NAME (First,Last) : \qquad

Student ID \qquad

UW email \qquad

- Please write your name exactly as it appears in the Canvas 's roster.
- IMPORTANT: Your exam will be scanned: DO NOT write within 1 cm of the edge. Make sure your writing is clear and dark enough.
- Write your NAME (first, last) on top of every odd page of this exam.
- If you run out of space, continue your work on the back of the last page and indicate clearly on the problem page that you have done so.
- Do not turn in any scratch paper.
- Unless stated otherwise, you MUST justify your answers and explain why your examples work.
- Your work needs to be neat and legible.

Problem 1 Is $(P \Rightarrow Q) \Rightarrow Q$ equivalent to $P \Rightarrow(Q \Rightarrow Q)$? Justify your answer.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow Q$	$(P \Rightarrow Q) \Rightarrow Q$	$P \Rightarrow(Q \Rightarrow Q)$
T	T	T	T	T	T
T	F	F	T	T	T
F	T	T	T	T	T
F	F	T	T	F	T

No, when P and Q are both false $(P \Rightarrow Q) \Rightarrow Q$ is false, but $P \Rightarrow(Q \Rightarrow 2)$ is true

NAME (First Last):

Problem 2 Prove or disprove (i.e prove it is false) the following statements. $\mathrm{P}(\mathrm{A})$ is the power set of A.

1. $\exists x \in P(P(Z)), \forall y \in P(Z), \quad y \in x$

True take $x=P(Z)$ then for eng $y \in P(Z)$ $y \in X$

$$
x \neq \phi=>
$$

2. $\forall x \in P(Z), \exists y \in Z \quad\{y\} \subseteq x$

True: sicen $x \neq \phi$ in $P(Z)$ then x must contain some element $y \in Z$ therefore $d y\} \leq x$

Problem 3 Consider a 2 xn board. Prove that there are u_{n+1} (the ($\left.\mathrm{n}+1\right)^{\text {st }}$ Fibonacci number) different ways to tile it using 1 x 2 tiles. Different means that at least one square in the board is covered by a tile placed vertically in one tiling and by a tile placed horizontally in the other. Below is an example of one possible tiling of a 2 x 3 board.

Recall that the Fibonacci numbers are defined by:

$$
u_{1}=1, u_{2}=1, u_{n+1}=u_{n}+u_{n-1}
$$

Proof by induction:
Base cases
If $n=1$ a 2×1 bard cen be tiled in 1 wed and $U_{2}=1$.

If $n=2$ a 2×2 board cen be tiled in 2 uegs: 2 horizontal tiles or 2 vertical tiles and $u_{3}=2$

Inductive step: assume $n \geqslant 2$ and a $2 \times n$ boerd cen be tiled in U_{n+1} keys and a $2 x(n-1)$ board cen be tiled in U_{n} leys and consider a $2 \times(n+1)$ board. We cen tile it, starting from the left, by first placing a vertical tile
remaining $2 \times n$ board in U_{n+1} poss blew vegs, or first placing 2 horizontal tiles $\frac{\pi / r i}{\frac{11}{\prime \prime}}$ and then tiling the remeing $2 x(n-1)$ board in u_{n} wags; so we have a total of

$$
u_{n}+u_{n+1}=u_{n+2} \text { wees. }
$$

NAME (First Last):

Problem 4 Give an example of a function $f: Z^{+} \rightarrow Z^{+}$that is surjective but not injective. You need to both define f and prove that it is surjective and not injective.

$$
\begin{array}{ll}
f: \quad z^{+} \longrightarrow z^{+} \\
& f(n)=\left\{\begin{array}{lll}
1 & \text { i } n=1 \\
n-1 & \text { if } n>1
\end{array}\right.
\end{array}
$$

Not infective: $f(1)=1=f(2)$
Surjective: given $y \in z^{+}$take $n=y+1$ then
$n>1$ and $f(n)=n-1=(y+1)-1=y$

