Worksheet3. The binomial coefficient. Sets

1. (From last week) Prove that the number of binary strings of length n that do not contain two consecutive 1 is u_{n+2}, the $n+2{ }^{\text {nd }}$ Fibonacci number.
2. Is $P(A \cup B)=P(A) \cup P(B)$? Prove your answer.
3. Consider the double sequence $\left\{a_{n m}\right\}$ defined as follows:
$a_{n 0}=1$ for all $n \geq 0$
$a_{0 m}=0$ for all $m \geq 1$
$a_{n+1 m+1}=a_{n m}+a_{n m+1}$ for $n \geq 0, m \geq 0$
(a) Draw a table showing the values of $a_{n m}$ for $0 \leq n, m \leq 5$.
(b) When $n \geq m, a_{n m}$ is also denoted $\binom{n}{m}$. Prove that if $n \geq m$

$$
a_{n m}=\frac{n!}{m!(n-m)!}
$$

4. Prove that $A \times B=B \times A \Rightarrow A=B$
