Lesson 3

Read Chapter 3

Circles

Useful facts about circles

1. Equation of a circle (in standard form):

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}
$$

The circle has center $\left(x_{0}, y_{0}\right)$ and radius r.
2. If a line L is tangent to a circle at P, then the line is perpendicular to the radius $C P$.

Find the equation of the circle centered at $(0,-5)$ with radius 3 . Does $P(-1,6)$ belong to this circle ?

For which value of x is $P(x, 6)$ on the circle centered at $(0,5)$ with radius 3 ?

For which value of x is $P(x, 10)$ on the circle centered at $(0,5)$ with radius 3 ?

Find the center and radius of the circle

$$
x^{2}+6 x+y^{2}-2 y+9=0
$$

Intersection of a line and a circle

Find the intersection of the unit circle and the line $y=x+\frac{1}{2}$

Tangent to a circle

Find the tangent to to the circle $(x-3)^{2}+(y+2)^{2}=5$ at the point $P(1,-1)$

Find the tangent to to the circle $(x-3)^{2}+(y+2)^{2}=5$ through the point $Q(0,8)$

Find the equation of the line tangent to to the circle $(x-3)^{2}+(y+2)^{2}=5$ and parallel to the line $4 x-2 y+10=0$

Given a circle $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2}$ and a point $P\left(x_{1}, y_{1}\right)$
P is on the circle if $\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}=r^{2}$
P is inside the circle if $\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}<r^{2}$
P is outside the circle if $\left(x_{1}-x_{0}\right)^{2}+\left(y_{1}-y_{0}\right)^{2}>r^{2}$

