Lesson 14

Read Chapter 12

Logarithms
$\ln x$ is the inverse of e^{x}. This means

$$
\begin{gathered}
e^{x}=y \\
x=\ln y \\
\ln e^{x}=x \\
e^{\ln y}=y
\end{gathered}
$$

Graph

Other log functions

$\log _{a} x$ is the inverse of a^{x}

properties of log

- $\ln x^{y}=y \ln x$
- $\log _{b} x=\frac{\ln x}{\ln b}$
- $a^{x}=e^{(\ln a) x}$
- $\ln (x y)=\ln (x)+\ln (y)$
- $\ln \frac{x}{y}=\ln x-\ln y$
- $\ln 1=0$
- $\ln \frac{1}{x}=-\ln x$

Solve the following equations

1. $5 e^{x-4}=2$
2. $53^{x-4}=2$

Solve the following equations

1. $5 \ln (5 x+2)=3$
2. $\log _{2}(5 x+2)=3$

Solve the following equations

1. $\log _{2} 5=\log _{3}(7-x)$
2. $5 y=10^{x}$

Exponential functions in standard form

$$
f(x)=A_{0} a^{x}
$$

or

$$
f(x)=A_{0} e^{(\ln a) x}=e^{k x}
$$

Rewrite in e form

- $y=57^{t}$
- $y=32^{3 t-1}$

