1. [5 points per part] Compute each limit. You may use any techniques you know. If a limit does not exist or is infinite, say so, and explain.

(a)
$$\lim_{x \to 8} \frac{\sqrt{x-4}+2}{x-3}$$
, $\int_{x-\sqrt{8}}^{1} \frac{\sqrt{x-4}+2}{x-8}$, $\int_{x-\sqrt{8}}^{1} \frac{\sqrt{x-4}-2}{x-8}$
fine $\sqrt{x-4}+2$
 $x-\sqrt{8}$
fine $\sqrt{x-4}+2$
 $x-\sqrt{8}$
Solutions: see next page

$$(b) \lim_{t \to 0} \frac{\sin(qt) - bt + ct^2}{t}$$

(c)
$$\lim_{x \to \infty} \sin\left(\frac{\pi x + 6}{\sqrt{4x^2 + 2x} + 2x}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

First coloupete fine $\frac{\pi x + 6}{\sqrt{4x^2 + 2x} + 2x}$ = $\frac{\pi}{4}$ sing $\frac{\pi x}{\sqrt{4x^2 + 2x}} = \frac{\pi x}{4x}$, for x > 0
Leading terms
or $\frac{x(\pi + \frac{6}{x})}{\frac{2}{\sqrt{1 + \frac{2x}{4x^2} + 1}}} = \frac{\pi}{4}$

a) i) Rue
$$\sqrt{x-4} + 2 = 4$$
 since if you
plug in $x = 8$: you get 4
flug in $x = 8$: you get 4
plug in $x = 8$: you get 4
plug in $x = 8$ you get 6, (constant = 0)
plug in $x = 8$ you get 6, (constant = 0)
Consider fine $\sqrt{x-4} + 2$ = $\sqrt{2}$
 $x = 8^{-1}$ $x = 8$ you
 $x = 8^{-1}$ $x = 8$ you
The Rimits from the right and fedt are different
a) us from $\sqrt{x-4} - 2 = 1$
 $x = 8^{-1}$ $x = 8$ you get 0, (both top and bottom are 0)
Try retionalizing $\sqrt{x-4} - 2$ $x = 8$ $\sqrt{x-4}$ $x = \frac{x-\sqrt{-4}}{x-8}$ $\sqrt{x-4} + 2$
 $\frac{1}{x-8}$ $\sqrt{x-4} + 2$ $\frac{1}{x-8}$ $\sqrt{x-4} + 2$
 $\frac{1}{x-8}$ $\sqrt{x-4} + 2$ $\frac{1}{x-8}$ $\sqrt{x-4} + 2$
 $\frac{1}{x-78}$ $\frac{1}{x-8}$ $\frac{1}{x-78}$ $\sqrt{x-4} + 2$ $\frac{1}{x-8}$ $\sqrt{x-4} + 2$ $\sqrt{x-4}$ $\sqrt{x-4} + 2$ $\sqrt{x-4}$ $\sqrt{x-4} + 2$ $\sqrt{x-4}$ $\sqrt{x-4} + 2$ $\sqrt{x-4}$ $\sqrt{x-4} + 2$ $\sqrt{x-4}$

 $\frac{\sqrt{x-4}+2}{x-3} = \frac{\sqrt{x(1-\frac{4}{x})}}{x(1-\frac{3}{x})} = \frac{\sqrt{x(1-\frac{3}{x})}}{x}$ $\sqrt{\times}\left(\sqrt{1-\frac{\zeta}{x}}+\frac{2}{\sqrt{x}}\right)$ $\sqrt{1-\frac{4}{x}}$ 2 >0+ \bigcirc _ $\times \left(1 - \frac{3}{x}\right)$ $1-\frac{3}{x}$ = 0.1=0

5. The graph of f(x) is shown below.

Cool graph, right? Use it to answer the following questions.

(a) [3 points] Compute
$$\lim_{x \to -3} [f(x) \cdot f(x+1)]$$
. = 6
 $\int_{a} \int_{a} \int_{a}$

(c) [3 points] Compute the limit from part (b), using the value of e you chose. Derivative $f'(3) = 500 \text{ pe} \circ f' + \alpha n \text{ pent} \alpha t' P(3, f(3))$ So $f'(3) = \frac{1-4}{6} = -\frac{1}{2}$ (d) [4 points] Let $g(x) = \frac{f'(x)}{f(x)}$. What is $g(x) = \frac{f'(x)}{f(x)}$.

3. (20 points) (a) (8 points) Algebraically simplify the expression inside the following limit:

$$\lim_{h \to 0} \frac{\sqrt{(3+h)^2 + 16} - 5}{h}.$$

(b) (5 points) Using part (a), find this limit.

(c) (7 points) This limit is the derivative of what function f(x) at what point?

$$\frac{\sqrt{9+6h+h^{2}+16} - 5}{h}, \frac{\sqrt{9+16+6h+h^{2}} + 5}{\sqrt{9+16+6h+h^{2}} + 5} = \frac{25+6h+h^{2}-25}{h(\sqrt{25+6h+h^{2}} + 5)}$$

$$= \frac{6+h}{\sqrt{25+6h+h^{2}} + 5}$$

$$\lim_{h \to 0} \frac{\sqrt{(s+h)^{2}+16} - 5}{h} = \lim_{h \to 0} \frac{6+h}{\sqrt{25+6h+h^{2}} + 5} = \frac{6}{10} = \frac{3}{5}$$

c) We want to think of it as

$$\begin{array}{l}
fim \quad f(h+x_0) - f(x_0) \\
h=0 \quad h
\end{array}$$

$$\begin{array}{l}
f(x_0) = 5 \\
f(h+x_0) = \sqrt{(3+h)^2 + 16} \\
\text{what is } f(x_0) \stackrel{?}{=} \sqrt{x^2 + 6} \\
\text{what is } x_0 \stackrel{?}{=} 3
\end{array}$$
(CONTINUED ON NEXT PAGE)

2. (12 total points) Find the following limits. In each case your answer should be either a

number, $+\infty$, $-\infty$ or DNE. Please show your work.

(a) (4 points)
$$\lim_{t \to 2^{-}} \frac{t^2 - 4}{|t - 2|} \sim >_{\bigcirc}$$

Do some algebra:
$$\frac{(t-2)(t+2)}{\Box(t-2)} = -(t+2)$$
 by our probably need
fine
$$\frac{t^2-4}{[t-2]} = fine -(t+2) = -4$$
 to explain this to explain this

(b) (4 points)
$$\lim_{x \to \infty} (x - \sqrt{x^2 - 10x})$$

 $(b) (4 points) \lim_{x \to \infty} (x - \sqrt{x^2 - 10x})$
 $(c) - c$ indeterminete form
(In $\sqrt{x^2 - 10x}$ x^2 is dominant so $\lim_{x \to 0^+\infty} \sqrt{x^2 - 10x} = \frac{10x}{x + \sqrt{x^2 - 10x}}$)
Try rationalizing $(x - \sqrt{x^2 - 10x}) (\frac{x + \sqrt{x^2 - 10x}}{x + \sqrt{x^2 - 10x}}) = \frac{x^2 - (x^2 - 10x)}{x + \sqrt{x^2 - 10x}} = \frac{10x}{x + \sqrt{x^2 - 10x}}$
 $\lim_{x \to 0^+\infty} \frac{\log x}{x + \sqrt{x^2 - 10x}} = \frac{10}{x} = \frac{10}{x}$
(or look at $\frac{10x}{x + \sqrt{x^2}} = \frac{10}{x}$ (for $x > 0$)

(c) (4 points)
$$\lim_{x \to \infty} \frac{2x^2 + 3x \ln x + 2^{-x}}{5x^2 + 9x \ln x + \pi \cdot 2^{-x}} = \frac{2}{5}$$

 \mathcal{D}

fine $\frac{10P}{x-0F}$ bottom i) Find the fastest growing term on top, say f(x)i) Find the fastest growing term on bottom, say g(x)3) Consider $\frac{1}{x-0+F}\frac{1}{g(x)}$ Recall bounded $< \ln(x) < \sqrt{x} < x < x^n < e^x$ 5. (25 points) A particle is traveling at constant angular velocity $\pi/3$ rad/sec counterclockwise around the circle of radius 2 centered at the origin. At time t = 0 it is at the point (2,0). At time t = 20 sec the particle flies off the circle and continues at constant velocity along the tangent line. NOTE: Your answers may involve π and square roots.

(a) (5 points) Give parametric equations for the motion of the particle for $0 \le t \le 20$.

(b) (10 points) At the instant when the particle flies off the circle find its x- and ycoordinates and its-horizontal velocity and vertical velocity.

(c) (10 points) Give parametric equations for the motion of the particle for $t \ge 20$. Knowing the horizontal velocity vs is $-\pi \underline{B}$ and the vertical elocity of 3 vs is $-\frac{\pi}{3}$.

$$C = x_1 + y_2(t-20) = 1 - \frac{\pi\sqrt{3}}{3}(t-20)$$

$$y = y_1 + y_2(t-20) = \sqrt{3} - \frac{\pi}{3}(t-20)$$