Math 442
Winter 2019
Solutions to Homework 4

2-3.2. The map $\pi : S \to \mathbb{R}^2$ extends to a smooth function from all of \mathbb{R}^3 to \mathbb{R}^2; namely, the map which takes (x, y, z) to (x, y). This implies by a result proved in lecture (or see example 3 of 2-3), that π is smooth.

2-3.14. Certainly, if A is open in S, then A is a regular surface. Conversely, suppose that $A \subset S$ and that A is a regular surface. To show that A is open in S, it suffices to show that whenever $p \in A$, there exists a neighborhood of p in S completely contained in A. To do this, start by taking $x : U \to N$ to be a parametrization of A in a neighborhood of p and $y : U' \to N'$ to be a parametrization of S in a neighborhood of p. By shrinking U' if necessary, we may, as in the proof of Proposition 1 of this section, extend y to a diffeomorphism $Y : V \to W$, where V and W are open in \mathbb{R}^3. (Here we regard $\mathbb{R}^2 \subset \mathbb{R}^3$ in the usual way.) Then, by shrinking U if necessary, we get that

$$y^{-1} \circ x = Y^{-1} \circ x : U \to \mathbb{R}^2$$

is differentiable. Moreover, for $q \in U$,

$$d(y^{-1} \circ x)(q) = (dY^{-1})(x(q)) \circ dx(q)$$

is the composition of two one-to-one linear transformations and so is one-to-one. Note that we have written $d(y^{-1} \circ x)(q)$ as a linear transformation from \mathbb{R}^2 to \mathbb{R}^3. However, $y^{-1} \circ x$ takes all of U to \mathbb{R}^2. This implies that the last row of the matrix representing $d(Y^{-1})(x(q)) \circ dx(q)$ must be zero and that it must therefore be a linear transformation whose image lies in \mathbb{R}^2. Since it is one-to-one with domain \mathbb{R}^2, it must be an isomorphism from \mathbb{R}^2 to \mathbb{R}^2. This holds for all $q \in U$; it therefore follows by the inverse function theorem that $(y^{-1} \circ x)(U)$ is open in \mathbb{R}^2. But y^{-1} is a homeomorphism from an open subset of S to an open subset of \mathbb{R}^2, so that $N = x(U)$ is open in S. This completes the proof.