Here are some extra practice problems. You need to justify all your answers.

1. Let $A\left(\begin{array}{ccc}2 & 2 & -1 \\ 2 & 4 & 0 \\ -1 & 0 & 1\end{array}\right)$ and $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
i) Write $x^{T} A x$ as a quadratic polynomial $Q\left(x_{1}, x_{2}, x_{3}\right)$.
ii) Is A PSD or PD ? Justify your answer.

Answer True or False, with justification:
(a) Is A is symmetric then A^{2} is PSD.
(b) If A is PSD and B is PD , then $\mathrm{A}+\mathrm{kB}$ is PSD for all $k \in \mathbb{R}$.
2. Suppose K_{n} is the complete graph on n vertices, that is K_{n} has n vertices and any two vertices i and j, with $i \neq j$ are connected by an edge. Let J_{n} be the $n \times n$ matrix with all entries equal to 1 and I_{n} be the $n \times n$ identity matrix.
(a) Argue that $L_{K_{n}}=n I_{n}-J_{n}$.
(b) Find all eigenvalues, with multiplicity, of $-J_{n}$
(c) Find all eigenvalues, with multiplicity, of $L_{K_{n}}$
3. Suppose A is a symmetric matrix such that $A^{3}=0$, show that $A=0$.
4. Show that the set S of all polynomials $p(x)$ of degree at most 2 such that $p(1)=0$ is a subspace of $\mathbb{R}[x] \leq 2$ and and find a basis B for S . Remember to justify why B is a basis.
5. You are given two orthogonal (but not orthonormal) sets in $R^{3}: B_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ $B_{2}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$ Consider the linear transformation $T: R^{3} \rightarrow R^{3}$ such that

$$
\begin{aligned}
T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right) & =\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] \\
T\left(\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]\right) & =\left[\begin{array}{c}
0 \\
2 \\
-1
\end{array}\right] \\
T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right) & =\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
\end{aligned}
$$

Let A be the matrix of T, that is $T(v)=A v$ for all $v \in \mathbb{R}^{3}$. Find a SVD for A.
6. Consider : $\mathbb{R}[x]_{\leq 2} \rightarrow \mathbb{R}[x]_{\leq 3}$ defined by $T(p(x))=x p(x)$
(a) Show that T is a linear transformation.
(b) Find the matrix of T.

Problem 1
1)
i) $2\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}^{2}+4 x_{2}^{2}+x_{3}^{2}+4 x_{1} x_{2}-2 x_{1} x_{3}$
ii) We can write Q as

$$
\begin{aligned}
& x_{1}^{2}+4 x_{1} x_{2}+4 x_{2}^{2}+x_{1}^{2}+x_{3}^{2}-2 x_{1} x_{3}= \\
= & \left(x_{1}+2 x_{2}\right)^{2}+\left(x_{1}-x_{3}\right)^{2}
\end{aligned}
$$

$P S D$ but not $P D$ since $2(2,-1,2)=0$
2) a) $A^{2}=A^{\top} A$ So it is PSD. TRUE

OR: $(A A)^{T}=A^{T} \cdot A^{T}=A A$ so A^{2} is symmetric.
If the eigenvalues of A are $d_{1} \ldots d_{n}$ and $A v_{L}=d_{L} v_{L}$ then $A A v_{L}=A d_{L} v_{L}=d_{L}{ }^{2} v_{L}$ So the eigenvalues of A^{2} are $d_{1}{ }^{2}, d_{2}{ }^{2}, \ldots d_{n}{ }^{2}$ and they ere ell $\geqslant 0$ so A^{2} is PSD TRUE
b) False Take for example $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad k=-2 \quad$ (The problem here is having $k<0$)
Then $A+(-2) B=\left[\begin{array}{rr}-1 & 0 \\ 0 & -2\end{array}\right]$ and this matrix has negative eigenvalues $-1,-2$ so it is not PSD

Problem 2
a) The degree of each vertex in k_{n} is $n-1$ end there is en edge $\{l, j\}$ for every $1 \leqslant l<j \leqslant n$ So $L_{k_{n}}$ hes $n-1$ along the diagonal and - 1 everywhere else and therefore

$$
L_{k_{n}}=n I-S_{n} \text {. }
$$

b) $-5 n$ is symmetric, it has rank 1 end therefore nullity $=n-1$ so $6 M(0)=A M(0)=$ $n-1$. The only non zero eigenvalue must be $\lambda=-n$ since trace $\left(-S_{n}\right)=-n$ and the trace is the sum of the eigenvalues. So the eigenvalues $o f-S_{n}$ ere $0 \cdots 0-n$
c) By b) $\operatorname{det}\left(-S_{n}-\lambda I_{n}\right)=0$ bes solutions $\lambda=0 \cdots 0-n$;

$$
\operatorname{det}\left(n I_{n}-I_{n}-\lambda I_{n}\right)=0 \Leftrightarrow
$$

$\operatorname{det}\left(-3 n-(d-n) I_{n}\right)=0$ and therefore
the solutions are $d-n=0 \cdots 0 \quad-n$ or $d=n \cdots n 0$

Problem 3
Since A is symmetric A is orthogonally diagonalizeble: $A=Q D Q^{\top} \quad$ Therefore $0=A^{3}=Q D^{3} Q^{\top}$ which means $Q^{\top} \circ Q=D^{3}$ so

$$
D^{3}=\left[\begin{array}{ccc}
\lambda_{1}{ }^{3} & 0 & 0 \\
0 & d_{2}{ }^{3} & 0 \\
0 & 0 & d_{3}{ }^{3}
\end{array}\right]=0 \text { so } d_{1}=d_{2}=d_{3}=0
$$

Then $A=Q O Q^{\top}=0$
Problem 4
We need to check that:
$1)$ The o polynomial in $R[x] \leqslant 2$ is in S :

$$
O(1)=0 \text { so } 0 \in S
$$

2) If $p \in S$ and $k \in R \quad k p \in S$: $(k p)(1)=k p(1)=0$ since $p \in S$, therefore $k p \in S$.
3) If $p \in S$ and $q \in S$ then $p+q \in S$: $(p+q)(1)=p(1)+q(1)=0 \quad$ since p end q are in S. Therefore $p+q \in S$.

If $p(x)=a+b x+c x^{2} \quad p(1)=a+b+c$ if we identify the polynomial $p(x)$ with the vector $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ in R^{3}

Then S is identified with the following subspace of R^{3} :

$$
T=\left\{\left[\begin{array}{l}
e \\
b \\
c
\end{array}\right] \in R^{3} \quad a+b+c=0\right\}
$$

A bers for T is $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$
going back to polynomials we get

$$
p=1-x \quad q=x-x^{2}
$$

We cen verify that $p(1)=q(1)=0$
p and q ere linearly independent :
Suppose $k(1-x)+h\left(x-x^{2}\right)=0$. (the 0 polynomial) then $k+(h-k) x-h x^{2}=0 \quad$ so $h=k=0$ clearly $S \neq R[x] \leqslant 2$ so S has dimension at most 2
Therefore $S=\operatorname{spen}\left(1-x, x-x^{2}\right)$ and $1-x, x-x^{2}$ are a bests for S

Problem 5
Let $B_{1}^{\prime}=\left[\begin{array}{c}1 / \sqrt{2} \\ 1 / \sqrt{2} \\ 0\end{array}\right]\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2} \\ 0\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\vec{x}, \overrightarrow{x_{2}}, \overrightarrow{x_{3}}$

$$
B_{2}^{\prime}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\left[\begin{array}{c}
0 \\
2 / \sqrt{5} \\
-1 / \sqrt{5}
\end{array}\right]\left[\begin{array}{c}
0 \\
1 / \sqrt{5} \\
2 / \sqrt{5}
\end{array}\right]=\vec{y}_{1}, \overrightarrow{y_{2}}, \vec{y},
$$

So we went $T\left[\overrightarrow{x_{1}}\right]=\frac{2}{\sqrt{2}} \quad \vec{y}_{1}$

$$
\begin{aligned}
& T\left[\vec{x}_{2}\right]=\frac{\sqrt{5}}{\sqrt{2}} \vec{y}_{2} \\
& T\left[\vec{x}_{3}\right]=\sqrt{5} \vec{y}_{3}
\end{aligned}
$$

Note that $\sqrt{5}>\frac{\sqrt{5}}{\sqrt{2}}>\frac{2}{\sqrt{2}}$
so Let $v_{1}=\vec{x}_{3} \quad v_{2}=\vec{x}_{2} \quad v_{3}=\vec{x}_{1}$

$$
u_{1}=\vec{y}_{3} \quad u_{2}=\vec{y}_{2} \quad u_{3}=\overrightarrow{\underline{q}}_{1}
$$

The linear transformation T, with respect to $B_{1}^{\prime}=v_{1} v_{2} v_{3}$ in the domain end $B_{2}{ }^{\prime}=u_{1} u_{2} u_{3}$ in the codomain is given by

$$
\sum=\left[\begin{array}{ccc}
\sqrt{5} & 0 & 0 \\
0 & \sqrt{5} / \sqrt{2} & 0 \\
0 & 0 & 2 / \sqrt{2}
\end{array}\right]
$$

$$
A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 / \sqrt{5} & 2 / \sqrt{5} & 0 \\
2 / \sqrt{5} & -1 / \sqrt{5} & 0
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{5} & 0 & 0 \\
0 & \frac{\sqrt{5}}{\sqrt{2}} & 0 \\
0 & 0 & 2 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right]
$$

Problam 6
1)

$$
\begin{aligned}
& \forall p \in R[x]_{\leq 2} \forall k \in R, T(k p)=x(k p(x)) \\
& =k x p(x)=k T(p)
\end{aligned}
$$

2)

$$
\begin{aligned}
& \forall p, q \in R[x] \leq 2 \quad T(p+q)=x(p+q) \\
& =x p+x q=T(p)+T(q)
\end{aligned}
$$

Therefore T is a Pineer trensformetion We Pook at the beris $B_{1}: 1 x x^{2}$ in $R[x] \leq 2$ and

$$
B_{2}: 1 \times x^{2} x^{3} \text { in } R[x] \leq 3
$$

The matrix of T is

$$
\begin{aligned}
& M=\left[\begin{array}{lll}
{[T(1)]_{E_{2}}} & {[T(x)]_{B_{2}}} & {\left[T\left(x^{2}\right)\right]_{B_{2}}}
\end{array}\right] \\
& T(1)=x=0+1 \cdot x+0 x^{2}+0 x^{2} \\
& T(x)=x^{2}=0+0 \cdot x+1 \cdot x^{2}+0 \cdot x^{3} \\
& T\left(x^{2}\right)=x^{3}=0+0 \cdot x+0 \cdot x^{2}+1 \cdot x^{3}
\end{aligned} \quad M=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], ~ l
$$$R:$

1 corresponds to the vector $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$
x corresponds to $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$

$$
x^{2} \text { corresponds to }\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& 7(1)=x \quad \text { corresponds to the vector }\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right] \\
& T(x)=x^{2} \quad \text { corresponds to }\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right] \\
& T\left(x^{2}\right)=x^{3} \quad \text { corresponds to }\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

So we want to find the matrix of

$$
\begin{aligned}
& S R^{3}->R^{3} \quad \text { st } S\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], S\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], \\
& S\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] . \\
& M=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Let' clack how M works for polynomials:
Given $p=a+b x+c x^{2}$ in $R[x] \leq 2$

$$
T(p)=a x+b x^{2}+c x^{3} \text { in } R[x] \leq 3
$$

P corresponds to the vector $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ in R^{3}
$T(p)$ corresponds to the vector $\left[\begin{array}{l}0 \\ 2 \\ b \\ c\end{array}\right]$ in R^{4}
and

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
b \\
c
\end{array}\right]=\left[\begin{array}{l}
0 \\
a \\
b \\
c
\end{array}\right]
$$

