Lesson 7

Read Chapter 6

Multipart functions

Semicircles

Consider $x^{2}+y^{2}=4$

Top semicircle is $y=\sqrt{4-x^{2}}$

Bottom, semicircle is $y=-\sqrt{4-x^{2}}$

Consider $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$

Top semicircle is $y=y_{0}+\sqrt{r^{2}-\left(x-x_{0}\right)^{2}}$

Bottom, semicircle is $y=y_{0}-\sqrt{r^{2}-\left(x-x_{0}\right)^{2}}$

Multipart functions

$$
h(x)= \begin{cases}f(x) & \text { if } x \text { satisfies some condition } \\ g(x) & \text { if } x \text { satisfies another condition }\end{cases}
$$

$$
|x|= \begin{cases}x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}
$$

$$
h(x)= \begin{cases}2 x+3 & \text { if } x \geq 1 \\ 5 x & \text { if } x<1\end{cases}
$$

$$
k(x)= \begin{cases}2 x+1 & \text { if } x \geq 1 \\ 5 x & \text { if } x<1\end{cases}
$$

Given $f(x)=|3 x+5|$ graph $f(x)$, find the multipart rule for $f(x)$ and solve $f(x)=-2 x-5$

Conroy midterm

1. You have a pizza shaped as shown below.

You are going to cut the pizza with a vertical cut x inches from the left edge.
Express the area to the left of the cut as a multipart function of x.

