Worksheet3. The binomial coefficient. Sets

- 1. (From last week) Prove that the number of binary strings of length n that do not contain two consecutive 1 is u_{n+2} , the n+2 nd Fibonacci number.
- 2. Is $P(A \cup B) = P(A) \cup P(B)$? Prove your answer.
- 3. Consider the double sequence $\{a_{nm}\}$ defined as follows:

 $a_{n0} = 1$ for all $n \ge 0$

 $a_{0m} = 0$ for all $m \ge 1$

 $a_{n+1\,m+1} = a_{nm} + a_{n\,m+1}$ for $n \ge 0, m \ge 0$

- (a) Draw a table showing the values of a_{nm} for $0 \le n, m \le 5$.
- (b) When $n \ge m$, a_{nm} is also denoted $\binom{n}{m}$. Prove that if $n \ge m$

$$a_{nm} = \frac{n!}{m! \left(n - m\right)!}$$

4. Prove that $A \times B = B \times A \Rightarrow A = B$

1