Here are some extra practice problems. The actual final will be shorter. You need to justify all your answers.

1. Let $A\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 2 & 0 \\ 1 & 0 & 3\end{array}\right)$ and $x=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$
(a) Write $x^{T} A x$ as a quadratic polynomial.
(b) Is A PSD or PD ? Justify your answer.

Answer True or False, with justification:
(a) If A is symmetric then A^{2} is PD .
(b) If A is PSD and B is PD , then $\mathrm{A}+\mathrm{kB}$ is PSD for all $k \in \mathbb{R}$.
2. Suppose K_{n} is the complete graph on n vertices, that is

$$
K_{n}=<V=\{1,2, \cdots n\}, E=\{\{i, j\}, 1 \leq i<j \leq n\}>
$$

Let J_{n} be the $n \times n$ matrix with all entries equal to 1 and I_{n} be the $n \times n$ identity matrix.
(a) Argue that $L_{K_{n}}=n I_{n}-J_{n}$.
(b) Find all eigenvalues, with multiplicity, of $-J_{n}$
(c) Find all eigenvalues, with multiplicity, of $L_{K_{n}}$
3. Suppose A is a symmetric matrix such that $A^{3}=0$, show that $A=0$.
4. Show that the set S of all polynomials $p(x)$ of degree at most 3 such that $p(1)=0$ is a subspace of $\mathbb{R}[x] \leq 3$ and and find a basis B for S . Remember to justify why B is a basis.
5. You are given two orthogonal (but not orthonormal) sets in $R^{3}: B_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ $B_{2}=\left[\begin{array}{l}2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ -1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$ Consider the linear transformation $T: R^{3} \rightarrow R^{3}$ such that

$$
\begin{aligned}
& T\left(\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] \\
& T\left(\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
2 \\
-1
\end{array}\right] \\
& T\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
\end{aligned}
$$

Let A be the matrix of T, that is $T(v)=A v$ for all $v \in \mathbb{R}^{3}$. Find a SVD for A.
6. Consider : $\mathbb{R}[x]_{\leq 2} \rightarrow \mathbb{R}[x]_{\leq 3}$ defined by $T(p(x))=x p(x)$.
(a) Show that T is a linear transformation.
(b) Find the matrix of T.
7. I have collected some data and stored it in the rows of matrix A. unfortunately I can no longer read some of the entries of A. I know that $A=\left[\begin{array}{cccc}1 & ? & 3 & ? \\ ? & ? & -1 & 2 \\ ? & -1 & -2 & ?\end{array}\right]$. My data is centered around the origin, that is every column of A adds up to 0 . I have done some PCA analysis on my data and I remember that the first principal component is $w\left(\begin{array}{c}0.265 \\ 0.515 \\ 0.765 \\ -0.28\end{array}\right)$
Below is the plot of my data along the direction of the principal component w, where point P_{i} corresponds to the projection of the $\mathrm{i}^{\text {th }}$ row of A . Can you help me retrieve all entries of A? (Note : you will need to do some computations for this problem, you can use a calculator or anything you like; there will not be any long computations to do in the final).

