NAME (First,Last) : \qquad

Student ID

UW email \qquad

- Please write your name as it appears in the Canvas 's roster.
- IMPORTANT: Your exam will be scanned: DO NOT write within 1 cm of the edge. Make sure your writing is clear and dark enough.
- Write your NAME (first, last) on top of every odd page page of this exam.
- If you run out of space, continue your work on the back of the last page and indicate clearly on the problem page that you have done so.
- Do not turn in any scratch paper.
- Unless stated otherwise, you MUST justify your answers and explain why your examples work.
- Your work needs to be neat and legible.
- You can use any result proved in class. You can use the fact that $Q, Z^{+} \times Z^{+}$the union of any finite number n of denumerable sets, and the union of denumerably many denumerable sets are denumerable.

Problem 1 Prove that an 8 x 8 checkerboard with the square in position (1,1) (top row and leftmost column) removed cannot be covered by 1×3 tiles.

Problem 2 Let A be the subset of the interval [0, 1], containing all real numbers of the form $0 . x_{1} x_{2} \cdots x_{n} \cdots$ (infinite decimal expansion), where each decimal digit x_{i} is either 4 or 7. Is A denumerable? Prove your answer.

Problem 4 Prove that for all nonempty sets A,B and C,

$$
(C \times C)-(A \times B)=((C-A) \times C) \cup(C \times(C-B))
$$

Problem 4 Find integers a, b, c and m such that $a c \equiv b c \bmod m$ but $a \not \equiv b \bmod m$. Explain why your example works.

Problem 5 Consider the function $f: Z_{13} \rightarrow Z_{13}$ defined by $f(x)=x^{2}$. Is f injective? Prove your answer.

Consider the function $f: Z_{23} \rightarrow Z_{23}$ defined by $f(x)=2 x+3$. Is f surjective ? Prove your answer.

Problem 6 Prove that $\sum_{i=0}^{n} r^{i}=\frac{1-r^{n+1}}{1-r}$

