend on d, so better to write n(d) instead of n. The
above examples are maximal and n(2) = 5 which means that in R2 we can have at
most 5 points with two different pairwise distances. In this exercise we will show
that n(d) ≤ 1

2(d2 + 5d + 4).

(a) Let the n points in Rd be p1, . . . ,pn, and the two allowed distances be a and b.
We have that the square of the distance between pi and pj is

∥pi − pj∥2 = (pi1 − pj1)2 + (pi2 − pj2)2 +⋯ + (pid − pjd)2 ∈ {a2, b2}
Associate to each pi the function

fi ∶ Rd → R, such that fi(x) = (∥x − pi∥2 − a2)(∥x − pi∥2 − b2)
where x = (x1, . . . , xd). Show that

fi(pj) = { 0 for i ≠ j
a2b2 for i = j

Hint: You might choose a few actual points pi in R2 or R3 and write out the
function fi to get a feel for this question.

Consider the set V of all functions f ∶ Rd → R. V is a vector space under the
following operations of addition and scalar multiplication. The sum of two
functions, f1 + f2 is defined as (f1 + f2)(x) = f1(x) + f2(x). If f is a function
and α ∈ R, then αf is the function from Rd → R defined as (αf)(x) = α(f(x)).

(b) Let W be the subspace of V spanned by the functions f1, . . . , fn from (a).
Argue that f1, . . . , fn form a basis of W , i.e., they are linearly independent
functions in V .
Hint: Suppose they are not, then there is a some linear combination of them
α1f1 + α2f2 +⋯ + αnfn = 0 where 0 is the zero function that sends everything to
0. Use the definition of the functions fi to show that this forces αi = 0 for all i
proving what we want. Think about useful vectors that you could plug into the
function α1f1(x) + α2f2(x) +⋯ + αnfn(x) = 0 to show that αi = 0. A choice of
one point will show that one of the αi = 0 and a choice of different point will
show that αj = 0 for some j ≠ i.

(c) Remember we are trying to put an upper bound on n(d). Here is a strategy:
suppose we can find another set of functions g1, . . . , gt such that W lies in their
span. Argue that t ≥ n(d). This means t is an upper bound on n(d).
In the remaining part of this problem we will see how to find such functions
g1, . . . , gt. Of course we want as small an upper bound as possible so we want a
t that is as small as possible.

Note that each fi is a polynomial of degree 4 in x1, . . . , xd. The set of all
polynomials in d variables x1, . . . , xd, of degree at most 4, is a vector space.
Call this vector space P .

(d) Write out all monomials in x1, x2 of degree at most 4 and check that all
polynomials in x1, x2 of degree at most 4 can be written as a linear
combination of these monomials.

Let P be the vector space of all monomials of degree at most 4 in x1, . . . , xd.
The monomials of degree at most 4 form a basis of P since any degree 4
polynomial in d variables can be written as

∑
i1+⋯+id≤4

ai1,i2,...,idx
i1
1 x

i2
2 ⋯x

id
d



There are precisely (d+4
4
) = (d+4)(d+3)(d+2)(d+1)1⋅2⋅3⋅4 monomials of degree at most 4 in

d variables. Recall that (d+4
4
) is the number of ways to choose 4 elements from

a set of d + 4 elements.

(e) Using the above, argue that

(d + 4

4
) ≥ n(d).

This upper bound is a 4th degree polynomial in d. We need to get to a
quadratic in d to get the result we want.

(f) To get a smaller upper bound, we need to look for a smaller set of functions
that span W . Maybe we don’t need all monomials of degree at most 4 to
generate W since the functions fi have rather special structure. So we should
look at it more carefully. Expand fi and show that it is a linear combination of
the following functions:

(x21 +⋯ + x2d)2

xj(x21 +⋯ + x2d) j = 1,2, . . . , d

x2j j = 1,2, . . . , d

xixj 1 ≤ i < j ≤ d
xj j = 1,2, . . . , d

1

(g) Show that there are 1
2(d2 + 5d + 4) functions in the above list. Why is this

number an upper bound on n(d)?


