(1) Symmetric Matrices (6.4 \# 7)

Consider the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -1 & -2 \\
2 & -2 & 0
\end{array}\right]
$$

The following are eigenvalue/eigenvector pairs of A :

$$
\lambda_{1}=-3, \mathbf{u}_{1}=(1,-2,-2)^{\top}, \quad \lambda_{2}=0, \mathbf{u}_{2}=(2,2,-1)^{\top}, \quad \lambda_{3}=3, \mathbf{u}_{3}=(2,-1,2)^{\top}
$$

(a) Find a set of orthonormal eigenvectors $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$ of A where $A \mathbf{q}_{i}=\lambda_{i} \mathbf{q}_{i}$.
(b) Compute a orthonormal diagonalization of A.
(c) Compute the coordinates of $(1,1,1)^{\top}$ in the basis $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$.
(d) Compute the coordinates of $A(1,1,1)^{\top}$ in the basis $\left\{\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right\}$.

(2) Quadratic forms, PSD matrices

(a) Argue that for each n, the only orthonormal, symmetric, and positive definite matrix of size $n \times n$ is the identity.
(b) ($6.5 \# 12$) For what values of d (if any) is the following matrix is positive definite? Show your work and explain your conclusion.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & d & 4 \\
3 & 4 & 5
\end{array}\right]
$$

(c) Let $q(x, y)=x^{2}-4 x y+16 y^{2}$.
(i) Write down the symmetric matrix Q such that $q(x, y)=\left(\begin{array}{ll}x & y\end{array}\right) Q\binom{x}{y}$.
(ii) Do you expect $q(x, y)$ to be nonnegative for all $(x, y) \in \mathbb{R}^{2}$? Why? If yes, write it as a sum of squares by factoring Q as $B B^{\top}$.

(3) PSD matrices

(a) Argue that the set of all $n \times n$ symmetric matrices forms a subspace of $\mathbb{R}^{n \times n}$.
(b) Argue that for $n \times n$ matrices,
(i) if $A \geq 0$ and $B \geq 0$, then $A+B \geq 0$,
(ii) if $A \geq 0$ and $\lambda \geq 0$ then $\lambda A \geq 0$.
(c) Does the set of all $n \times n$ PSD matrices form a subspace in the space of all $n \times n$ symmetric matrices? Explain your reasons.

(4) * Equiangular lines in \mathbb{R}^{d}.

It is important in areas like coding theory to understand the largest number of lines through the origin in \mathbb{R}^{d} such that the angle between any two of them is the same. A collection of lines through the origin in \mathbb{R}^{d} such that the the angle between any two of them is the same is a set of equiangular lines. For example, the maximum number of lines in \mathbb{R}^{3} such that the angle between any two of them is 90° is 3 ; take for example the 3 coordinate axes. However, if the common angle is different from 90° there can be more lines. The 6 diagonals of a regular icosahedron are equiangular. Google for the regular icosahedron if you have not seen it before.

In the following exercise we will argue that you cannot have more than 6 equiangular lines in \mathbb{R}^{3} no matter what angle θ you choose.

Suppose we have a collection of n equiangular lines in \mathbb{R}^{3} and \mathbf{v}_{i} is a unit vector in the direction of the i th line. It does not matter if you choose \mathbf{v}_{i} or its negative, but choose one and call it \mathbf{v}_{i}.
(a) Argue that the condition of equiangularity means that if $i \neq j$ then $\mathbf{v}_{i}^{\top} \mathbf{v}_{j}=\cos \theta$ for a fixed angle θ.
(b) You showed in problem 3 that the set of all symmetric 3×3 matrices form a vector space. Argue that the dimension of this vector space is 6 .
Hint: What is a basis of the space of all 2×2 symmetric matrices? Then try 3×3.
Now consider the rank one PSD matrices $\mathbf{v}_{i} \mathbf{v}_{i}^{\top}$ of size 3×3.
(c) We will now argue that the rank one psd matrices $\mathbf{v}_{i} \mathbf{v}_{i}^{\top}$ of size 3×3, coming from the equiangular lines, are linearly independent (as matrices). This will give us the result since all these rank one psd matrices are in the 6 dimensional vector space of symmetric matrices, so there cannot be more than 6 of them. This will imply that there cannot be more than 6 lines.
(i) Suppose the matrices $\mathbf{v}_{i} \mathbf{v}_{i}^{\top}$ are linearly dependent. Then there are $a_{1}, \ldots, a_{n} \in \mathbb{R}$ such that

$$
\sum a_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{\top}=0 .
$$

Multiply this expression on the left with \mathbf{v}_{j}^{\top} and on the right with \mathbf{v}_{j} and get that

$$
0=a_{j}+\sum_{i \neq j} a_{i} \cos ^{2} \theta .
$$

(ii) Find a matrix M such that you can express the equations from (i) in the form $M a=0$.
(iii) Check that $M=\left(1-\cos ^{2} \theta\right) I_{n}+\cos ^{2} \theta J_{n}$ where J_{n} is the $n \times n$ matrix of all ones.
(iv) Argue that I_{n} and J_{n} are PSD.
(v) Argue that the coefficient $\left(1-\cos ^{2} \theta\right)$ is positive and hence M is PSD.
(vi) Is M positive definite? If so, what is a if $M \mathbf{a}=\mathbf{0}$?
(vii) Conclude that the psd matrices $\mathbf{v}_{i} \mathbf{v}_{i}^{\top}$ are linearly independent.
(d) Can you extend each step above to see that you cannot have more than $\binom{d+1}{2}=\frac{d(d+1)}{2}=1+2+\cdots+d$ equiangular lines in \mathbb{R}^{d} ?

