Math 300 A Spring 2023 Midterm

NAME (First,Last) :

Student ID

UW email

- Please write your name exactly as it appears in the Canvas 's roster.
- IMPORTANT: Your exam will be scanned: DO NOT write within 1 cm of the edge. Make sure your writing is clear and dark enough.
- Write your NAME (first, last) on top of every odd page of this exam.
- If you run out of space, continue your work on the back of the last page and indicate clearly on the problem page that you have done so.
- Do not turn in any scratch paper.
- Unless stated otherwise, you **MUST** justify your answers and explain why your examples work.
- Your work needs to be neat and legible.

1/5

Problem 1 Is $(P \Rightarrow Q) \Rightarrow Q$ equivalent to $P \Rightarrow (Q \Rightarrow Q)$? Justify your answer.

ፐ ፕ F	T F T	т	Т Г Т	(P =>2)=>2 T T T F	Т
				both Jelse but f=>(2=>2	j is true

2

NAME (First Last):

Problem 2 Prove or disprove (i.e prove it is false) the following statements. P(A) is the power set of A.

1. $\exists x \in P(P(Z)), \forall y \in P(Z), y \in x$

True take X = P(Z) then for eng y $\in P(Z)$ y $\in X$

True : given $X \neq \phi$ in P(Z) then X must contain some element $y \in Z$ therefore $\exists y \leq x$ **Problem 3** Consider a 2xn board. Prove that there are u_{n+1} (the $(n+1)^{st}$ Fibonacci number) different ways to tile it using 1x2 tiles. Different means that at least one square in the board is covered by a tile placed vertically in one tiling and by a tile placed horizontally in the other. Below is an example of one possible tiling of a 2x3 board.

Recall that the Fibonacci numbers are defined by:

$$u_1 = 1, u_2 = 1, u_{n+1} = u_n + u_{n-1}$$

```
Proof by induction :
```

Base cases

If n=1 a 2×1 bard can be tilled in 1 weg and $U_2 = 1$.

If n=2 a 2x2 board can be tiled in 2 wegs: 2 horizontal files or 2 vertical files and $U_3 = 2$

NAME (First Last):

Problem 4 Give an example of a function $f : Z^+ \to Z^+$ that is surjective but not injective. You need to both define f and prove that it is surjective and not injective.

Not injective:
$$f(1) = 1 = f(2)$$

Surjective: given $y \in Z^+$ fake $n = y+1$ then
 $n > 1$ end $f(n) = n-1 = (y+1)-1 = y$