NAME (First,Last) : \qquad

Student ID \qquad

UW email \qquad

- Please use the same name that appears in Canvas.
- IMPORTANT: Your exam will be scanned: DO NOT write within 1 cm of the edge. Make sure your writing is clear and dark enough.
- Write your NAME (first, last) on top of every non blank page of this exam.
- If you run out of space, continue your work on the back of the previous page and indicate clearly on the problem page that you have done so.
- Unless stated otherwise, you MUST justify your answers and show your work.
- Your work needs to be neat and legible.

Problem 1. Let $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

$$
\begin{array}{ll}
T\binom{1}{0}=\binom{0}{-1} & \quad \downarrow \\
T\binom{0}{1}=\binom{1}{0} & \stackrel{\imath}{\downarrow}
\end{array}
$$

1. The linear transformation $T: R^{2} \rightarrow R^{2}, T(v)=A v$ is a clockwise rotation of an angle θ : what is θ ? 90°
2. Does A have any real eigenvalues ? Justify your answer.

No because a rotation of 90° does not fix any pines.
$0 R$
$P(d)=d^{2}+1 \quad d^{2}+1=0$ hes no real solutions. A has no real eigenvalues.
3. Argue that if α is an eigenvalue for a matrix B, then α^{2} is an eigenvalue for B^{2}.

Suppose $B v=\alpha v$ for some $v \neq \overrightarrow{0}$ Then $B^{2} v=B(B v)=B \alpha v=\alpha B v=\alpha^{2} v$ Therefore α^{2} is an eigenvelue for B^{2}
4. If we consider only real (not complex) eigenvalues, is it true that if B^{2} has real eigenvalue μ, then B has real eigenvalue $\alpha=\sqrt{\mu}$? Explain.
I should reelly have asked: then must B have eigenveluer $\alpha=\sqrt{\mu}$ or $\alpha=-\sqrt{\mu}$?
As the question is phresed $B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$ $B^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is a counterexample since B^{2} has eigencelue 1 and β does not have eigenvalue $\sqrt{1}=1$ but what I had in mind is the following example:

$$
\begin{aligned}
& \text { No for the matrix } A \text { of this problem } \\
& A^{2}=\left[\begin{array}{cc}
-1 & 0 \\
0-1
\end{array}\right] \quad \text { So } A^{2} \text { hes eigencelues }-1,-1 \\
& A \text { hes no reel eigenvalues } \\
& \\
& (\sqrt{-1} \text { is a complex number) }
\end{aligned}
$$

NAME (First,Last) :

Problem 2. A 1970 survey determined that 50% of American car owners drove large cars, 30% drove middle sized cars and 20% drove small cars. A second survey in 1980 determined that 40% of large car owners in 1970, still drove a large car in 1980 , but 10% switched to a middle sized car and 50% switched to a small car; of the middle sized car owners in 1970, 20% had switched to a big car, 70% were still driving a middle sized car, and 10% were owning a small car;finally, of the small car owners in 1970, 20% owned a large car in 1980, 20% owned a middle sized car, and 60% still owned small cars.

1. Use a Markov matrix M to describe this situation, that is you want to find a matrix M, such that $M\left[\begin{array}{l}0.5 \\ 0.3 \\ 0.2\end{array}\right]=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ where a, b, c represent the percentages of car owners driving large, medium sized and small cars respectively in 1980.

$$
M=\left[\begin{array}{lll}
0.4 & 0.2 & 0.2 \\
0.1 & 0.7 & 0.2 \\
0.5 & 0.1 & 0.6
\end{array}\right]
$$

2. $\left[\begin{array}{l}0.5 \\ 0.7 \\ 0.8\end{array}\right]$ is an eigenvector for M. What is the eigenvalue associated with it ? Explain
how you know. $d=1$ because $d=1$ is the dominant
eigenvalue of a positive Markov matrix and only the dominant eigenvalue hes a positive eigenvector.
3. Assuming that every 10 years American switch cars as described above, determine the percentage of Americans that will own large, medium sized and small cars respectively in the long run.
We went $\lim _{k \rightarrow+\infty} M^{k}\left[\begin{array}{l}0.5 \\ 0.3 \\ 0.2\end{array}\right]$ we know
this P imit is $U_{1}=$ the eigenvector for $d=1$
that is a probability vector. $v_{1}=\frac{1}{2}\left[\begin{array}{l}0.5 \\ 0.7 \\ 0.8\end{array}\right]=\left[\begin{array}{l}0.25 \\ 0.35 \\ 0.4\end{array}\right]$ 25% will drive big cor, 35% will drive medium size car, 40% a small car

Problem 3. In a haw problem you proved that if P is the matrix of a projection, then P is diagonalizable and the only eigenvalues of P are $\lambda=0$ or 1 . Prove that the converse is true, that is if A is a diagonalizable matrix whose only eigenvalues are 0 or 1 , then A is the matrix of a projection, that is $A^{2}=A$.

Assume $A=P\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots & \\ & & d_{n}\end{array}\right] P^{-1}$, then $A^{2}=P\left[\begin{array}{lll}d_{1}^{2} & \\ & \ddots & \\ & & d_{n}^{2}\end{array}\right] P^{-1}$
since $\lambda_{1}=0$ or $1 \quad d_{2}^{2}=\lambda_{L}$ so $A^{2}=P\left[d_{1} \cdot d_{n}\right] P^{-1}=A$

Give an example of a matrix A having no eigenvalues different from 0 and 1 which is not the matrix of a projection.

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \quad \text { the eigencelues of } A \text { are } d=1,1
$$ you can verify that A is not diegonelizeble or compute $A^{2}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right] \neq A$

Let W be span $\left(\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right.$, and V be the plane $\mathrm{x}+\mathrm{y}+\mathrm{z}=0$. Calculate the orthogonal projections of $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)$ on W and on V.
2) Method 1 : Find orthonormel besis for W : stert with $b_{1} b_{2}=\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$ then

$$
\begin{aligned}
& u_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right) \\
& e=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right)-\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
1-1 & 0
\end{array}\right)\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right) \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)= \\
& =\left(\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right)+\frac{1}{2}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)=\left(\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1
\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right) \\
& u_{2}=\frac{1}{\sqrt{6}}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right)
\end{aligned}
$$

projection $U_{1}^{\top}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \cdot U_{1}+U_{2}^{\top}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \cdot v_{2}$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2} \\
0
\end{array}\right]+\frac{1}{\sqrt{6}}\left[\begin{array}{c}
1 / \sqrt{6} \\
1 / 6 \\
-2 / \sqrt{6}
\end{array}\right]=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
0
\end{array}\right]+\left[\begin{array}{c}
1 / 6 \\
1 / 6 \\
-2 / 6
\end{array}\right] \\
& =\left[\begin{array}{c}
4 / 6 \\
-2 / 6 \\
-2 / 6
\end{array}\right]=\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right]
\end{aligned}
$$

Method 2 using hw 5
$v=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is $\frac{1}{x+y+z=0}$ to the plene π : consider $u=\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

Therefore the metrix of the ortlogonel projection on Π is $P=I-U U^{\top}=$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\frac{1}{3}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
2 / 3 & -1 / 3 & -1 / 3 \\
-1 / 3 & 2 / 3 & -1 / 3 \\
-1 / 3 & -1 / 3 & 2 / 3
\end{array}\right] \\
& P\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right]
\end{aligned}
$$

Method 3 (longest)
Find a baxis for $\pi: x+y+z=0$

$$
\begin{aligned}
& B=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] \\
& A=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right], \quad \text { Projection is } \\
& P=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right]\left(\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right]\right)^{-1}\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& \left(\left[\begin{array}{cccc}
2 & -1 & 1 & 0 \\
-1 & 2 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cccc}
1 & -1 / 2 & 1 / 2 & 0 \\
0 & 1 & 1 / 3 & 2 / 3
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & 0 & 2 / 3 \\
0 & 1 & 1 / 3 \\
& & 2 / 3
\end{array}\right]\right) \\
& =\left[\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
213 & 113 \\
1 / 3 & 2 / 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1 \\
0 & -1
\end{array}\right]\left[\begin{array}{l}
2 / 3 \\
1 / 3
\end{array}\right] \\
& =\left[\begin{array}{l}
2 / 3 \\
-1 / 3 \\
-1 / 3
\end{array}\right]
\end{aligned}
$$

