Suppose an object is at $P(x_1, y_1)$ at time t_1 and at $Q(x_2, y_2)$ at time t_2 and it moves along a straight line at constant speed v.

The parametric equations of motion of the object are:

$$x = a + b(t - t_1)$$
 $y = c + d(t - t_1)$

where (a, c) is the position of the object at t_1 , that is $a = x_1$ and $c = y_1$ $b = v_x$ the horizontal component of the velocity and $d = v_y$ the vertical component of the velocity. So you can also write

$$x = x_1 + v_x(t - t_1), \qquad y = y_1 + v_y(t - t_1)$$

You can calculate v_x and v_y in different ways, depending on what the problem gives you :

- If you are given $P(x_1, y_1)$, $Q(x_2, y_2)$, t_1 and t_2 then $v_x = \frac{x_2 x_1}{t_2 t_1} \left(\frac{\Delta x}{\Delta t}\right)$ $v_y = \frac{y_2 y_1}{t_2 t_1} \left(\frac{\Delta y}{\Delta t}\right)$
- If you are given $P(x_1, y_1)$, v, θ (see figure) then

$$v_x = v\cos(\theta)$$
$$v_y = v\sin(\theta).$$

Note: in many problems time t_1 is just the initial time so $t_1=0$ in which case you have

$$x = x_1 + v_x t, \qquad y = y_1 + v_y t$$