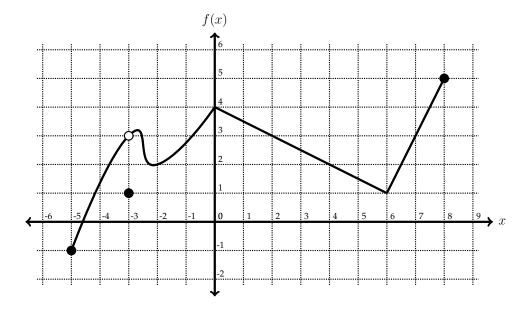
[5 points per part] Compute each limit. You may use any techniques you know.
If a limit does not exist or is infinite, say so, and explain.

(a)
$$\lim_{x \to 8} \frac{\sqrt{x-4}+2}{x-3}$$
, $\lim_{x \to 0} \frac{\sqrt{x-4}+2}{x-8}$, $\lim_{x \to 0} \frac{\sqrt{x-4}-2}{x-8}$, $\lim_{x \to 0} \frac{\sqrt{x-4}-2}{x-8}$

(c)
$$\lim_{x \to \infty} \sin\left(\frac{\pi x + 6}{\sqrt{4x^2 + 2x} + 2x}\right)$$

5. The graph of f(x) is shown below.



Cool graph, right? Use it to answer the following questions.

(a) [3 points] Compute $\lim_{x \to -3} [f(x) \cdot f(x+1)]$.

(b) [3 points] For what constant c does $\lim_{x\to 3} \frac{f(x) - c}{x - 3}$ exist?

(c) [3 points] Compute the limit from part (b), using the value of *c* you chose.

. .

_

3. (20 points) (a) (8 points) Algebraically simplify the expression inside the following limit:

$$\lim_{h \to 0} \frac{\sqrt{(3+h)^2 + 16} - 5}{h}$$

(b) (5 points) Using part (a), find this limit.

(c) (7 points) This limit is the derivative of what function f(x) at what point?

(CONTINUED ON NEXT PAGE)

(12 total points) Find the following limits. In each case your answer should be either a number, +∞, -∞ or DNE. Please show your work.

(a) (4 points)
$$\lim_{t \to 2^{-}} \frac{t^2 - 4}{|t - 2|}$$

(b) (4 points)
$$\lim_{x \to \infty} \left(x - \sqrt{x^2 - 10x} \right)$$

(c) (4 points)
$$\lim_{x \to \infty} \frac{2x^2 + 3x \ln x + 2^{-x}}{5x^2 + 9x \ln x + \pi \cdot 2^{-x}}$$

5. (25 points) A particle is traveling at constant angular velocity $\pi/3$ rad/sec counterclockwise around the circle of radius 2 centered at the origin. At time t = 0 it is at the point (2,0). At time t = 20 sec the particle flies off the circle and continues at constant velocity along the tangent line. NOTE: Your answers may involve π and square roots.

(a) (5 points) Give parametric equations for the motion of the particle for $0 \le t \le 20$.

(c) (10 points) Give parametric equations for the motion of the particle for $t \ge 20$. Knowing that the horizontal velocity V_X is $-\frac{11\sqrt{3}}{3}$ and the vertical velocity V_Y is $-\frac{11}{3}$.