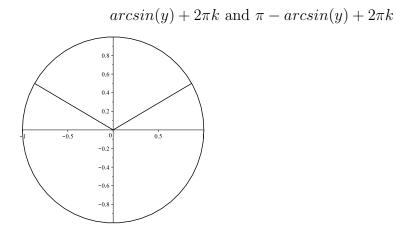
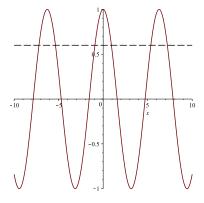
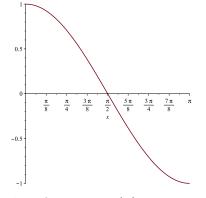

Remember that the function $y = \sin x$ is not invertible on $-\infty < x < \infty$



To define an inverse we need to restrict x to range between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$.



Therefore $\arcsin(x)$ returns an angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$. Given a value y between -1 and 1, how many angles α are there such that $\sin \alpha = y$?


Infinitely many. All the angles

Remember that the function $y = \cos x$ is not invertible on $-\infty < x < \infty$

To define an inverse we need to restrict x to range between 0 and π .

Therefore $\arccos(x)$ returns an angle between 0 and π .

Given a value y between -1 and 1, how many angles α are there such that $\cos\alpha=y$?

Infinitely many. All the angles

 $arccos(y) + 2\pi k$ and $-arccos(y) + 2\pi k$