Lesson 22

Read Chapter 20

Inverse trigonometric sinusoidal functions

How to solve $A \sin \left(\frac{2 \pi}{B}(x-C)\right)+D=E \quad$ (Mnatimonant)

1. $\sin \left(\frac{2 \pi}{B}(x-C)\right)=\frac{E-D}{A}=F$
2. $\theta_{1}=\left(\frac{2 \pi}{B}\right)\left(x_{1}-\boldsymbol{C}\right)=\arcsin F . x_{1}=\frac{B}{2 \pi} \arcsin (F)+C$ This is the principal solution. It is an angle $-\frac{B}{4}+C \leq x_{1} \leq \frac{B}{4}+C$
3. All values $x_{1}+B k, k=0,1,2, \cdots,-1,-2 \cdots$ are also solutions.
4. $x_{2}=2 C+\frac{B}{2}-x_{1}$ is the symmetric solution. It is an angle $\frac{B}{4}+C \leq x_{2} \leq \frac{3 B}{4}+C$
5. All values $x_{2}+B k, k=0,1,2, \cdots,-1,-2 \cdots$ are also solutions.

Solve $3 \sin \left(\frac{2 \pi}{5}\left(x-\frac{7}{4}\right)+2=\frac{7}{2}\right.$

Assume the depth of the shore at Neah Bay is given by $d(t)=12 \sin \left(\frac{\pi}{6}(t-3)\right)+15 . t$ is measured in hours, d in feet. What is the maximum depth of the beach and when is it reached ? When is the minimum depth and when is it reched ?

Find all times t with $0 \leq t \leq 23$ when the beach is 23 feet wide

Find all times t with $0 \leq t \leq 23$ when the beach is feet wide

