

Read Chapter 19

Sinusoidal functions

Graph $f(x) = A \sin(\frac{2\pi}{B}(x - C)) + D$

Sinusoidal functions

$$f(x) = A\sin(\frac{2\pi}{B}(x-C)) + D$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A: amplitude. Half total height (for A > 0) $\frac{y_{\max} - y_{\min}}{2}$ B: period. Distance between two peaks. C: phase shift. *x*-coordinate of max - $\frac{B}{4}$ D:mean. Half way vertical point. $\frac{y_{\max} + y_{\min}}{2}$ Find a formula for the sinusoidal function below

・・・・<・<・・・<

Assume the depth of the shore at Neah Bay is given by $d(t) = 12 \sin(\frac{\pi}{6}(t-3)) + 15$. *t* is measured in hours , d in feet. What is the maximum depth of the beach and when is it reached ? When is the minimum depth and when is it reched ? Find all times t with $0 \le t \le 23$ when the beach is 23 feet wide