

Read Chapter 18

trigonometric functions

$\sin x \cos x \tan x \cot x \sec x \csc x$

▲□▶▲□▶▲≡▶▲≡▶ ■ 少へ⊙

If $\cos x = \frac{1}{2}$ what could $\sin x$ be ? What could x be ?

・・・<l

Solve $\sin x = \cos x$

・・</l>

arcsin x

▲□▶▲□▶▲≣▶▲≣▶ ≣ めへぐ

arccos x

▲□▶▲圖▶▲≣▶▲≣▶ ▲□▶

How to solve $\sin x = c$ $(-1 \le c \le 1)$

- 1. $x_1 = \arcsin c$. This is the principal solution. It is an angle $-\frac{\pi}{2} \le x_1 \le \frac{pi}{2}$
- 2. All values $x_1 + 2\pi k$, $k = 0, 1, 2, \cdots, -1, -2 \cdots$ are also solutions.
- 3. $x_2 = \pi x_1$ is the symmetric solution. It is an angle $\frac{\pi}{2} \le x_1 \le \frac{3pi}{2}$
- 4. All values $x_2 + 2\pi k$, $k = 0, 1, 2, \cdots, -1, -2 \cdots$ are also solutions.

How to solve $\cos x = c$ $(-1 \le c \le 1)$

- 1. $x_1 = \operatorname{arc} \cos c$. This is the principal solution. It is an angle $0 \le x_1 \le \pi$
- 2. All values $x_1 + 2\pi k$, $k = 0, 1, 2, \cdots, -1, -2 \cdots$ are also solutions.
- 3. $x_2 = -x_1$ is the symmetric solution. It is an angle $-\pi \le x_1 \le 0$
- 4. All values $x_2 + 2\pi k$, $k = 0, 1, 2, \cdots, -1, -2 \cdots$ are also solutions.

arctan x

How to solve $\tan x = c$

- 1. $x_1 = \arctan c$. It is an angle $-\frac{\pi}{2} \le x_1 \le \frac{pi}{2}$
- 2. All values $x_1 + \pi k$, $k = 0, 1, 2, \cdots, -1, -2 \cdots$ are also solutions.

Find your linear velocity v. If your chair breaks at time t = 5.6 min and you fall to the ground, traveling along the tangent line with velocity v, when do you hit the ground ?