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Abstract

We consider an algorithm that successively samples and minimizes stochastic mod-
els of the objective function. We show that under weak-convexity and Lipschitz condi-
tions, the algorithm drives the expected norm of the gradient of the Moreau envelope
to zero at the rate O(k−1/4). Our result yields the first complexity guarantees for the
stochastic proximal point algorithm on weakly convex problems and for the stochastic
prox-linear algorithm for minimizing compositions of convex functions with smooth
maps. Our general framework also recovers the recently obtained complexity estimate
for the stochastic proximal subgradient method on weakly convex problems.

1 Introduction

Numerous algorithms for minimizing a function g on Rd can be written in the form:

xt+1 = argmin
y

{
gxt(y) +

βt
2
‖y − xt‖2

}
, (1.1)

where gxt(·) is a “simple model” of g formed at the current iterate xt and βt > 0 is a control
sequence balancing the fidelity of the model with proximity to xt. Typical algorithms of this
type use models gx(·) that at the very least satisfy the properties:

gx(x) = g(x) and gx(y)− g(y) ≤ τ

2
‖y − x‖2 ∀x, y ∈ Rd. (1.2)

where τ > 0 is some fixed real number. Thus one requires the models gx(·) to agree with g
at x and to lower-bound g up to a quadratic error relative to the base-point x. To simplify
notation, we will call any map (x, y) 7→ gx(y) satisfying (1.2) a one-sided model of g.

Let us look at an example motivating the rest of our discussion. Consider an optimization
problem of the form

min
x∈Rd

g(x) = h(c(x)), (1.3)
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with h convex and `-Lipschitz and c a smooth map with γ-Lipschitz Jacobian. Such compos-
ite problems appear often in computation science. Nonlinear least squares [15, Section 10.3]
and exact penalty formulations of nonlinear programs [15, Section 17.2] are classical exam-
ples, while notable contemporary instances include robust phase retrieval [6, 10], covariance
matrix estimation [3, 5], and matrix factorization problems such as NMF [12,13].

The subgradient and the prox-linear methods are two influential model-based algorithms
for the problem class (1.3). The subgradient method performs the update (1.1) using the
linear model

gx(y) = g(x) + 〈∇c(x)Tv, y − x〉,

for an arbitrary subgradient selection v ∈ ∂h(c(x)). Equivalently, each iteration written in
closed form is

choose xt+1 ∈ xt −
1

βt
∇c(xt)T∂h(c(xt)).

An easy argument shows that the assignment (x, y) 7→ gx(y) is indeed a one-sided model for
g with τ = `γ; see e.g. [9, Lemma 4.2].

The prox-linear algorithm, in contrast, uses convex models with stronger approximation
guarantees, while possibly incurring a higher per iteration cost. Namely, the prox-linear
method performs the update (1.1) using the nonlinear convex models

gx(y) = h
(
c(x) +∇c(x)(y − x)

)
.

Notice in contrast to the subgradient method, the prox-linear algorithm in each iteration
requires solving an auxiliary convex subproblem:

xt+1 = argmin
y

{
h
(
c(xt) +∇c(xt)(y − xt)

)
+
βt
2
‖y − xt‖2

}
.

The assignment (x, y) 7→ gx(y) is again a one-sided model with τ = `γ. Indeed, the prox-
linear model satisfies the much stronger two-sided estimate |gx(y) − g(y)| ≤ τ

2
‖y − x‖2 for

all x, y ∈ Rd; see e.g., [9, Section 4.1]. For a historical account of the prox-linear method,
see e.g., [2, 14] and the references therein. For a systematic study of two-sided models in
optimization, see [8].

Recent literature [4, 7, 9] has identified the gradient of the Moreau envelope of g as a
natural measure of stationarity on which to base comparison of algorithms for the composite
problem class (1.3). We will review this notion in detail in Section 2. In terms of this quantity,
the subgradient method and the prox-linear algorithm have complexity O(ε−4) and O(ε−2),
respectively, under an appropriate choice of the control sequences βt. The superior iteration
complexity of the prox-linear method is not surprising since the prox-linear models satisfy a
much stronger approximation guarantee. The caveat is of course that the per iteration cost
of the prox-linear method can be higher than that of the subgradient method, since each
iteration requires solving an auxiliary convex problem.

Though the outlined model-based techniques are appealingly simple and largely classical,
computing exact one-sided models of g is often prohibitively expensive. This is especially so
for the huge-scale problems that now routinely appear in practice. Instead, in our current
work, we suppose that for every point x ∈ Rd there is a family of models gx(·, ξ), indexed

2



by a random variable ξ that follows a probability distribution P . We will only require that
the models gx(·, ξ) satisfy (1.2) in expectation. More formally, we will call the assignment
(x, y, ξ) 7→ gx(y, ξ) a stochastic one-sided model of g whenever the expectation (x, y) 7→
Eξ[gx(y, ξ)] is a (deterministic) one-sided model of g. The algorithm we propose simply
iterates the steps

Sample ξt ∼ P,

Set xt+1 = argmin
y

{
gxt(y, ξt) +

βt
2
‖y − xt‖2

}
.

(1.4)

The last ingredient we require is that for every ξ and x ∈ Rd, the models gx(·, ξ) are ρ-
weakly convex, by which we mean that the assignment y 7→ gx(y, ξ) + ρ

2
‖y‖2 is convex. This

assumption is indeed natural since we would like the subproblem defining xt+1 to be strongly
convex, and hence for xt+1 to be uniquely determined. Weakly convex functions have re-
cently found a number of interesting applications in large-scale optimization; in particular,
the composite function (1.3) is `γ-weakly convex. We will prove that under standard mea-
surability and Lipschitz conditions and with an appropriate choice of the control sequence
βt, the generic algorithm (1.4) has complexity O(ε−4) in expectation.

Let us look at some concrete applications of our result. In the setting that for all x ∈ Rd,
the expectation Eξ[gx(·, ξ)] agrees with g(·), the algorithm (1.4) reverts to the stochastic
proximal point method. This algorithm was recently considered for convex minimization
in [19] and extended to monotone inclusion problems in [1]. Thus we obtain a new complexity
guarantee of O(ε−4) for the stochastic proximal point algorithm on weakly convex problems.

As the next application, we return to the running example (1.3). The recent paper [11]
investigated the following stochastic composite optimization problem:

min
x∈Rd

g(x) = Eξ∼P [h
(
c(x, ξ), ξ

)
], (1.5)

Define the family of stochastic linear models

gx(y, ξ) = g(x) + 〈∇c(x, ξ)Tw(x, ξ), y − x〉,

where w(x, ξ) ∈ ∂h(c(x, ξ), ξ) is a measurable subgradient selection. Then each iteration of
Algorithm 1.4 reduces to the stochastic subgradient update

Sample ξt ∼ P

Choose xt+1 ∈ xt −
1

βt
∇c(xt, ξt)T∂h

(
c(xt, ξt), ξt

)
 .

Under mild technical conditions, the map (x, y, ξ) 7→ gx(y, ξ) is indeed a stochastic one-
sided model of g, and therefore we again can conclude the O(ε−4) complexity. The same
complexity guarantee was recently obtained in [4] for stochastic subgradient methods for an
even larger class of weakly convex problems. That being said, the argument in [4] does not
extend to the algorithm (1.4) in its full generality. Conversely, the assumptions presented
here do not fully capture the noise model of stochastic proximal gradient methods developed
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in [4]. Consequently, our current techniques are distinct from those in [4], though the idea
of using the Moreau envelope as the potential function remains the same.

As the final example, let us look at the stochastic prox-linear method, introduced in [11].
In each iteration, the method performs the update (1.4) using the stochastic models

gx(y, ξ) = h
(
c(x, ξ) +∇c(x, ξ)(y − x), ξ

)
.

Thus the stochastic prox-linear method iterates the steps Sample ξt ∼ P

Set xt+1 = argmin
y

{h
(
c(xt, ξt) +∇c(xt, ξt)(y − xt), ξt

)
+ βt

2
‖y − xt‖2}

 .

Under mild technical conditions, the map (x, y, ξ) 7→ gx(y, ξ) is a stochastic one-sided model
of g, and therefore our results immediately yield the O(ε−4) complexity. This complexity
guarantee is new, and nicely complements the recent paper [11]. There, the authors proved
that almost surely all limit points of the stochastic prox-linear and subgradient methods
applied to the problem (1.5) are stationary. Though the complexity of the stochastic sub-
gradient method and of the stochastic prox-linear method are of the same order, empirical
evidence [11, Section 4] suggests that the stochastic prox-linear method can perform signif-
icantly better. This is not surprising since the prox-linear models satisfy a much stronger
approximation guarantee in expectation.

2 The problem set-up and the stationarity measure

Throughout, we consider a Euclidean space Rd endowed with an inner product 〈·, ·〉 and the
induced norm ‖x‖ =

√
〈x, x〉. We say that a function f : Rd → R ∪ {∞} is ρ-weakly convex

if the assignment f + ρ
2
‖x‖2 is convex.1 A trivial consequence of this definition is that f is

ρ-weakly convex if, and only if, the following approximate secant inequality holds:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) + ρλ(1−λ)
2
‖x− y‖2, (2.1)

for all x, y ∈ Rd and all λ ∈ [0, 1]. We will use this equivalence in the proof of Lemma 2.1.
Throughout, we consider the optimization problem

min
x∈Rd

ϕ(x) := g(x) + r(x), (2.2)

where r : Rd → R ∪ {∞} is a closed function and the only access to g : Rd → R is through a
stochastic one-sided model. Formally, we fix a probability space (Ω,F , P ) and equip Rd with
the Borel σ-algebra. We assume that there exist real τ, η, L > 0 such that the following four
properties hold:

(A1) (Sampling) It is possible to generate i.i.d. realizations ξ1, ξ2, . . . ∼ P .

1To the best of our knowledge, the class of weakly convex functions was introduced in [16]. Here we use
a slightly more restrictive definition than originally developed there.
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(A2) (One-sided accuracy) There is an open convex set U containing dom r and a mea-
surable function (x, y, ξ) 7→ gx(y, ξ), defined on U × U × Ω, satisfying

Eξ [gx(x, ξ)] = g(x) ∀x ∈ U,

and
Eξ [gx(y, ξ)− g(y)] ≤ τ

2
‖y − x‖2 ∀x, y ∈ U.

(A3) (Weak-convexity) The function r(·)+gx(·, ξ) is η-weakly convex ∀x ∈ U , a.e. ξ ∈ Ω.

(A4) (Lipschitz property) For all x, y, z ∈ U and a.e. ξ ∈ Ω, the inequalities hold:

|g(y)− g(z)| ≤ L‖y − z‖, (2.3)

|gx(y, ξ)− gx(z, ξ)| ≤ L‖y − z‖. (2.4)

Remark 1. It is worthwhile to note that if Assumption (A2) is strengthened to a two-sided
estimate

|Eξ [gx(y, ξ)− g(y)] | ≤ τ

2
‖y − x‖2 for all x, y ∈ U,

the Lipschitz property of the models (2.4) automatically implies the analogous property for
g itself (2.3). To see this, observe that trivially, for any x ∈ U , the function gx(y) :=
Eξ∼P [gx(y, ξ)] is L-Lipschitz continuous on U . Therefore, for any x̄ ∈ U , we have

limsup
x,y→x̄

|g(y)− g(x)|
‖y − x‖

≤ limsup
x,y→x̄

|gx(y)− gx(x)|+ τ
2
‖y − x‖2

‖y − x‖
≤ L,

where the last inequality follows from (2.4). Since U is open and convex, we deduce that g
is L-Lipschitz continuous on U , as claimed.

It will be useful for the reader to keep in mind the following lemma, which shows that
the objective function ϕ is itself weakly convex with parameter τ + η.

Lemma 2.1. The function ϕ is (τ + η)-weakly convex.

Proof. Fix arbitrary points x, y ∈ dom r and a real λ ∈ [0, 1], and set x̄ = λx+(1−λ)y. Define
the function gx(y) := Eξ[gx(y, ξ)]. Taking into account the equivalence of weak convexity
with the approximate secant inequality (2.1), we successively deduce

ϕ(x̄) = Eξ [r(x̄) + gx̄(x̄, ξ)] (2.5)

≤ λEξ [r(x) + gx̄(x, ξ)] + (1− λ)Eξ [r(y) + gx̄(y, ξ)] + ηλ(1−λ)
2
‖x− y‖2 (2.6)

= λ(r(x) + gx̄(x)) + (1− λ)(r(y) + gx̄(y)) + ηλ(1−λ)
2
‖x− y‖2

≤ λϕ(x) + (1− λ)ϕ(y) + τ(λ2(1−λ)+λ(1−λ)2)
2

‖x− y‖2 + ηλ(1−λ)
2
‖x− y‖2 (2.7)

= λϕ(x) + (1− λ)ϕ(y) + (τ+η)λ(1−λ)
2

‖x− y‖2,

where (2.5) uses (A2), inequality (2.6) uses (A3), and (2.7) uses (A2). Thus ϕ is (τ + η)-
weakly convex, as claimed.
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We can now formalize the algorithm we investigate, as Algorithm 1.

Algorithm 1: Stochastic Model Based Minimization

Data: x0 ∈ Rd, real ρ̂ > τ + η, a sequence {βt}t≥0 ⊆ (ρ̂,∞), and iteration count T
Step t = 0, . . . , T : Sample ξt ∼ P

Set xt+1 = argmin
x

{
r(x) + gxt(x, ξt) + βt

2
‖x− xt‖2

} ,

Sample t∗ ∈ {0, . . . , T} according to the discrete probability distribution

P(t∗ = t) ∝ ρ̂−τ−η
βt−η .

Return xt∗

The basic goal of algorithms for nonsmooth and nonconvex optimization, such as those of
Algorithm 1, is to find stationary points. These are the points where the directional deriva-
tive of the objective function is nonnegative in every direction. Measuring the progress of
numerical methods towards stationary points requires a continuous measure of stationar-
ity. Such a continuous measure is readily available for our problem class (2.2). The key
construction is the Moreau envelope:

ϕλ(x) := inf
y

{
ϕ(y) + 1

2λ
‖y − x‖2

}
,

where λ > 0. It follows directly from Lemma 2.1 and [17, Theorem 31.5] that as long as
λ < (τ + η)−1, the envelope ϕλ is C1-smooth with the gradient given by

∇ϕλ(x) = λ−1(x− proxλϕ(x)). (2.8)

where proxλϕ(x) is the proximal point:

proxλϕ(x) := argmin
y

{ϕ(y) + 1
2λ
‖y − x‖2}.

It is easy to see that stationary points of ϕλ coincide with those of ϕ. Moreover, the norm of
the gradient ‖∇ϕλ(x)‖ has an intuitive interpretation in terms of near-stationarity for the
target problem (2.2). Namely, the definition of the Moreau envelope directly implies that
for any point x ∈ Rd, the proximal point x̂ := proxλϕ(x) satisfies

‖x̂− x‖ = λ‖∇ϕλ(x)‖,
ϕ(x̂) ≤ ϕ(x),

dist(0; ∂ϕ(x̂)) ≤ ‖∇ϕλ(x)‖,

where the subdifferential ∂ϕ is meant in the standard variational analytic sense [18, Definition
8.3]. Thus a small gradient ‖∇ϕλ(x)‖ implies that x is near some point x̂ that is nearly
stationary for (2.2); for a more detailed discussion, see [9, Section 4.1]. In summary, the
norm of the gradient ‖∇ϕλ(x)‖ serves as a continuous measure of stationary, and we will
judge the performance of Algorithm 1 by the rate at which it drives this quantity to zero.
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3 Analysis of the algorithm

Henceforth, let {xt}t≥0 be the iterates generated by Algorithm 1 and let {ξt}t≥0 be the
corresponding samples used. For each index t ≥ 0, define the proximal point

x̂t = proxϕ/ρ̂(xt).

To simplify notation, we will use the symbol Et[·] to denote the expectation conditioned on
all the realizations ξ0, ξ1, . . . , ξt−1.

The analysis of Algorithm 1 crucially relies on the following lemma, which compares the
step taken by the algorithm, with the gradient of the Moreau envelope.

Lemma 3.1. For every index t ≥ 0, we have

Et‖x̂t − xt+1‖2 ≤ ‖x̂t − xt‖2 − ρ̂− τ − η
βt − η

‖x̂t − xt‖2 +
4L2

(βt − η)(βt − ρ̂)
.

Proof. Recall that the function x 7→ r(x) + gxt(x, ξt) + βt
2
‖x − xt‖2 is strongly convex with

constant βt − η and xt+1 is its minimizer. Hence for any x ∈ dom r, the inequality holds:(
r(x) + gxt(x, ξt) + βt

2
‖x− xt‖2

)
≥
(
r(xt+1) + gxt(xt+1, ξt) + βt

2
‖xt+1 − xt‖2

)
+ βt−η

2
‖x− xt+1‖2.

Setting x = x̂t, rearranging, and taking expectations we successively deduce

Et
[
βt − η

2
‖x̂t − xt+1‖2 +

βt
2
‖xt+1 − xt‖2 − βt

2
‖x̂t − xt‖2

]
≤ Et[r(x̂t) + gxt(x̂t, ξt)− r(xt+1)− gxt(xt+1, ξt)]

≤ Et[r(x̂t) + gxt(x̂t, ξt)− r(xt+1)− gxt(xt, ξt) + L‖xt+1 − xt‖] (3.1)

= r(x̂t) + Eξ[gxt(x̂t, ξ)]− Et[r(xt+1)]− Eξ[gxt(xt, ξ)] + L · Et‖xt+1 − xt‖

≤ r(x̂t) + g(x̂t)− Et[r(xt+1)]− g(xt) +
τ

2
‖x̂t − xt‖2 + L · Et‖xt+1 − xt‖ (3.2)

= Et[r(x̂t) + g(x̂t)− r(xt+1)− g(xt)] +
τ

2
‖x̂t − xt‖2 + L · Et‖xt+1 − xt‖

≤ Et[r(x̂t) + g(x̂t)− r(xt+1)− g(xt+1)] +
τ

2
‖x̂t − xt‖2 + 2L · Et‖xt+1 − xt‖ (3.3)

≤ Et
[
− ρ̂

2
‖x̂t − xt‖2 +

ρ̂

2
‖xt+1 − xt‖2

]
+
τ

2
‖x̂t − xt‖2 + 2L · Et‖xt+1 − xt‖ (3.4)

=
τ − ρ̂

2
‖x̂t − xt‖2 +

ρ̂

2
· Et‖xt+1 − xt‖2 + 2L · Et‖xt+1 − xt‖, (3.5)

where (3.1) and (3.3) follow from Assumption (A4), inequality (3.2) follows from (A2), and
(3.4) follows directly from the definition of x̂t as a proximal point,

Define γ := Et‖xt − xt+1‖ and notice γ2 ≤ Et‖xt − xt+1‖2. Rearranging, we deduce

βt − η
2
· Et‖x̂t − xt+1‖2 ≤ βt − ρ̂+ τ

2
‖x̂t − xt‖2 +

ρ̂− βt
2

γ2 + 2Lγ (3.6)

≤ βt − ρ̂+ τ

2
‖x̂t − xt‖2 +

2L2

βt − ρ̂
,

where the last inequality follows by maximizing the right-hand-side of (3.6) in γ ∈ R. After
multiplying through by 2

βt−η , the result follows.
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We can now establish the convergence guarantees of Algorithm 1.

Theorem 3.2 (Convergence rate). The point xt∗ returned by Algorithm 1 satisfies:

E‖∇ϕ1/ρ̂(xt∗)‖2 ≤
ρ̂(ϕ1/ρ̂(x0)−minx ϕ) + 2ρ̂2L2 ·

∑T
t=0

1
(βt−η)(βt−ρ̂)∑T

t=0
ρ̂−τ−η
2(βt−η)

.

In particular, setting βt = ρ̂+α−1
√
T + 1 for any real α > 0, yields the complexity guarantee

E‖∇ϕ1/ρ̂(xt∗)‖2 ≤
2
(
ρ̂(ϕ1/ρ̂(x0)−minx ϕ) + 2ρ̂2L2α2

)
ρ̂− τ − η

·
(
ρ̂− η
T + 1

+
1

α
√
T + 1

)
.

Proof. Using the definition of the Moreau envelope and appealing to Lemma 3.1, we deduce

Et[ϕ1/ρ̂(xt+1)] ≤ Et
[
ϕ(x̂t) +

ρ̂

2
‖xt+1 − x̂t‖2

]
≤ ϕ(x̂t) +

ρ̂

2
· Et

[
‖xt+1 − x̂t‖2

]
,

≤ ϕ(x̂t) +
ρ̂

2

[
‖x̂t − xt‖2 − ρ̂− τ − η

βt − η
‖x̂t − xt‖2 +

4L2

(βt − η)(βt − ρ̂)

]
= ϕ1/ρ̂(xt)−

ρ̂(ρ̂− τ − η)

2(βt − η)
‖xt − x̂t‖2 +

2ρ̂L2

(βt − η)(βt − ρ̂)
.

Using the tower rule for expectations and iterating the recursion yields

E[ϕ1/ρ̂(xt+1)] ≤ ϕ1/ρ̂(x0)− ρ̂

2
·

T∑
t=0

[
ρ̂− τ − η
βt − η

‖xt − x̂t‖2

]
+ 2ρ̂L2 ·

T∑
t=0

1

(βt − η)(βt − ρ̂)
.

Using the inequality ϕ1/ρ̂(xt+1) ≥ minϕ and rearranging yields

E
T∑
t=0

ρ̂− τ − η
βt − η

‖xt − x̂t‖2 ≤ 2 ·
ϕ1/ρ̂(x0)−minϕ

ρ̂
+ 4L2 ·

T∑
t=0

1

(βt − η)(βt − ρ̂)

Dividing through by
∑T

t=0
ρ̂−τ−η
βt−η and recognizing the left hand-side as E[‖xt∗ − x̂t∗‖2], the

result follows.

Let us now look at the consequences of Theorem 3.2 on the three algorithms briefly
mentioned in the introduction: stochastic proximal point, prox-linear, and proximal subgra-
dient. In each case, we list the standard assumptions under which the methods are applicable,
and then verify properties (A1)-(A4) for some τ, η, L ≥ 0. Complexity guarantees for each
method then follow immediately from Theorem 3.2.
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Stochastic proximal point Consider the optimization problem (2.2) under the following
assumptions.

(B1) It is possible to generate i.i.d. realizations ξ1, ξ2, . . . ∼ P .

(B2) There is an open convex set U containing dom r and a measurable function (x, y, ξ) 7→
gx(y, ξ) defined on U × U × Ω satisfying Eξ[gx(y, ξ)] = g(y) for all x, y ∈ U .

(B3) Each function r(·) + gx(·, ξ) is ρ-weakly convex ∀x ∈ U , a.e. ξ ∈ Ω.

(B4) There is a real L ≥ 0 such that the inequality

|gx(y, ξ)− gx(z, ξ)| ≤ L‖y − z‖,

holds for all x, y, z ∈ U and a.e. ξ ∈ Ω.

The stochastic proximal point method is Algorithm 1 with the models gx(y, ξ). Taking into
account Remark 1, it is immediate to see that (A1)-(A4) hold with τ = 0 and η = ρ.

Stochastic proximal subgradient Consider the optimization problem (2.2), and let us
assume that the following properties are true.

(C1) It is possible to generate i.i.d. realizations ξ1, ξ2, . . . ∼ P .

(C2) The function g is ρ1-weakly convex and r is ρ2-weakly convex, for some ρ1, ρ2 ≥ 0.

(C3) There is an open convex set U containing dom r and a measurable mapping G : U×Ω→
Rd satisfying Eξ[G(x, ξ)] ∈ ∂g(x) for all x ∈ U .

(C4) There is a real L ≥ 0 such that the inequality, Eξ [‖G(x, ξ)‖2] ≤ L2, holds for all x ∈ U .

The stochastic subgradient method is Algorithm 1 with the linear models

gx(y, ξ) = g(x) + 〈G(x, ξ), y − x〉 .

Observe that (A1) and (A3) with η = ρ2 are immediate from the definitions; (A2) with
τ = ρ1 follows from the discussion in [4, Section 2]. To see (A4), observe that (C3) and (C4)
directly imply that whenever g is differentiable at x ∈ U , we have

‖∇g(x)‖2 = ‖Eξ[G(x, ξ)]‖2 ≤ Eξ[‖G(x, ξ)‖2] ≤ L2.

Since at any x, the subdifferential ∂g(x) is the convex hull of limits of gradients at nearby
points [17, Theorem 25.6], the claimed assumption (A4) follows. An analogous guarantee
was recently shown in [4] when r is convex, using a different argument.
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Stochastic prox-linear Consider the optimization problem (2.2) with

g(x) = Eξ∼P
[
h
(
c(x, ξ), ξ

)]
.

We assume that there exists an open convex set U containing dom r, and reals `, γ > 0 such
that the following properties are true.

(D1) It is possible to generate i.i.d. realizations ξ1, ξ2, . . . ∼ P .

(D2) The assignments h : Rm × Ω→ R and c : U × Ω→ Rm are measurable.

(D3) The function r is ρ-weakly convex, while for a.e. ξ ∈ Ω, the function z 7→ h(z, ξ)
is convex and `-Lipschitz, and the map x 7→ c(x, ξ) is C1-smooth with γ-Lipschitz
Jacobian.

(D4) The inequality, ‖∇c(x, ξ)‖op ≤M , holds for all x ∈ U and a.e. ξ ∈ Ω.

The stochastic prox-linear method [11] is Algorithm 1 with the convex models

gx(y, ξ) = h
(
c(x, ξ) +∇c(x, ξ)(y − x), ξ

)
.

Observe that (A1) and (A3) hold trivially with η = ρ. Assumption (A2) holds with τ = `γ
by [11, Lemma 3.12]. Combining (D4) with Remark 1 directly implies (A4) with L = `M .
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