2-4.2. Let \(S = \{ (x, y, z) : x^2 + y^2 - z^2 = 1 \} \), and suppose \(\alpha : I \to S \) is a curve with \(\alpha(0) = (x, y, 0) \). Write \(\alpha(t) = (x(t), y(t), z(t)) \). Since \(x(t)^2 + y(t)^2 - z(t)^2 = 1 \) for all \(t \), we may differentiate both sides at \(t = 0 \) to obtain

\[
2x(0)x'(0) + 2y(0)y'(0) - 2z(0)z'(0) = 0.
\]

But \((x(0), y(0), z(0)) = (x, y, 0) \); therefore \(\alpha'(0) \) is orthogonal to \((x, y, 0) \). Since the set of vectors orthogonal to \((x, y, 0) \) is a plane, this must be \(T_{(x,y,0)}S \), and the tangent plane is parallel to the \(z \)-axis.

2-4.3. Let \(S \) be the graph of the differentiable function \(z = f(x, y) \). Then \(x : U \to S \) defined by \(x(u, v) = (u, v, f(u, v)) \) is a parametrization. Let \((x_0, y_0) \in U \) and \(z_0 = f(x_0, y_0) \). The tangent space to \(S \) at \((x_0, y_0, z_0) \) is given by \((dx)(x_0, y_0)(\mathbb{R}^2) \). But

\[
(dx)(x_0, y_0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ f_x(x_0, y_0) & f_y(x_0, y_0) \end{bmatrix}
\]

so \(T_{(x_0,y_0,z_0)}S \) is spanned by the vectors \((1, 0, f_x(x_0, y_0)) \) and \((0, 1, f_y(x_0, y_0)) \); i.e. all vectors \((x, y, z) \) with \(z = f_x(x_0, y_0)x + f_y(x_0, y_0)y \). This plane is just the graph of the function sending \((x, y) \) to \((dx)(x_0, y_0)(x, y) \); translating it so that it passes through \((x_0, y_0, z_0) = (x_0, y_0, f(x_0, y_0)) \) yields the equation in do Carmo.

2-4.8. Since \(L \) is differentiable in a neighborhood of \(S \) — in fact on all of \(\mathbb{R}^3 \) — it follows that \(L|S : S \to \mathbb{R}^3 \) is differentiable. But \(L(S) \subset S \) by hypothesis; hence \(L|S : S \to S \) is differentiable. We also have, for \(p \in S \),

\[
(d(L|S)(p))(\alpha'(0)) = (L \circ \alpha)'(0) = L(\alpha'(0))
\]

by the chain rule and the fact that \(L \) is a linear transformation. Since \(\alpha : I \to S \) is an arbitrary curve with \(\alpha(0) = p \), we must have

\[
(d(L|S)(p))(w) = L(w)
\]

for all \(w \in T_pS \).

2-4.15. Without loss of generality, we may assume that all normals to our connected surface \(S \) pass through the origin. This means that \(v \) is orthogonal to \(T_v(S) \) for all \(v \in S \). Now let \(v_0 \in S \) and define

\[
C = \{ v \in S : |v| = |v_0| \}.
\]
Then is a differentiable function,

Proof. Suppose that the preceding lemma shows that \(v \) is open in \(S \). Assuming this, it follows by the connectivity of \(S \) that \(C = S \); therefore \(S \) is a subset of the sphere of radius \(|v_0|\).

We now prove the claim. Suppose \(v \in S \), and let \(x : U \to N \) be a parametrization, where \(N \) is a neighborhood of \(v \) in \(S \). Without loss of generality, we may assume that \(U \) is a disk of radius \(\varepsilon > 0 \) with center at the origin and that \(x((0,0)) = v \). Let \(w \in N \). Then there exists a smooth curve \(\alpha : I \to N \) with \(\alpha(t_0) = w \) and \(\alpha(t_1) = v \), \([t_0,t_1] \subset I \). (For example, write \(w = x(q) \), and let \(\beta \) be a parametrized curve whose trace is a line segment passing through \(q \) and \((0,0)\).

Then take \(\alpha = x \circ \beta \).

Next observe that \(\alpha(s) \cdot \alpha'(s) = 0 \) for all \(s \in I \) since \(\alpha'(s) \in T_{\alpha(s)}(S) \); this implies that \(|\alpha(s)|^2 = \alpha(s) \cdot \alpha(s) \) is constant. In particular,

\[
|w|^2 = \alpha(t_0) \cdot \alpha(t_0) = \alpha(t_1) \cdot \alpha(t_1) = |v|^2.
\]

Hence \(w \in C \), and since \(w \in N \) was arbitrary, we have that \(N \subset C \). This proves that \(C \) is open in \(S \).

2.4.17. We first prove a preliminary result.

Lemma. Let \(S = \{ (x,y,z) : f(x,y,z) = 0 \} \) be a regular surface, where \(f : V \to \mathbb{R} \) is a differentiable function, \(V \) open in \(\mathbb{R}^3 \). Suppose \(p \in S \) is a regular point of \(f \). Then \((f_x(p), f_y(p), f_z(p)) \) is a non-zero normal to \(T_p S \).

Proof. Suppose \(\alpha : I \to S \) is a smooth curve with \(\alpha(0) = p \). Write \(\alpha(t) = (x(t), y(t), z(t)) \). Then \(f(x(t), y(t), z(t)) = 0 \) for all \(t \in I \). Differentiating at \(t = 0 \) now yields

\[
(f_x(p)x'(0) + f_y(p)y'(0) + f_z(p)z'(0) = 0:
\]

i.e.

\[
(f_x(p), f_y(p), f_z(p)) \cdot \alpha'(0) = 0.
\]

Since the set of vectors \(v \) satisfying

\[
(f_x(p), f_y(p), f_z(p)) \cdot v = 0
\]

is a plane — remember, \((f_x(p), f_y(p), f_z(p)) \neq (0,0,0) \) as \(p \) is a regular point — we must have that this plane is \(T_p S \). This completes the proof.

Locally, any regular surface \(S \) is given by \(S = f^{-1}(0) \), where \(f : V \to \mathbb{R} \) is differentiable, \(V \) is open in \(\mathbb{R}^3 \), and 0 is a regular value. To see this, recall that locally \(S \) is the graph of a differentiable function \(h : U \to \mathbb{R} \) with \(U \) open in \(\mathbb{R}^2 \) — say, \(S = \{ (x,y,z) : z = h(x,y) \} \). Then \(S = f^{-1}(0) \), where \(f(x,y,z) = z - h(x,y) \).

Now let \(S_1 \) and \(S_2 \) be regular surfaces and let \(p \in S_1 \cap S_2 \). In a neighborhood \(V \) of \(p \) in \(\mathbb{R}^3 \), we may assume that

\[
S_1 \cap V = \{ (x,y,z) : f(x,y,z) = 0 \}
\]

\[
S_2 \cap V = \{ (x,y,z) : g(x,y,z) = 0 \}
\]

and that 0 is a regular value of both \(f \) and \(g \). Moreover, if \(q \in S_1 \cap S_2 \cap V \), the preceding lemma shows that \((f_x(q), f_y(q), f_z(q)) \) and \((g_x(q), g_y(q), g_z(q)) \) are non-zero normals to \(T_q(S_1) \) and \(T_q(S_2) \) respectively. But \(T_q(S_1) \neq T_q(S_2) \) by hypothesis; therefore \((f_x(q), f_y(q), f_z(q)) \) and \((g_x(q), g_y(q), g_z(q)) \) are linearly independent.
Finally, consider the function $F : V \rightarrow \mathbb{R}^2$ given by

$$F(x, y, z) = (f(x, y, z), g(x, y, z)).$$

$F^{-1}(0, 0) = V \cap S_1 \cap S_2$; it therefore follows from Exercise 17 of 2-2 that $V \cap S_1 \cap S_2$ is a regular curve provided that $(0, 0)$ is a regular value of F. But

$$(dF)(q) = \begin{bmatrix} f_x(q) & f_y(q) & f_z(q) \\ g_x(q) & g_y(q) & g_z(q) \end{bmatrix}$$

has rank 2 for $q \in F^{-1}(0, 0)$, since $(f_x(q), f_y(q), f_z(q))$ and $(g_x(q), g_y(q), g_z(q))$ are linearly independent. This proves that $(dF)(q)$ is onto and that $(0, 0)$ is a regular value.

Since the notion of regular curve is local, we therefore have that $S_1 \cap S_2$ is a regular curve.