Less on 23
Inverses in 2 m

Recape	Zm = 9	[0]m,[1]m,	[m-1]m	}
--------	--------	------------	--------	---

We weite Zm = 10, 3 ... m-1}

Def $Q \in Z_m$ is invertible iff there is an element in Z_m which we call the inverse of Q and denote by Q^{-1} s.t $Q \cdot Q^{-1} = A$ in Z_m that is $Q \cdot Q^{-1} = M$

Note: a is invertible in 2m

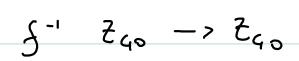
iff ax = 1 has solution

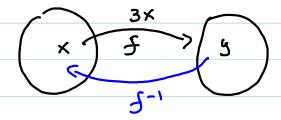
Th a is invertible in Zmc=> (a, m)=1

Exemple: what are the invertible
elements of 24 = 10, 1, 2, 35?
1 and 3 since (1,4)=1 (3,4)=1
bot (0,4)=4+1 and (2,4)=2 + 1
1-1 = 1 since 1-1 =1 in 2g
$3^{-1} = 3$ since $3.3 = 1 in 2q$
Example what are the invertible elements
of Z ₅ = 10, 1, 2, 3, 4 }?
1; 1 ⁻¹ = 1
$2 \cdot 2^{-1} = 3$
$3 : 3^{-1} = 2$
$3 \cdot 3^{-1} = 2$ $4 \cdot 4 = 4$
. , .
Note is prime, eury son zero
element of Zp is invertible.
Q ,
Solve 3× = 4 mod 5
$3 \times \equiv_5 q $
(since (5, engineertible element) = 1
$\angle = \times \times = \frac{2 \cdot 4}{5}$
S ~

Note in Zp for p prime, if a.b = 0
and a = 0 tlen a-1 exists so
$a_1 a b = 0 \qquad Sa b = 0$
So in 2p of ab=0 0=0 or b=0
Let 9 2, -> 2,
$f(x) = 3 \cdot x$
7kn f(0) = 0
노(1) = 3
f(2) = 2
f(3) = 1
I can see g is a bije ction

Now consider of Z40 -> Z40 $f(x) = 3 \cdot x$ f is injective : proof assume f(x1) = f(x2) this meens 3x, = 3x s end vsing the conellation law, since (3, 401=1 we have $x_1 \equiv x_2$ or x1 = x2 in 240 f is surjective : proof Given $y \in Z_{40}$ I went to find $x \in Z_{40}$ s.t 3x = y in Z_{40} that is 3x = co 4 This Pineer congruence mas solutions Since (3, 40) = 1J is then a bijection. Can you define f-1?





$$y = 3 \times x = 3^{-1} y$$
 here 3^{-1} is the inverse of 3 in ζ_{40} so 3^{-1} is the solution to $3 \times 1 = 1$

$$3 \times = 1$$

$3 \times = 1$ mod 40

Associate diophantine equation 3x +40y =1

$$40 = 3 \cdot 13 + 1$$

 $3 = 1 \cdot 3 + 0$

Check
$$f^{-1}(f(x)) = 27 \cdot 3 \cdot x = x$$

 $f(f^{-1}(y)) = 3 \cdot 27y = y$

Th: Consider of Zm-ozm $f(x) = \sigma x$ if (a, m)=1 then f is a bijection. froof: f is injective: assume ax,=ax in 2m that is ax = ax mod m, then $x_1 \equiv x_2 \mod \underline{m}$ so $x_1 = y_2$ in 2mf is surjective: given y in 2m the congruence ax=y mod m has a

then $S(x_1) = y$ in Z_m

Question: what can we say about
(2 - c 2 c
J Cm - Cm
$f(x) = 0 \times if (0, m) = d > 1?$
Is & still a bijection (torall a.m.)
Is f still a bijection (for all a,m) sometimes a bijection? Never a bijection?
Al to a a little 2
Neter a bijection?