$$
\text { Lesson } 5
$$

Proogs by contradiction
start induction

Grade the following proof
6 divides n : $\exists k$ in $z \quad n=6 k$
6 does not divide n : $7 \exists k$ in $z \quad n=6 k$ $\forall k$ in $z \quad n \neq 6 k$
Goal: 2 does not divide $V 3$ does not divide n
Th: $\forall n$ in $\mathbf{Z}(((2 \operatorname{div} n) \wedge(3 \operatorname{div} n)) \Rightarrow 6 \operatorname{div} n):$
Proof: by contraposition. Assume n is an integer
(1) Assume 6 does not divide n,
(2) this means $\forall \stackrel{i n}{\neq z} 6 k$ therefore
(3) $n \neq \ln \neq 2(3 k)$ and also $\forall k \neq 3(2 k)$
(4) therefore 2 and 3 do not divide n.

2 does not divide $n: \quad \begin{array}{ll}\forall h & n \neq 2 h \\ & \forall k\end{array} \quad n \neq 23 k, \begin{aligned} & \text { NOT } \\ & \text { EQUIVALENT }\end{aligned}$

Proofs by contradiction:
To prove S, assume 7S, derive a contradiction ie a false statement.

TS \Rightarrow False is true so False v 1(15) is true

So S is true.

In particular if S is en implication: $P=Q$, a proof of contradiction of S starts assuming P and $7 Q$ and arms at deriving a false statement.

Can you try a prong by contradiction of $\forall n$ in Z
$\sqrt{((2 \text { divides } n) \wedge}(3$ divides $n) \Rightarrow 6$ divides $n:$
Assume 2 divides n and 3 divides n and 6 does not divide n. Plan: derive a false statement.
We know $n=2 k$ and $n=3 h$ for some k and h in z, then $2 k=3 h$, therefore h must be even, so $n=3 h=3.2 t \quad$ for some t in z so 6 divides n and given the assumption that 6 does not divide n we conclude the 6 divides n ^ 6 does not divide n, which is clearly false.

Th: $\sqrt{2}$ is irrational.
Proof by contradiction: assume $\sqrt{2}$ is not irrational, then $\sqrt{2}=\frac{a}{b}$ for some integers $a, b \neq 0$ and we cen assume a and b have no common divisors other then 1 (ie we can assume we have simplified our frection).

- Our goal now is to derive a contradiction. $\sqrt{2}=\frac{a}{b}$ implies $\sqrt{2} b=a$ and $2 b^{2}=a^{2}$ (x) and therefore a^{2} is even.
We have proved in Lesson 4 that a^{2} is even implies a is even, so $a=2 k$ for some k in z. Plugging $a=2 k$ in (x) we get $2 b^{2}=(2 k)^{2}$ so $2 b^{2}=4 k^{2}$ and therefore $b^{2}=2 k^{2}$ which allows us to conclude that b is even.
Therefore a and b have 2 as common divisor, contradicting the assumption that a and b do not have a common divisor greater then 1.

Th: A regular chess boerd with the top 2 right squeres and the bottom 2 right squares removed cannot be covered by tiles of this form $\square \square$ (Tile).

Proof: assume by contradiction that we cen cover a (modified) chessboard with T tiles. We can color each tile either \square (type 1) or (type 2) in such a way that every black square on a T tile covers a black square on the boerd and every white squere covers a white square on the board.
Suppose our covering uses m tiler of type 1 and n tiles of type 2 . m and n are in N (integers ≥ 0) Our board has 30 white squares and 30 black squares, therefore we must helve:
$3 m+n=30$ (\#white squares covered)
$m+3 n=30$ (\# black squares covered)
Solving for m end n gives $m=n=\frac{15}{2}$
so m and n are not integers, giving a
contradiction.
IDEA: using colors maybe useful in tiling problems.

Induction:
It is a proof technique used to prove statements of the form

$$
\forall n \text { in } Z^{+} P(n)
$$

We will also write
$\forall n \geq 1 \quad P(n)$ (assuming n is in Z)

Generalizations later.

We need to prove $P(1), P(2), \ldots P(n), \ldots$ A proof by induction has 2 steps:

1) Prove $P(1)$ Base case
2) Prove $\forall k$ in $z^{+} \quad P(k) \Longrightarrow P(k+1)$ Inductive step
Why does it work? We prove

$$
\left.\begin{array}{rl}
T P(1) \\
T P(1) & \Rightarrow P(2)) T \\
T P(2) \Rightarrow P(3) T \\
T P(3) & \Rightarrow P(4)) T \\
\vdots
\end{array}\right\} \text { are ell true So }
$$

$P(1)$ istrue, $P(2)$ is true, $P(3)$ is true,....

Th: $\forall n \geqslant 1 \quad \underbrace{n^{3}+2 n \text { is divisible by } 3}_{P(n)}$

Proof by induction:

1) Base case: we need to prove $P(1)$.
if $n=1, \quad n^{3}+2 n=3$, which is clearly. divisible by 3 , so $p(1)$ is True
2) Inductive step: We need to prove $\quad \forall k \geqslant 1 \quad P(k) \Rightarrow P(k+1)$.
Assume $k \geqslant 1, k$ in z and $k^{3}+2 k$ is divisible by 3 , then $k^{3}+2 k=3 h$ for some h in Z, and

$$
\begin{aligned}
& (k+1)^{3}+2(k+1)=k^{3}+3 k^{2}+3 k+1+2 k+2 \\
& =\left(k^{3}+2 k\right)+3\left(k^{2}+k+1\right)=3\left(h+k^{2}+k+1\right)
\end{aligned}
$$

is also divisible by 3 .

