

Read Chapter 20

Inverse trigonometric sinusoidal functions

How to solve $A\sin(\frac{2\pi}{B}(x-C)) + D = E$ (MMMMM/M/M/)

1.
$$\sin(\frac{2\pi}{B}(x-C)) = \frac{E-D}{A} = F$$

2. $\theta_1 = (\frac{2\pi}{B})(x_1 - \mathbf{C}) = \arcsin F$. $x_1 = \frac{B}{2\pi} \arcsin (F) + C$ This is the principal solution. It is an angle $-\frac{B}{4} + C \le x_1 \le \frac{B}{4} + C$

- 3. All values $x_1 + Bk$, $k = 0, 1, 2, \cdots, -1, -2 \cdots$ are also solutions.
- 4. $x_2 = 2C + \frac{B}{2} x_1$ is the symmetric solution. It is an angle $\frac{B}{4} + C \le x_2 \le \frac{3B}{4} + C$
- 5. All values $x_2 + Bk$, $k = 0, 1, 2, \cdots, -1, -2 \cdots$ are also solutions.

Solve
$$3\sin(\frac{2\pi}{5}(x-\frac{7}{4})+2=\frac{7}{2})$$

◆□▶▲□▶▲□▶▲□▶ ▲□▶

Assume the depth of the shore at Neah Bay is given by $d(t) = 12 \sin(\frac{\pi}{6}(t-3)) + 15$. *t* is measured in hours , d in feet. What is the maximum depth of the beach and when is it reached ? When is the minimum depth and when is it reched ? Find all times t with $0 \le t \le 23$ when the beach is 23 feet wide

Find all times t with $0 \le t \le 23$ when the beach is **#3** feet wide

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・