1. [5 points per part] Compute each limit. You may use any techniques you know.

If a limit does not exist or is infinite, say so, and explain.
(a) $\lim _{x \rightarrow 8} \frac{\sqrt{x-4}+2}{x-3}, \lim _{x \rightarrow 8} \frac{\sqrt{x-4}+2}{x-8}, \lim _{x \rightarrow 8} \frac{\sqrt{x-4}-2}{x-8}$
$\lim _{x \rightarrow+\infty} \frac{\sqrt{x-4}+2}{x-3}$

Solutions: see next page

$$
\begin{aligned}
& \text { (c) } \lim _{x \rightarrow \infty} \sin \left(\frac{\sqrt{\pi x+6} / 4}{\sqrt{4 x^{2}+2 x}+2 x}\right)=\sin \left(\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2} \\
& \text { First calculate } \left.\operatorname{lime}_{x \rightarrow 0+\infty} \frac{\pi x+6}{\sqrt{4 x^{2}+2 x}+(2 x}\right)=\frac{\pi}{4} \sin \begin{array}{l}
\text { Leadingterms }
\end{array} \frac{\pi x}{\sqrt{4 x^{2}}+2 x}=\frac{\pi x}{4 x} \text {, for } x>0 \\
& \text { or } \frac{x\left(\pi+\frac{6}{x}\right)}{2 \times\left(\sqrt{1+\frac{2 x}{4 x^{2}}}+1\right)} \rightarrow \frac{\pi}{2 \cdot 2}=\frac{\pi}{4}
\end{aligned}
$$

a) 1) $\operatorname{Pime}_{x \rightarrow 8} \frac{\sqrt{x-4}+2}{x-3}=\frac{4}{5}$ since if you plug in $x=8$: you get $\frac{4}{5}$
e) $\operatorname{ll} \operatorname{lime}_{x \rightarrow 8} \frac{\sqrt{x-4}+2}{x-8}=$ DUE:
plug in $x=8$ you get $\frac{c_{1}}{0},\left(\frac{\text { constant } \neq 0}{0}\right)$
Consider

$$
\begin{aligned}
& \lim _{x \rightarrow 8^{+}} \frac{\sqrt{x-4}+2-72}{x-8}=+\infty \\
& \operatorname{lime}_{x \rightarrow 8^{-}} \frac{\sqrt{x-4}+2}{x-8} \gg_{0}=-\infty
\end{aligned}
$$

The limits from the right and left are different
a) Lu $\lim _{x \rightarrow 8} \frac{\sqrt{x-4}-2}{x-8}=\frac{1}{4}$
plug in $x=8$ you get $\frac{0}{0}$ (both top end bottom are 0) Try rationalizing $\frac{\sqrt{x-4}-2}{x-8} \frac{\sqrt{x-4}+2}{\sqrt{x-4}+2}=\frac{x-4-4}{x-8} \frac{1}{\sqrt{x-4}+2}$

$$
\lim _{x \rightarrow 8} \frac{\sqrt{x+4}-2}{x-8}=\operatorname{lime}_{x \rightarrow 8} \frac{1}{\sqrt{x-4}+2}=\frac{1}{4}
$$

a) iv) lime $_{x \rightarrow 0+\infty} \frac{\sqrt{x-4}+2}{\sqrt[x]{x}-3}=s \quad\left\{\begin{array}{l}\text { This much work would be } \\ \text { ok in a test, but } \\ \text { see next page jor } \\ \text { extra explanation term }\end{array}\right.$

$$
\begin{aligned}
& \frac{\sqrt{x-4}+2}{x-3}=\frac{\sqrt{x\left(1-\frac{4}{x}\right)}+2}{x\left(1-\frac{3}{x}\right)}= \\
= & \frac{\sqrt{x}\left(\sqrt{1-\frac{4}{x}}+\frac{2}{\sqrt{x}}\right)}{x\left(1-\frac{3}{x}\right)}=\frac{1}{\sqrt{x}}-\frac{\sqrt{1-\left(\frac{4}{x}\right)}>0}{1-\left(\frac{3}{x}\right)>0}\left(\frac{2}{\sqrt{x}}>0\right. \\
= & 0.1=0
\end{aligned}
$$

5. The graph of $f(x)$ is shown below.

Cool graph, right? Use it to answer the following questions.
(a) $[3$ points] Compute $\lim _{x \rightarrow-3}[\underbrace{f(x)} \cdot \underbrace{f(\underbrace{x+2})}]=6$

$$
3^{j} 2^{k^{2}}
$$

(b) [3 points] For what constant c does $\lim _{x \rightarrow 3} \frac{f(x)-c}{x-3}$ exist?

If $c=f(3)$ the limit exists (see c))
If $c \neq f(3)$ the $\operatorname{limit}_{f i x}^{f(x)-c-\rightarrow k}$ is of the form and $\lim _{x \rightarrow 3^{+}} \frac{f(x)-c}{x-3}>\frac{-k}{0^{+}} \neq \lim _{x \rightarrow 3^{-}} \frac{f(x)-c-7 k}{x-3}>0^{-}$so the limit DNE

(c) [3 points] Compute the limit from part (b), using the value of c you chose.

Derivative $f^{\prime}(3)=$ slope of tangent at $P(3, f(3))$ so $f^{\prime}(3)=\frac{1-4}{6}=-\frac{1}{2}$
(d) 生 pointsterg(x) $=\frac{f^{\prime}(x)}{f(x)}$. What is
3. (20 points) (a) (8 points) Algebraically simplify the expression inside the following limit:

$$
\lim _{h \rightarrow 0} \frac{\sqrt{(3+h)^{2}+16}-5}{h}
$$

(b) (5 points) Using part (a), find this limit.
(c) (7 points) This limit is the derivative of what function $f(x)$ at what point?

$$
\begin{aligned}
& \frac{\sqrt{9+6 h+h^{2}+16}-5}{h} \cdot \frac{\sqrt{9+16+6 h+h^{2}}+5}{\sqrt{9+16+6 h+h^{2}}+5}=\frac{25+6 h+h^{2}-25}{h\left(\sqrt{25+6 h+h^{2}}+5\right)} \\
& =\frac{6+h}{\sqrt{25+6 h+h^{2}}+5} \\
& \lim \frac{\sqrt{(3+h)^{2}+16}-5}{h}=\lim _{h \rightarrow 0} \frac{6 \rightarrow 0}{\sqrt{25+6 h+h^{2}}+5}=\frac{6}{10}
\end{aligned}
$$

c) We want to think of it as

$$
\begin{aligned}
& \quad \lim _{h=0} \frac{f\left(h+x_{0}\right)-f\left(x_{0}\right)}{h}=f^{\prime}\left(x_{0}\right) \\
& f\left(x_{0}\right)=5 \\
& f\left(h+x_{0}\right)=\sqrt{(\underbrace{3+h)^{2}+16}_{x}} \\
& \text { what is } f(x) ? \sqrt{x^{2}+16} \\
& \text { What is } x_{0} ? 3 \\
& f^{\prime}(3)
\end{aligned}
$$

(CONTINUED ON NEXT PAGE)
2. (12 total points) Find the following limits. In each case your answer should be either a number, $+\infty,-\infty$ or DNE. Please show your work.
(a) (4 points) $\lim _{t \rightarrow 2^{-}} \frac{t^{2}-4}{|t-2|} \gg 0$

Do some algebra: $\frac{(t-2)(t+2)}{-(t-2)}=-(t+2) \quad 0$ $\lim _{t \rightarrow 2^{-}} \frac{t^{2}-4}{|t-2|}=\lim _{t \rightarrow 2^{-}}-(t+2)=-4$
you un -
probably nee
to explain this

Remind them indeterminate forms $\infty-\infty \frac{\infty}{\infty} \frac{0}{\infty} \quad-\infty$
(b) (4 points) $\lim _{x \rightarrow \infty}\left(\begin{array}{l}\left(x-\sqrt{x^{2}-10 x}\right) \\ \underset{\sim}{j}-\underset{\infty}{\infty} \text { indeterminate form }\end{array}\right.$
(In $\sqrt{x^{2}-10 x} x^{2}$ is dominant so $\left.\lim _{i \rightarrow \infty} \sqrt{x^{2}-10 x}=+\infty\right)$
Try rationalizing $\left(x-\sqrt{x^{2}-10 x}\right) \frac{\left(x+\sqrt{x^{2}-10 x}\right)}{x+\sqrt{x^{2}-10 x}}=\frac{x^{2}-\left(x^{2}-10 x\right)}{x+\sqrt{x^{2}-10 x}}=\frac{10 x}{x+\sqrt{x^{2}-10 x}}$
$\lim _{x \rightarrow+\infty} \frac{10 x}{x+\sqrt{x^{2}-10 x}}=\lim _{x \rightarrow 0+\infty} \frac{10 x}{x\left(1+\sqrt{1-\frac{10}{x}}\right)}=\frac{10}{2}=5$
(or look at $\frac{10 x}{x+\sqrt{x^{2}}}=\frac{10}{2}($ for $x>0)$
(c) (4 points) $\lim _{x \rightarrow \infty} \frac{2\left(x^{2}+3 x \ln x+2^{-x}\right.}{5 x^{2}+9 x \ln x+\pi \cdot 2^{-x}}=\frac{2}{5}$

Dominant terms circled
$\lim _{x \rightarrow \infty} \frac{\text { Top }}{b_{0}+H_{0} m}$

1) Find the fastest growing term on top, jay $f(x)$
2) Find the fastest growing term on bottom, bey $g(x)$
3) Consider $\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}$

Recall bounded $<\ln (x)<\sqrt{x}<x<x_{n}^{n}<1<e^{x}$
5. (25 points) A particle is traveling at constant angular velocity $\pi / 3 \mathrm{rad} / \mathrm{sec}$ counterclockwise around the circle of radius 2 centered at the origin. At time $t=0$ it is at the point $(2,0)$. At time $t=20 \mathrm{sec}$ the particle flies off the circle and continues at constant velocity along the tangent line. NOTE: Your answers may involve π and square roots.
(a) (5 points) Give parametric equations for the motion of the particle for $0 \leq t \leq 20$.
(b) (10 points) At the instant when the particle flies off the circle find its x - and y coordinates ancyits velocity and
(c) (10 points) Give parametric equations for the motion of the particle for $t \geq 20$. Knowing the horizontel velocity v_{x} is $-\frac{\pi}{3} \frac{\sqrt{3}}{3}$ and the vertical velocity

Q) $x(t)=2 \cos \left(\frac{\pi}{3} t\right)$
$y(t)=2 \sin \left(\frac{\pi}{3} t\right)$
b)

$$
\begin{aligned}
& x(20)=2 \cos \left(\frac{\pi}{3} 20\right)=2 \cos \left(6 \pi+\frac{2}{3} \pi\right)=2\left(-\frac{1}{2}\right)=-1 \\
& y(20)=2 \sin \left(6 \pi+\frac{2}{3} \pi\right)=2\left(\frac{\sqrt{3}}{2}\right)=\sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& x=x_{1}+v_{x}(t-20)=1-\frac{\pi \sqrt{3}}{3}(t-20) \\
& y=y_{1}+v_{y}(t-20)=\sqrt{3}-\frac{\pi}{3}(t-20)
\end{aligned}
$$

