1. You want to build two enclosures using exactly 2000 meters of fencing. One enclosure will be a square, and the other will be a rectangle that is 6 times as long as it is wide. Each enclosure will be divided in half by a fence, as the picture below shows. What should the dimensions of the rectangular enclosure be in order to minimize the combined area of the two enclosures ? What dimensions maximize the combined area of the two enclosures?

Problem 1 Let $f(x)=-(x-1)^{2}+10$ and $g(x)=\frac{x}{x+1}$.
a)(5 points) Compute $f(g(x))$
b)(5 points)Find an inverse for $f(x)$ on the domain $x \leq 1$
c)(5 points)Suppose that $f(x)$, for $0 \leq x \leq 1$, gives you the altitude, at time x, of a ball that has been launched in the air. Time x is measured in seconds and altitude $f(x)$ in meters. Explain in words the meaning of $f^{-1}(0.5)$ (You do not need to compute the value of $f^{-1}(0.5)$)
2. Below is the graph of the function $y=f(x)$ on the domain $-2 \leq x \leq 5$

(a) Which of the graphs below is the graph of $y=2+f(x-1)$? Circle the correct graph.

(b) If the domain of f is $-2 \leq x \leq 5$ what is the domain of the function $\frac{f(3 x)+5}{x-1}$?
(c) Compute $f^{-1}(-1)$
(d) If $h(x)=e^{f(x)}$ Which of the values below is closest to $h^{-1}(2)$? Circle the the right answer.
0.6 ,-1, 2.5, -2, 3.5

1. Mary has spiders and flies in her house. Yesterday she counted 5 spiders. The spider population increases 3% every week. Today Mary had 15 flies in her house; the flies population doubles every 5 days. When will there be 20 times more flies than spiders in Mary's house?
2. Write a formula for the function whose graph is the graph of $f(x)=$ $3(x+1)^{2}$ first shifted horizontally 5 units to the right, then scaled of a factor of $\frac{1}{2}$, then reflected around the x axis, then moved up 3 units.

Write a formula for the function whose graph is the graph of $f(x)=$ $3(x+1)^{2}$ first scaled of a factor of $\frac{1}{2}$, then shifted horizontally 5 units to the right, then reflected around the x axis, then moved up 3 units.

