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Abstract Convex optimization problems arising in applications often have favor-
able objective functions and complicated constraints, thereby precluding first-order
methods from being immediately applicable. We describe an approach that ex-
changes the roles of the objective with one of the constraint functions, and instead
approximately solves a sequence of parametric level-set problems. Two Newton-like
zero-finding procedures for nonsmooth convex functions, based on inexact evalu-
ations and sensitivity information, are introduced. It is shown that they lead to
efficient solution schemes for the original problem. We describe the theoretical
and practical properties of this approach for a broad range of problems, including
low-rank semidefinite optimization, sparse optimization, and gauge optimization.
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1 Introduction

We demonstrate a method for solving constrained convex optimization problems
that interchanges the objective with one of the constraint functions. This interchange
defines a convex and nonsmooth univariate optimal-value function v(τ), which
is parameterized by the level values of the original objective. A solution of the
original problem can then be obtained by computing a root τ∗ of a single nonlinear
equation of the form

v(τ) = σ, (1.1)

where the root corresponds to the desired optimal level value. This approach has
been used to develop a variety of solution methods—some dating back to antiquity;
see §1.3. Particular implementations of this idea, however, are all tied to specific
choices of the algorithm used to approximate the function value v(τk) and the
algorithm used to update the sequence of level values τk → τ∗. Our proposed
approach only requires a fixed relative accuracy between upper and lower bounds
on v(τk). In doing so, we give an algorithm with an overall iteration complexity
that is only a log factor of the iteration complexity needed to approximate v(τk).
This results in a framework that decouples the method for approximating v(τ)
from the method for solving (1.1) and thereby allows for the specification of a wide
range of new approaches to constrained convex optimization.

The story behind our approach begins with the SPGL1 algorithm for basis
pursuit [52, 53]. Although neither SPGL1 nor basis pursuit are our focus, they
provide a concrete illustration of the ideas we pursue. Recall that the goal of the
basis pursuit problem is to recover a sparse n-vector x that approximately satisfies
the linear system Ax = b. This task often arises in applications such as compressed
sensing and statistical model selection. Standard approaches, based on convex
optimization, rely on solving one of the following formulations.

BPσ LSτ QPλ

min
x
‖x‖1

s.t. 1
2‖Ax− b‖

2
2 ≤ σ

min
x

1
2‖Ax− b‖

2
2

s.t. ‖x‖1 ≤ τ
min
x

1
2‖Ax− b‖

2
2 + λ‖x‖1

Computationally, BPσ is perceived to be the most challenging of the three formu-
lations because of the complicated geometry of the feasible region. For example,
projected- or proximal-gradient methods for LSτ or QPλ require at each iteration
applications of the operator A and its adjoint, and computing either a Euclidean
projection onto the 1-norm ball or a proximal step, which cost O(n logn) and O(n)
operations, respectively. As a result, solvers such as FISTA [3] and SPARSA [58],
target either LSτ and QPλ. The Homotopy algorithm [44] and alternating direction
method of multipliers (ADMM) [12, 27] can be applied in various ways to solve BPσ,
but available implementations require solving a linear system at each iteration,
which is not always practical for large problems. Inexact variants of ADMM, such
as linearized Bregman [59], do not require a linear solution, but may compromise
by solving an approximation of the problem [59].
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This paper targets optimization problems that generalize the formulations BPσ
and LSτ . To set the stage, consider the pair of convex problems

minimize
x∈X

ϕ(x) subject to ρ(Ax− b) ≤ σ, (Pσ)

minimize
x∈X

ρ(Ax− b) subject to ϕ(x) ≤ τ, (Qτ )

where X ⊆ Rn is a closed convex set, the functions ϕ : Rn → R := R ∪ {+∞} and
ρ : Rn → R are closed convex functions, and A is a linear map. Such formulations
are ubiquitous in contemporary optimization and its applications, and often ϕ may
be regarded as a regularizer on the solution x, and ρ may be regarded as a measure
of misfit between a linear model Ax and observations b. Other formulations are
available, of course, that may be more natural in a particular context (such as
redefining ρ so that A and b are not explicit). We choose this formulation because
it most closely represents a large class of problems that might appear in practice.

Our working assumption is that the level-set problem Qτ is easier to solve than
Pσ in the sense that there exists a specialized algorithm for its solution, but that
a comparably-efficient solver does not exist for Qτ . In §4, we discuss a range of
optimization problems, including problems with nonsmooth regularization, and
conic constraints, that have this property.

Our main contribution is to develop a practical and theoretically rigorous
algorithmic framework to harness existing algorithms for Qτ to efficiently solve
the Pσ formulation. As a consequence, we make explicit the fact that in typical
circumstances both problems are essentially equivalent from the viewpoint of
computational complexity. Hence, there is no reason not to choose any one preferred
formulation based on computational considerations alone. This observation is very
significant in applications since, although the formulations Pσ, Qτ , and their
penalty-function counterparts are, in a sense, mathematically and computationally
equivalent, they are far from equivalent from a modeling perspective. Practitioners
should instead focus on choosing the formulation best suited to their applications.
Our second contribution is to provide an algorithmic recipe for achieving the same
computational complexity for a wide range of regularized data-fitting problems,
listed in §1.2.

1.1 Approach

The proposed approach, which we will formalize shortly, approximately solves Pσ
in the sense that it generates a point x ∈ X that is super-optimal and ε-feasible:

ϕ(x) ≤ OPT and ρ(Ax− b) ≤ σ + ε, (1.2)

where OPT is the optimal value of Pσ. This optimality concept was introduced
by Harchaoui et al. [28], and we adopt it here. Our proposed strategy exchanges
the roles of the objective and constraint functions in Pσ, and approximately solves
a sequence of level-set problems Qτ for varying parameters τ . There are many
precursors for this level set approach, which we summarize in §1.3.

How does one use approximate solutions of Qτ to obtain a super-optimal and
ε-feasible solution of Pσ, the target problem? We answer this by recasting the
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v(τ)
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τ∗=OPTτL

ε
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τ∗=OPT

v(τ)
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Fig. 1.1 (a) The shaded area indicates the set of allowable solutions τ ∈ [τL, τ∗] to the root-
finding problem (1.1), and corresponds to the set of super-optimal solutions x that satisfy (1.2);
(b) the root may be a minimizer of v, and then τ∗ corresponds to the left-most root.

problem in terms of the value function for Qτ :

v(τ) := min
x∈X
{ ρ(Ax− b) | ϕ(x) ≤ τ } . (1.3)

This value function is nonincreasing and convex [50, Theorem 5.3]. Under the mild
assumption that the constraint ρ(Ax− b) ≤ σ is active at any optimal solution of
Pσ, it is evident that the value τ∗ := OPT satisfies the equation (1.1). Conversely,
it is immediate that for any τ ≤ τ∗ satisfying v(τ) ≤ σ + ε, solutions of Qτ are
super-optimal and ε-feasible for Pσ, as required. Figure 1.1(a) illustrates the set of
admissible solutions.

In summary, we have translated problem Pσ to the equivalent problem of
finding the minimal root of the nonlinear univariate equation (1.1). Aravkin et al.
[1, Theorem 2.1] formally establish the validity of that translation. We show
in §2 how approximate solutions of Qτ can serve as the basis for two Newton-like
root-finding algorithms for this key equation.

In principle, any root-finding algorithm can be used. However, it must be able
to obtain the left-most root, which is the only permissible solution in the case when
there are multiple roots, as illustrated in Figure 1.1(b). Several algorithms are
available for the root-finding problem (1.1), including bisection, secant, Newton,
and their variants. These methods all require an initial estimate of the left-most root
τ∗. Bisection requires two initial estimates that bracket the root, and thus it may
not always be suitable in this context because it must be initialized with an upper
bound on the optimal value τ∗ = OPT, which may be costly to compute. (Any
feasible solution of (Pσ) yields an upper bound, though obtaining it may be as costly
as computing an optimal solution.) On the other hand, both secant and Newton
can use initializations that underestimate the optimal value. In many important
cases, this is trivial: for example, if φ is a norm, then τ = 0 is an obvious candidate.
Secant, of course, requires a second initial point, which may not be obviously
available. The root-finding algorithm should also allow for inexact evaluations
of the value function, and hence allow for approximate and efficient solutions of
the subproblems that define (1.3). If the algorithm used to solve the subproblems
is a feasible method, efficiencies may be gained if the root-finding algorithm
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generates iterates that are monotonically increasing, because then solutions for one
subproblem are immediately feasible for the next subproblem in the sequence.

We focus on variants of secant and Newton methods that accommodate inexact
oracles for v, and which enjoy an unconditional global linear rate of convergence.
The secant method requires an inexact evaluation oracle that provides upper and
lower bounds on v (Definition 2.1). The Newton method additionally requires
a global affine minorant (Definition 2.2). Both algorithms exhibit the desirable
monotonicity property described above. Coupled with an evaluation oracle for v
that has a cost that is sublinear in ε, we obtain an algorithm with an overall cost
that is also sublinear in ε, modulo a logarithmic factor.

1.2 Roadmap

We prove in §2 complexity bounds and convergence guarantees for the level-set
scheme. We note that the iteration bounds for the root-finding schemes are inde-
pendent of the slope of v at the root. This implies that the proposed method is
insensitive to the “width” of the feasible region in Pσ. Such methods are well-suited
for problems Pσ for which the Slater constraint qualification fails or is close to
failing (cf. Example 4.2). In §3, we consider refinements to the overall method,
focusing on linear least-squares constraints and recovering feasibility. Section 4
explores level-set methods in notable optimization domains, including semi-definite
programming, gauge optimization, and regularized regression. We also describe the
specific steps needed to implement the root-finding approach for some representa-
tive applications, including low-rank matrix completion [35, 47], and sensor-network
localization [7, 9, 10].

1.3 Related work

The intuition for interchanging the role of the objective and constraint functions has
a distinguished history, appearing even in antiquity. Perhaps the earliest instance
is Queen Dido’s problem and the fabled origins of Carthage [23, Page 548]. In
short, that problem is to find the maximum area that can be enclosed by an arc of
fixed length and a given line. The converse problem is to find an arc of least length
that traps a fixed area between a line and the arc. Although these two problems
reverse the objective and the constraint, the solution in each case is a semi-circle.
The interchange of constraint and objective is at the heart of Markowitz mean-
variance portfolio theory [37], where the objective and constraint roles correspond
to the rate of return and variance of a portfolio. The great variety of possible
modern applications is formalized by the inverse function theorem in Aravkin et al.
[1, Theorem 2.1]. More generally, trade-offs between various objectives form the
foundations for multi-objective optimization [39].

The idea of rephrasing a constrained optimization problem as a root-finding
problem has been used for at least half a century to the work of Morrison [40]
and Marquadt [38]. The approach there is to minimize a quadratic function q(x)
subject to the trust-region constraint:

minimize
x∈Rn

q(x) subject to ‖x‖2 ≤ ∆.
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Newton’s method is used to compute a root for the equation ‖x(λ)‖22 − ∆ = 0,
where x(λ) is the solution of a parameterized unconstrained problem. This is the
basis for the family of trust-region algorithms for constrained and unconstrained
optimization. Newton’s method for the trust-region subproblem motivated the
SPGL1 algorithm [52, 53] for the 1-norm regularized least-squares problem and
its extensions [1]. A shortcoming of the numerical theory to date is the absence
of practical complexity and convergence guarantees. In this work, we take a fresh
new look at this general framework and provide rigorous convergence guarantees.
Several examples illustrate the vast applicability of the approach, and show how
the proposed framework can be instantiated in concrete circumstances.

The root-finding approach is central to the ideas pioneered by Lemaréchal et al.
[33], who propose a level bundle method for convex optimization [32, 56]. They
consider the convex optimization problem

minimize
x∈X

f0(x) subject to fj(x) ≤ 0 for j = 1, . . . ,m, (1.4)

where each function fj is convex and X is a nonempty closed convex set. The
root-finding equation is based on the function

g(τ) := min
x∈X

max {f0(x)− τ, f1(x), . . . , fm(x)},

and their algorithm constructs the smallest solution τ∗ to the equation g(τ) = 0,
which corresponds to the optimal value (1.4). This method is also analyzed in
depth by Nesterov [42, §3.3.4]

More recently, Harchaoui et al. [28] present an algorithm focusing on instances
of Pσwhere the constraint function ρ is smooth and ϕ is a gauge function defined
by the intersection of a unit ball for a norm and a closed convex cone. Their
zero-finding method is coupled with the Frank-Wolfe algorithm, which generates
lower bounds and affine minorants on the value function. In contrast, our root
finding phase does not depend on the algorithm used to solve the subproblems, as
is the case in the approaches described by Aravkin et al. [1] and van den Berg and
Friedlander [52, 53]. In particular, the approach we take can use any affine minorant
obtained from a dual certificate, as we describe in §2.3. Primal-dual algorithms can
generate such certificates, but are not always practical for large-scale problems. On
the other hand, first-order methods are often more suitable for large problems, but
it not always obvious how to generate such certificates. Affine minorants can derived
from the Frank-Wolfe algorithm (cf. §2.3), and from other families of first-order
methods [20]. One approach that may be used in practice is to apply first-order
methods in parallel to the the primal and dual problems.

1.4 Notation

The notation we use is standard, and closely follows that of Rockafellar [50]. For any
function f : Rn → R, we use the shorthand [f ≤ α] := {x | f(x) ≤ α} to denote the
α-sublevel set. An affine minorant of f is any affine function g satisfying g(x) ≤ f(x)
for all x. For any set C ⊆ Rn, we define the associated indicator function δC vanishes
over C and is infinite elsewhere. The p-norms and corresponding closed unit balls
are denoted, respectively, by ‖ · ‖p and Bp. For any convex cone K defined over a
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Euclidean space, the dual cone is defined by K∗ := {y | 〈x, y〉 ≥ 0 for all x ∈ K} .
The norm on that space is given by ‖x‖ =

√
〈x, x〉.

We endow the space of real m× n matrices with the trace product 〈X,Y 〉 :=

tr (X
T
Y ) and the induced Frobenius norm ‖X‖F :=

√
〈X,X〉. The Euclidean

space of real n× n symmetric matrices, written as Sn, inherits the trace product
〈X,Y 〉 := tr (XY ) and the corresponding norm. The closed, convex cone of n× n
positive semi-definite matrices is denoted by Sn+ = {X ∈ Sn | X � 0}.

2 Root-finding with inexact oracles

Algorithms that provides approximate solutions of Qτ are central to our framework
because these constitute the oracles through which we access v. In this section,
we describe the complexity guarantees associated with two types of oracles: an
inexact-evaluation oracle that provides upper and lower bounds on v(τ), and an
affine-minorant oracle that additionally provides a global linear underestimator on
v. For example, any primal-dual algorithm provides the required upper and lower
bounds, and algorithms such as Frank-Wolfe [25, 29] automatically provide a global
linear minorant, which gives approximate derivative information. The ability to
use inexact solutions is crucial in practice, where the effort needed for each oracle
call must be bounded.

As a counterpoint to the global complexity guarantees for inexact oracles that
we describe later in this section, Theorem 2.1 describes the asymptotic superlinear
rate of convergence for the secant and Newton methods with exact evaluations of
any nonsmooth convex function. To our knowledge, the superlinear convergence of
the secant method for convex root finding does not appear in the literature and so
we provide the proof of this result in the appendix.

Theorem 2.1 (Superlinear convergence of secant and Newton methods)
Let f : R→ R be a decreasing, convex function on the interval [a, b]. Suppose that
the point τ∗ := inf {τ | f(τ) ≤ 0} lies in (a, b) and the non-degeneracy condition
g∗ := inf {g | g ∈ ∂f(τ∗)} < 0 holds. Fix two points τ0, τ1 ∈ (a, b) satisfying
τ0 < τ1 < τ∗ and consider the following two iterations:

τk+1 :=

{
τk if f(τk) = 0,

τk − f(τk)
gk

[with gk ∈ ∂f(τk)] otherwise;
(Newton)

and

τk+1 :=

{
τk if f(τk) = 0,

τk − τk−τk−1

f(τk)−f(τk−1)
f(τk) otherwise.

(Secant)

If either sequence terminates finitely at some τk, then it must be the case τk = τ∗.
If the sequence {τk} does not terminate finitely, then |τ∗− τk+1| ≤ (1− g∗/γk)|τ∗−
τk|, k = 1, 2, . . . , where γk = gk for the Newton sequence and γk is any element
of ∂f(τk−1) for the secant sequence. In either case, γk ↑ g∗ and τk ↑ τ∗ globally
q-superlinearly.

The algorithms presented here apply to any convex decreasing function f : R→
R for which the equation f(τ) = 0 has a solution. In the following discussion, τ∗
denotes a minimal root of f(τ) = 0. Given a tolerance ε > 0, the algorithms we
discuss yield a point τ ≤ τ∗ satisfying 0 ≤ f(τ) ≤ ε.
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Algorithm 2.1: Inexact secant method

Data: Target accuracy ε > 0; a decreasing convex function f : R→ R via an inexact
evaluation oracle Of,ε; initial points τ0, τ1 with τ0 < τ1 such that f(τ1) > 0;
constant α ∈ (1, 2).

(`0, u0)← Of,ε(τ0, α), (`1, u1)← Of,ε(τ1, α), u1 ← min(u1, u0), k ← 1

while uk > ε do
sk ← (uk−1 − `k)/(τk−1 − τk) [slope of linear approximation]
τk+1 ← τk − `k/sk [secant iteration]
(`k+1, uk+1)← Of,ε(τk+1, α) [oracle evaluation for lower/upper bounds]

uk+1 ← min{uk+1, uk} [ensure upper bound decreases]
k ← k + 1

return τk

2.1 Inexact secant

Our first root-finding algorithm is an inexact secant method, and is based on an
oracle that provides upper and lower bounds on the value f(τ).

Definition 2.1 (Inexact evaluation oracle) For a function f : R → R and
ε ≥ 0, an inexact evaluation oracle is a map Of,ε that assigns to each pair
(τ, α) ∈ [f > 0] × [1,∞) real numbers (`, u) such that ` ≤ f(τ) ≤ u and either
u ≤ ε, or u > ε and 1 ≤ u/` ≤ α.

This oracle guarantees that either (i) we obtained an ε-accurate solution τ , or
(ii) that ` > 0 and 1 ≤ u/` ≤ α. The ratio u/` measures the relative optimality
of the point τ . In contrast to the absolute gap u − `, it allows the oracle to be
increasingly inexact for larger values of f(τ). The relative-accuracy condition is no
less general than one based on an absolute gap. In particular, we can verify that if
the absolute gap satisfies the condition u− ` ≤ (1− 1/α)ε, then u and ` satisfy the
conditions required by the inexact evaluation oracle. Indeed, provided that u > ε,
we deduce u/` ≤ 1 + (1 − 1/α)ε/` ≤ 1 + (1 − 1/α)u/`. After rearranging terms,
this yields the desired inequality 1 ≤ u/` ≤ α.

Algorithm 2.1 outlines a secant method based on the inexact evaluation oracle.
Theorem 2.2 establishes the corresponding global convergence guarantees; the proof
appears in Appendix A.

Theorem 2.2 (Linear convergence of the inexact secant method) The
inexact secant method (Algorithm 2.1) terminates after at most

k ≤ max
{

2 + log2/α(2C/ε) , 3
}

iterations, where C := max{|s1|(τ∗ − τ1), `1} and s1 := (u0 − `1)/(τ0 − τ1).

The iteration bound of the inexact secant method is indifferent to the slope of
the function f at the minimal root τ∗ because termination depends on function
values rather than proximity to τ∗. The plots in Figure 2.1 illustrate this behavior:
panel (a) shows the iterates for f1(τ) = (τ − 1)

2− 10, which has a nonzero slope at
the minimal root τ∗ = 1−

√
10 ≈ −2.2 and so has a non-degenerate solution; panel

(c) shows the iterates for f2(τ) = τ
2
, which is clearly degenerate at the solution. The

algorithm behaves similarly on both problems. When applied to the value function
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(a) k = 13, α = 1.3 (b) k = 770, α = 1.99 (c) k = 18, α = 1.3

10 9 8 7 6 5 4 3 2
0

20

40

60

80

100

120

140

f1

10 9 8 7 6 5 4 3 2
0

20

40

60

80

100

120

140

160

f1

10 8 6 4 2 0
0

20

40

60

80

100

120

f2

(d) k = 9, α = 1.3 (e) k = 15, α = 1.99 (f) k = 10, α = 1.3

Fig. 2.1 Inexact secant method (top row) and Newton method (bottom row) for root finding

on the functions f1(τ) = (τ − 1)
2 − 10 (first two columns) and f2(τ) = τ

2
(last column). Below

each panel, α is the oracle accuracy, and k is the number of iterations needed to converge, i.e.,

to reach fi(τk) ≤ ε. For all problems, ε = 10
−2

; the horizontal axis is τ , and the vertical axis is
fi(τ).

v to find a root of (1.1), the algorithm’s indifference to degeneracy translates to
an insensitivity to the width [48] of the feasible region of Pσ —a consequence of
the fact that the scheme maintains infeasible iterates for Pσ. Such methods are
well-suited for problems Pσ for which the Slater constraint qualification is close to
failing.

The iteration bound in Theorem 2.2 is infinite for α ≥ 2. This is not an
artifact of the proof. As illustrated by Figure 2.1(b), the inexact secant method
behaves poorly for α close to 2. Indeed, it can fail to converge linearly (or at all)
to the minimal root for any α ≥ 2, as the following example shows. Consider the
linear function f(τ) = −τ with lower and upper bounds `k := −2τk/(1 + α) and
uk := −2ατk/(1 +α). A quick computation shows that the quotients qk := τk/τk−1

of the iterates satisfy the recurrence relation qk+1 = (1− α)/(qk − α). It is then
immediate that for all α ≥ 2, the quotients qk tend to one, indicating that the
method stalls.

2.2 Inexact Newton

The secant method can be improved by using approximate derivative information
(when available) to design a Newton-type method. We design an inexact Newton
method around an improved oracle that provides global linear under-estimators
of f . This approach has two main advantages over the secant method. First, it
is guaranteed to take longer steps than the inexact secant method. Second, it
locally converges quadratically whenever f is smooth, the values f(τ) are computed
exactly, and the function has a nonzero (left) derivative at the minimal root. To
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Algorithm 2.2: Inexact Newton method

Data: Target accuracy ε > 0; convex decreasing function f : R→ R via an affine
minorant oracle Of,ε; initial point τ0 with f(τ0) > 0; constant α ∈ (1, 2).

u−1 ← +∞, (`0, u0, s0)← Of,ε(τ0, α), k ← 0

while uk > ε do
τk+1 ← τk − `k/sk [Newton iteration]
(`k+1, uk+1, sk+1)← Of,ε(τk, α) [evaluate lower affine minorant oracle]

uk ← min{uk, uk−1} [ensure upper bound decreases]
k ← k + 1

return τk

formalize these ideas, we use the following strengthened version of an inexact
evaluation oracle.

Definition 2.2 (Affine minorant oracle) For a function f : R→ R and ε ≥ 0,
an affine minorant oracle is a mapping Of,ε that assigns to each pair (τ, α) ∈ [f >
0]× [1,∞) real numbers (`, u, s) such that ` ≤ f(τ) ≤ u, and either u ≤ ε, or u > ε
and 1 ≤ u/` ≤ α. The affine function τ̄ 7→ `+ s(τ̄ − τ) globally minorizes f .

Algorithm 2.2 gives a Newton method based on the affine minorant oracle.
The inexact Newton method has global convergence guarantees analogous to those
of the inexact secant method, as described in Theorem 2.3. A proof is given in
Appendix A.

Theorem 2.3 (Linear convergence of the inexact Newton method) The
inexact Newton method (Algorithm 2.2) terminates after at most

k ≤ max
{

1 + log2/α(2C/ε) , 2
}

iterations, where C := max{|s0|(τ∗ − τ0), `0}.

When we compare the two algorithms, it is easy to see that the Newton steps are
never shorter than the secant steps. Indeed, let (`k−1, uk−1, sk−1) = Of (τk−1, α)
and (`k, uk, sk) = Of (τk, α) be the triples returned by an affine minorant oracle at
τk−1 and τk, respectively. Then

uk−1 ≥ f(τk−1) ≥ `k + sk(τk−1 − τk),

which implies

s
secant
k := (uk−1 − `k)/(τk−1 − τk) ≤ sk =: s

newton
k .

Therefore, the Newton step length −`k/snewton
k is at least as large as the secant

step length −`k/ssecantk .
The Newton method often outperforms the secant method in practice. The

bottom row of panels in Figure 2.1 shows the progress of the Newton method on
the same test problems specfied earlier. The Newton method performs relatively
well even when α is near its upper limit of 2; compare panels (b) and (e) in the
figure. In this set of experiments, we chose an oracle that has the same quality
lower and upper bounds as the experiments with secant, but has the least favorable
(i.e., steepest) slope that still results in a global minorant.
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2.3 Lower minorants via duality

When are affine minorant oracles of the value function v readily available? Suppose
we can express the value function in dual form,

v(τ) = max
y∈Rm

Φ(y, τ),

where Φ is concave in y and convex in τ . For example, appealing to Fenchel duality,
we may write

v(τ) = min
x∈X

{ρ(Ax− b) | ϕ(x) ≤ τ }

= min
x∈Rn

ρ(Ax− b) + δX∩ [ϕ≤τ ](x)

= max
y∈Rm

〈y, b〉 − ρ?(−y)− δ?X∩ [ϕ≤τ ](A
∗
y),

where the last equality holds provided that either the primal or the dual problem
has a strictly feasible point [11, Theorem 3.3.5]. Hence, the Fenchel dual objective

Φ(y, τ) := 〈b, y〉 − ρ?(−y)− δ?X∩[ϕ≤τ ](A∗y) (2.1)

yields an explicit representation for Φ, which is concave in τ , as shown by Lemma A.1.

Many standard first-order methods that might be used as an oracle for evaluating
v(τ̄)−σ, and generate both a lower bound ¯̀and a dual certificate ȳ that satisfy the
equation ¯̀= Φ(ȳ, τ̄)− σ. Examples include saddle-prox [41], Frank-Wolfe [25, 29],
some projected subgradient methods [2], and accelerated versions [43, 51]. Whenever
such a dual certificate ȳ is available, we have

v(τ)− σ ≥ Φ(ȳ, τ)− σ =
(
Φ(ȳ, τ̄)− σ

)
+
(
Φ(ȳ, τ)− Φ(ȳ, τ̄)

)

≥ ¯̀+ s̄(τ − τ̄),
(2.2)

where s̄ ∈ ∂τδ?X∩ [ϕ≤τ ](A
∗
y). Hence, any dual certificate ȳ is valid if it generates

an affine minorant oracle where ¯̀ satisfies the accuracy condition required by
Definition 2.2. In summary, if yk is a valid dual certificate, we may take

`k := Φ(yk, τk)− σ and any sk ∈ ∂τδ?X∩ [ϕ≤τk](A
∗
yk).

We derive in §4 subdifferential formulas for a large class of contemporary
problems, including conic and gauge optimization (cf. Tables 4.1 and 4.2). More
general rules for computing subdifferential formulas are outlined by Aravkin et al.
[1, Equations 5.1(d,e), 6.13, 6.26].

2.4 Lower minorants via Frank-Wolfe

In some instances, lower-bounds on the optimal value of Qτ that is provided by an
algorithm are seemingly not related to a dual solution. A notable example of such
a scheme is the Frank-Wolfe algorithm, which has recently received much attention.
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Suppose that the function ρ is smooth. The Frank-Wolfe method applied to the
problem Qτ is based on the following two-step iteration:

zk = argmin
{
〈A∗∇ρ(Axk − b), z〉 | z ∈ X ∩ [ϕ ≤ τ ]

}

xk+1 = xk + tk(zk − xk)

for an appropriately chosen sequence of step-sizes tk (e.g., tk = 2
k+2 ). As the

method progresses, it generates the upper bounds uk = mini=1,...,k ρ(Axi − b) on
the optimal value of Qτ . Moreover, it is easy to deduce from convexity that the
following are valid lower bounds:

`k = max
i=1,...,k

{
ρ(Axi − b) + 〈A∗∇ρ(Axi − b), zi − xi〉

}
.

Jaggi [29] provides an extensive discussion. If the step sizes tk are chosen appropri-

ately, the gap satisfies uk − `k ≤ O(D
2
L/k), where the diameter D of the feasible

region and the Lipschitz constant L of the gradient of the objective function of Qτ
are measured in an arbitrary norm. Harchaoui et al. [28] observe how to deduce
from such lower bounds `k an affine minorant of the value function v.

On the other hand, one can also show that the lower bounds `k are indeed
generated by an explicit candidate dual solution, and hence the Frank-Wolfe
algorithm (and its variants) fit perfectly in the above framework based on dual
certificates. To see this, consider the Fenchel dual

maximize
y∈Rm

Φ(y, τ) = 〈y, b〉 − ρ?(−y)− δ?X∩[ϕ≤τ ](A∗y)

of Qτ . Then for the candidate dual solutions yi := −∇ρ(Axi − b), we deduce

Φ(yi, τ) = 〈yi, b〉 − ρ?(−yi)− 〈A∗yi, zi〉
= 〈yi, b〉+

(
ρ(Axi − b) + 〈yi, Axi − b〉

)
− 〈A∗yi, zi〉

= ρ(Axi − b) + 〈AT∇ρ(Axi − b), zi − xi〉.

Thus, the lower bounds `k are simply equal to `k = maxi=1,...,k Φ(yi, τ), and affine
minorants on the value function v are readily computed from the dual iterates yk
and the derivatives ∂τδ

?
X∩ [ϕ≤τ ](A

∗
yk).

3 Special cases

This section can be considered as an aside in our main exposition. We address in
this section two questions that arise in the application of our root-finding approach:
how best to apply the algorithm to problems with linear least-squares constraints,
and how to recover a feasible point.
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3.1 Least-squares misfit and degeneracy

Particularly important instances of problem Pσ arise when the misfit between Ax
and b is measured by the 2-norm, i.e., ρ = ‖ · ‖2. In this case, the objective of the
level-set problem Qτ is ‖Ax − b‖2, which is not differentiable whenever Ax = b.
Rather than applying a nonsmooth optimization scheme, an apparently easy fix is
to replace the constraint in Pσ with its equivalent formulation 1

2‖Ax− b‖
2
2 ≤ 1

2σ
2
,

leading to the pair of problems

minimize
x∈X

ϕ(x) subject to 1
2‖Ax− b‖

2
2 ≤ 1

2σ
2
, (P2

σ)

minimize
x∈X

1
2‖Ax− b‖

2
2 subject to ϕ(x) ≤ τ. (Q2

τ )

However, this reformulation presents some numerical difficulties. Below we describe
the potential pitfalls and a simple alternative.

For this section only, define

f1(τ) := v(τ)− σ and f2(τ) := 1
2v

2
(τ)− 1

2σ
2
,

where v is the value function corresponding to the original (unsquared) level-set
problem Qτ . Throughout this section, the problems Pσ and Qτ continue to define
the original formulations without the squares.

A direct application of the root-finding procedure for P2
σ would be applied to

the function f2, which is degenerate at each of its roots. As a result, the secant and
Newton root-finding methods would not converge locally superlinearly—even if the
values v(τ) are evaluated exactly; see Theorem 2.1. Moreover, we have observed
empirically that this issue can in some cases cause numerical schemes to stagnate.

A simple alternative avoids this pitfall: apply the root-finding procedure to the
function f1, but approximately solve Q2

τ to obtain bounds on v. The oracle defini-
tions required for the secant (Algorithm 2.1) and Newton (Algorithm 2.2) methods
require suitable modification. For secant, the modifications are straightforward,
but for Newton, care is needed in order to obtain the correct affine minorants of
f1. The required modifications for secant and Newton are described below.

Secant. For the secant method applied to the function f1, we derive an inexact
evaluation oracle from an inexact evaluation oracle for f2 as follows. Suppose that
we have approximately solved Q2

τ by an inexact-evaluation oracle

Of2,ε
(
τ, α

2)
=
(

1
2`

2 − 1
2σ

2
, 1

2u
2 − 1

2σ
2
)
, (3.1)

where we have specified the relative accuracy between the lower and upper bounds
to be α

2
. Assume, without loss of generality, that u, ` ≥ 0. Then clearly u and ` are

upper and lower bounds on v(τ), respectively. It is now straightforward to deduce

0 ≤ `− σ ≤ f1(τ) ≤ u− σ and
u− σ
`− σ ≤

√
u
2 − σ2

`
2 − σ2 ≤ α. (3.2)

Hence an inexact function evaluation oracle for f2 yields an inexact evaluation
oracle for f1.
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Newton. Newton’s method in this setting is slightly more intricate because of the
formulas required for obtaining a valid affine minorant of f1. We use the respective
objectives of the dual problems corresponding to Qτ and Q2

τ , given by

Φ1(y, τ) := 〈b, y〉 − δ?X∩[ϕ≤τ ](A∗y)− δB2
(y),

Φ2(y, τ) := 〈b, y〉 − δ?X∩[ϕ≤τ ](A∗y)− 1
2‖y‖

2
2.

As described by (3.1), an inexact solution of Q2
τ delivers values ` and u that

satisfy (3.2). Let y be the valid dual certificate that generated the lower bound `,

so that Φ2(y, τ) = 1
2`

2
. (See the discussion in §2.3 regarding valid dual certificates.)

Let s ∈ ∂τΦ2(y, τ) be any subgradient. The following result establishes that
(ˆ̀, u, s/‖y‖2), with ˆ̀ := Φ1 (y/‖y‖2, τ) , defines a valid affine minorant for f1.

Proposition 3.1 The inequalities

0 ≤ ˆ̀− σ ≤ f1(τ) ≤ u− σ and (u− σ)/(ˆ̀− σ) ≤ α

hold, and the linear functional τ
′ 7→ (ˆ̀− σ)− (s/‖y‖2)(τ

′ − τ) minorizes f1.

The proof is given in Appendix A. In summary, if we wish to obtain a super-optimal
and ε-feasible solution to Pσ, in each iteration of the Newton method we must
evaluate f2(τ) up to an absolute error of at most 1

2 (1− 1/α)
2
ε
2
. Indeed, suppose

that in the process of evaluation, the oracle Of2
(
τ, α

2)
achieves u and l satisfying

1
2u

2 − 1
2`

2 ≤ 1
2 (1− 1/α)

2
ε
2
. Then we obtain the inequality

u− ` =

√
(u− `)2 ≤

√
u
2 − `2 ≤ (1− 1/α)ε.

Thus, by the discussion following Definition 2.1, either the whole Newton scheme
can now terminate with f1(τ) ≤ ε or we have achieved the relative accuracy
(u− σ)/(`− σ) ≤ α for the oracle.

4 Some problem classes

A wide variety of problems can be treated by the root-finding approach, including
sparse optimization, with applications in compressed sensing and sparse recovery,
and conic optimization, including semidefinite programming (SDP). The following
sections give recipes for applying the root-finding approach in different contexts.

4.1 Conic optimization

The general conic problem (CP) has the form

minimize
x

〈c, x〉 subject to Ax = b, x ∈ K, (CP)

where A : E1 → E2 is a linear map between Euclidean spaces, and K ⊂ E1 is
a proper, closed, convex cone. The familiar forms of this problem include linear
programming (LP), second-order cone programming (SOCP), and semidefinite
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programming (SDP). Ben-Tal and Nemirovski [5] survey an enormous number of
applications and formulations captured by conic programming.

There are at least two possible approaches for applying the level-set framework
to this problem. The first approach exchanges the roles of the original objective
〈c, x〉 with the linear constraint Ax = b, and brings a least-squares term into the
objective. The second approach moves the cone constraint x ∈ K into the objective
with the aid of a suitable distance function. This yields two distinct algorithms
for the conic problem. The two approaches are summarized in Table 4.1. Note
that it is possible to consider conic problems with the more general constraint
ρ(Ax− b) ≤ σ, but here we restrict our attention to the simpler affine constraint,
which conforms to the standard form of conic optimization.

4.1.1 First approach: least-squares level set

In this section we describe an application of the level-set approach to (CP) that
exchanges the roles of the linear functions, and derive the overall complexity
guarantees. This approach relies on a simple transformation that guarantees a
lower bound on the objective value. To this end, we make the blanket assumption
that there is available a strictly feasible vector ŷ the dual of (CP)

maximize
y

〈b, y〉 subject to c−A∗y ∈ K∗.

Thus ŷ satisfies ĉ := c−A∗ŷ ∈ intK∗. A simple calculation shows that minimizing
the new objective 〈ĉ, x〉 only changes the objective of CP by a constant: for all x
feasible for CP, we now have

〈ĉ, x〉 = 〈c, x〉 − 〈Ax, ŷ〉 = 〈c, x〉 − 〈b, ŷ〉.

In particular, we may assume b 6= 0, since otherwise, the origin is the trivial solution
for the shifted problem. Note that in the important case c ∈ intK, we can simply
set ŷ = 0, which yields the equality c = ĉ.

We now illustrate the computational complexity of applying the root-finding
approach to solve (CP) using the level-set problem

minimize
x

‖Ax− b‖2 subject to 〈ĉ, x〉 ≤ τ, x ∈ K. (4.1)

Our aim is then to find a root of (1.1), where v is the value function of (4.1). The
top row of Table 4.1, gives the corresponding dual

maximize
y, µ≥0

〈b, y〉 − µτ subject to ‖y‖2 ≤ 1, µc−A∗y ∈ K∗

of the level-set problem. We use τ0 = 0 as the initial root-finding iterate. Because of
the inclusion ĉ ∈ intK∗, we deduce that x = 0 is the only feasible solution to (4.1),
which yields v(0) = ‖b‖2 and the exact lower bound `0 = ‖b‖2. The corresponding
dual certificate is (ȳ, µ̄) = (b/‖b‖2, µ̄), where

µ̄ := min
µ

{
µĉ− (A∗b)/‖b‖2 ∈ K∗

}
. (4.2)

Note the inequality µ̄ > 0, because otherwise we would deduce A∗b ∈ −K∗,
implying the inequality ‖b‖22 = 〈b,Ax〉 = 〈A∗b, x〉 ≤ 0 for any feasible x. This
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Problem Pσ Qτ Dual of Qτ
CP
least-squares
level

min
x
〈c, x〉

s.t. Ax = b

x ∈ K

min
x
‖Ax− b‖2

s.t. 〈c, x〉 ≤ τ
x ∈ K

max
y, µ≥0

〈b, y〉 − µτ
s.t. ‖y‖2 ≤ 1

µc−A∗y ∈ K∗

CP
cone
level

min
x
〈c, x〉

s.t. Ax = b

x ∈ K

min
x
−λmin(x)

s.t. Ax = b

〈c, x〉 ≤ τ

max
y, µ≥0

〈b, y〉 − µτ
s.t. 〈µc−A∗y, e〉 = 1

µc−A∗y ∈ K∗

Table 4.1 Least-squares and conic level-set problems for conic optimization. In these examples,
we require Ax = b.

contradicts our assumption that b is nonzero. In the case where K is the nonnegative
orthant and ĉ = e, the number µ̄ is simply the maximal coordinate of A∗b/‖b‖2; if
K is the semidefinite cone and ĉ = I, the number µ̄ is the maximal eigenvalue of
A∗b/‖b‖2.

Let OPT denote the optimal value of CP. Theorem 2.3 asserts that within
O
(

log2/α 2C/ε
)

inexact Newton iterations, where α is the accuracy of each sub-
problem solve and

C = max {µ̄ · (OPT− 〈b, ŷ〉), ‖b‖2} ,

the point x ∈ K that yields the final upper bound in (4.1) is a super-optimal and
ε-feasible solution of the shifted CP. Thus, x satisfies

〈ĉ, x〉 ≤ OPT− 〈ŷ, b〉 and ‖Ax− b‖2 ≤ ε.

To see how good the obtained point x is for the original CP (without the shift),
note that

〈ĉ, x〉 = 〈c, x〉 − 〈A∗ŷ, x〉 = 〈c, x〉 − 〈ŷ,Ax− b〉 − 〈ŷ, b〉 ≥ 〈c, x〉 − 〈ŷ, b〉 − ε‖ŷ‖2,

and hence 〈c, x〉 ≤ OPT+ε‖ŷ‖2. In the important case where c ∈ intK∗, we deduce
super-optimality 〈c, x〉 ≤ OPT for the target problem CP.

Each Newton root-finding iteration requires an approximate solution of (4.1).
As described in §3.1, we obtain this approximation by instead solving its smooth
formulation with the squared objective (1/2)‖Ax−b‖22. Let L := ‖A‖22, where ‖A‖2
is the operator norm induced by the Euclidean norms on the spaces E1 and E2, be
the Lipschitz constant for the gradient A∗(A · −b). Also, let D be the diameter of
the region {x | 〈ĉ, x〉 = 1, x ∈ K}, which is finite by the inclusion ĉ ∈ intK∗. Thus,
in order to evaluate v to an accuracy ε, we may apply an accelerated projected-
gradient method on the squared version of the problem to an additive error of
1
2 (1− 1/α)

2
ε
2

(see end of §3.1), which terminates in at most

O
( √

L · τD
ε(1− 1/α)

)
= O

(‖A‖2 ·D · (OPT− 〈b, ŷ〉)
ε(1− 1/α)

)

iterations [6, §6.2]. Here, we have used the monotonicity of the root finding scheme to
conclude τ ≤ OPT−〈b, ŷ〉. When K is the non-negative orthant, each projection can
be accomplished with O(n) floating point operations [13], while for the semidefinite
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Fig. 4.1 Progress of the least-squares level-set method for a linear program (cf. §4.1.1). The
panels on the left depict the graph of v(⌧) (solid line), and the squares and circles, respectively,
show the upper and lower bounds computed using an optimal projected-gradient method. The
horizontal log scale results in a value function that appears nonconvex. The panels on the right
show the number of projected-gradient iterations for each Newton step. Top panels: ↵ = 1.8.
Bottom panels: ↵ = 1.01.

for the semidefinite cone each projection requires an eigenvalue decomposition.
More generally, such projections can be quickly found as long as projections onto
the cone K are available; see Remark A.1. An improved complexity bound can
be obtained for the oracles in the LP and SDP cases by replacing the Euclidean
projection step with a Bregman projection derived from the entropy function; see
e.g., ? ] or ? , §3.1]. We leave the details to the reader.

In summary, we can obtain a point x 2 K that satisfies hc, xi  OPT + ✏kbyk2
and kAx� bk2  ✏ in at most

O
✓kAk2 · D · (OPT� hb, byi)

✏(1� 1/↵)

◆
· O

✓
log2/↵

max {µ̄ · (OPT� hb, byi) , kbk2}
✏

◆

Fig. 4.1 Progress of the least-squares level-set method for a linear program (cf. §4.1.1). The
panels on the left depict the graph of v(τ) (solid line), and the squares and circles, respectively,
show the upper and lower bounds computed using an optimal projected-gradient method. The
horizontal log scale results in a value function that appears nonconvex. The panels on the right
show the number of projected-gradient iterations for each Newton step. Top panels: α = 1.8.
Bottom panels: α = 1.01.

cone each projection requires an eigenvalue decomposition. More generally, such
projections can be quickly found as long as projections onto the cone K are available;
see Remark A.1. An improved complexity bound can be obtained for the oracles in
the LP and SDP cases by replacing the Euclidean projection step with a Bregman
projection derived from the entropy function; see e.g., Beck and Teboulle [4] or
Tseng [51, §3.1]. We leave the details to the reader.

In summary, we can obtain a point x ∈ K that satisfies 〈c, x〉 ≤ OPT + ε‖ŷ‖2
and ‖Ax− b‖2 ≤ ε in at most

O
(‖A‖2 ·D · (OPT− 〈b, ŷ〉)

ε(1− 1/α)

)
· O
(

log2/α

max {µ̄ · (OPT− 〈b, ŷ〉) , ‖b‖2}
ε

)

iterations of an accelerated projected-gradient method, where µ̄ is defined in (4.2).



18 Aravkin, Burke, Drusvyatskiy, Friedlander, Roy

Figure 4.1 shows the convergence behaviour of this approach applied to a
randomly-generated linear program with 256 constraints and 1024 variables.

4.1.2 Second approach: conic level set

Renegar’s recent work [49] on conic optimization inspires a possible second level-set
approach based on interchanging the roles of the affine objective and the conic
constraint in (CP). A key step is to define a convex function κ that is nonnegative
on the cone K, and positive elsewhere, so that it acts as a surrogate for the conic
constraint, i.e.,

κ(x) ≤ 0 if and only if x ∈ K. (4.3)

The conic optimization problem can be expressed in entirely functional form as

minimize
x

〈c, x〉 subject to Ax = b, κ(x) ≤ 0,

which allows us to define the level-set function

v(τ) = inf
x
{κ(x) | Ax = b, 〈c, x〉 ≤ τ} . (4.4)

Renegar gives a procedure for constructing a suitable surrogate function κ
under the assumption that K has a nonempty interior: choose a point e ∈ intK
and define κ(x) = −λmin(x), where

λmin(x) := inf {λ | x− λe 6∈ K}.

In the case of the PSD cone, we may take e = I, and then λmin yields the minimum
eigenvalue function. As is shown in [49, Prop. 2.1], the function λmin is Lipschitz
continuous (with modulus one) and concave, as would be necessary to apply a
subgradient method for minimizing κ. The dual of the resulting level-set problem,
needed to apply the lower affine-minorant root-finding method, is shown in the
second row of Table 4.1, and can be derived using the conjugate of λmin; see
Lemma A.2.

Renegar derives a novel algorithm along with complexity bounds for CP using
the λmin function. A rigorous methodology for applying the level-set scheme, as
described in the current paper, requires further research. It is an intriguing research
agenda to unify Renegar’s explicit complexity bounds with the proposed level-set
approach. It is not clear, however, that this approach holds any practical advantage
over the least-squares approach described in §4.1.1.

The function λmin is only one example of a surrogate function that satisfies (4.3).
Other choices are available for κ that yield suitable value functions (4.4). The
best choice ultimately depends on the algorithms that are available for the inexact
solution of the corresponding subproblems. For example, we might choose to define
the differentiable surrogate function

κ = 1
2dist

2
K, where distK(x) := inf

z∈K
‖x− z‖

measures the distance to the cone K.
Note the significant differences between the least-squares and conic level-set

problems (4.1) and (4.4). For the sake of discussion, suppose that K is the positive
semidefinite cone. The least-squares level-set problem has a smooth objective whose
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gradient can be easily computed by applying the operator A and its adjoint, but
the constraint set still contains the explicit cone. Projected-gradient methods, for
example, require a full eigenvalue decomposition of the steepest-descent step, while
the Frank-Wolfe method requires only a single rightmost eigenpair computation. The
latter level-set problem, however, can require a potentially more complex procedure
to compute a gradient or subgradient, but has an entirely linear constraint set. In
this case, projected (sub)gradient methods require a least-squares solve for the
projection step.

4.2 Gauge optimization

We now apply the level-set approach to regularized data-fitting problems, restricting
the convex functions ϕ and ρ to be gauges—i.e., functions that are additionally
nonnegative, positively homogeneous, and vanish at the origin. We assume that
the side constraint x ∈ X is absent from the formulation Pσ. Problems of this type
occur in sparsity optimization; basis pursuit (and its “denoising” variant BPσ) [19]
was our very first example in §1. The first two columns of Table 4.2 describe
various formulations of current interest, including basis pursuit denoising (BPDN),
low-rank matrix recovery [15, 24], a sharp version of the elastic-net problem [62],
and gauge optimization [26] in its standard form. The third column shows the
level-set problem Qτ needed to evaluate the value function v(τ), while the fourth
column shows the slopes needed to implement the Newton scheme; cf. 2.3.

The dual representation (2.1) can be specialized for this family, and requires
some basic facts regarding a gauge function f and its polar

f
◦
(y) := inf {µ > 0 | 〈x, y〉 ≤ µf(x) for all x} .

When f is a norm, the polar f
◦

is simply the familiar dual norm. There is a
close relationship between gauges, their polars, and the support functions of their
sublevel sets, as described by the identities [26, Prop. 2.1(iv)]

f
◦

= δ
?
[f≤1] and f

?
= δ[f◦≤1].

We apply these identities to the quantities involving ρ and ϕ in the expression for
the dual representation Φ in (2.1), and deduce

δ
?
[ϕ≤τ ] = τδ

?
[ϕ≤1] = τϕ

◦
and ρ

?
= δ[ρ◦≤1].

Substitute these into Φ to obtain the equivalent expression

Φ(y, τ) = 〈b, y〉 − δ[ρ◦≤1](−y)− τϕ◦(A∗y).

We can now write an explicit dual for the level-set problem Qτ :

maximize
y

〈b, y〉 − τϕ◦(A∗y) subject to ρ
◦
(−y) ≤ 1.

In the last three rows of the table, we set ρ = ‖ · ‖2, which is self polar. For BPDN,
ϕ = ‖ · ‖1, whose polar is the dual norm ϕ

◦
= ‖ · ‖∞. For matrix completion,

ϕ = ‖ · ‖∗ :=
∑min{m,n}
i=1 σi(·) is the nuclear norm of a n-by-m matrix, which is

polar to the spectral norm ϕ
◦

= σ1(·).



20 Aravkin, Burke, Drusvyatskiy, Friedlander, Roy

Problem Pσ Qτ ∂τΦ(y, τ)

gauge
optimization

min
x

ϕ(x)

s.t. ρ(Ax− b) ≤ σ
min
x

ρ(Ax− b)
s.t. ϕ(x) ≤ τ

−ϕ◦(A∗y)

BPDN min
x
‖x‖1

s.t. ‖Ax− b‖2 ≤ σ
min
x
‖Ax− b‖2

s.t. ‖x‖1 ≤ τ
−‖A∗y‖∞

sharp
elast-net

min
x

α‖x‖1 + β‖x‖2
s.t. ‖Ax− b‖2 ≤ σ

min
x
‖Ax− b‖2

s.t. α‖x‖1 + β‖x‖2 ≤ τ
−γαB∞+βB2

(A
∗
y)

matrix
completion

min
X
‖X‖∗

s.t. ‖AX − b‖2 ≤ σ
min
x
‖AX − b‖2

s.t. ‖X‖∗ ≤ τ
−σ1(A∗y)

Table 4.2 Nonsmooth regularized data-fitting.

4.3 Low-rank matrix completion

A range of useful applications that involve missing data can be modeled as ma-
trix completion problems. This modeling approach extends to robust principal-
component analysis (RPCA), where we decompose a signal into low-rank and
sparse components, and its variants, including its stable version, which allows for
noisy measurements. Important examples include applications in recommender
systems and system identification [47], alignment of occluded images [45], scene tri-
angulation [60], model selection [18], face recognition, and document indexing [14].

These problems can be formulated generally as

minimize
X∈Rm×n

ϕ(X) subject to ρ(AX − b) ≤ σ, (4.5)

where b is a vector of observations, the linear operator A encodes information about
the measurement process, the objective ϕ encourages the low-rank and possibly
other structure in the solution, and the constraint ρ measures the misfit between
AX and b. If we wish to require AX = b, we can simply set σ = 0 and choose any
nonnegative convex function ρ that vanishes only at the origin, e.g., the 2-norm.

We categorize the family of low-rank problems into symmetric and asymmetric
classes. For each case, we describe a basic formulation and how the level-set
approach leads to implementable algorithms with computational kernels that scale
well with problem size.

4.3.1 Symmetric problems.

The symmetric class of problems aims to recover a low-rank PSD matrix, with a
linear operator A that maps between the space of symmetric n× n matrices and
m-vectors. We define the objective of (4.5) by

ϕ1(X) = tr (X) + δSn
+

(X). (4.6)

Problem (4.5) then reduces to finding a PSD matrix with minimum trace that
satisfies the constraints ρ(AX − b) ≤ σ. It is straightforward to extend this
formulation to optimization over Hermitian matrices, so that it includes important
applications such as phase retrieval, which aims to recover phase information about
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a signal (e.g., and image) from a series of magnitute-only measurements [17, 36, 54].
For simplicity, we focus here only on real-valued matrices.

4.3.2 Asymmetric problems.

The asymmetric class of matrix-recovery problems does not require definiteness
of X. In this case, the linear operator A on Rm×n is not restricted to symmetric
matrices. We define the objective of (4.5) by

ϕ2(X) = ||X||∗ (4.7)

This formulation captures matrix completion [46], bi-convex compressed sensing [35],
and robust PCA [16, 61].

Example 4.1 (Robust PCA) We give an example of how to a problem that is not
in the form of (4.5) can be recast to fit into the required formulation. The stable
version of the RPCA problem [57] aims to decompose an m-by-n matrix B as a
sum of a low-rank matrix and a sparse matrix via the problem

minimize
L,S

λL‖L‖∗ + λS‖S‖1 + 1
2‖A[L−B]− S‖2F . (4.8)

Here the operator A is often a mask for the known elements of B. The goal is
to obtain a low-rank approximation to Y where the deviation from the known
elements of B are sparse. The positive parameters λL and λS balance the rank of
L against the sparsity of the residual S, and the least-squared misfit.

We show how this model might be recast within the formulation (4.5). The
first step is based on the observation that, as a function of S, the objective is the
Moreau envelope of the 1-norm evaluated at A(L−B), or equivalently, the Huber
function on A(L−B). In particular,

inf
S

{
λS‖S‖1 + 1

2‖A[L−B]− S‖2F
}

= ρλS
(A[L−B]),

where

ρα(R) =
∑

i,j

{
1
2r

2
ij if |rij | ≤ α,

α(|rij | − 1
2α) otherwise,

is the Huber function. For some nonnegative parameter σ, we can then reinter-
pret (4.8) as the problem of finding the lowest-rank approximation to B subject to
a bound on a robust measure of misfit. This yields the related problem

minimize
L

||L||∗ subject to ρλL
(A[L−B]) ≤ σ.

In some contexts, this formulation may be preferable to (4.8) if there is a target
level of misfit as measured by the constraint.
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4.3.3 Level-set approach and the Frank-Wolfe oracle

We apply the level-set approach to (4.5) and exchange the roles of the regularizing
function ϕ and the misfit ρ(AX − b). The objective function ϕ1 for the symmetric
case vanishes at the origin, and is convex and positively homogeneous; it is thus
a gauge. The second objective function ϕ2 is simply a norm. For both cases,
we can use the first row of Table 4.2 to determine the corresponding level-set
subproblem and affine minorants based on dual certificates. The corresponding
level-set subproblem Qτ , which defines the value function, is

v(τ) := min
X
{ρ(AX − b) | ϕ(X) ≤ τ } .

We use the polar calculus described by Friedlander et al. [26, §7.2.1] and the
definition of the dual norm to obtain the required polar functions

ϕ
◦
1(Y ) = max{0, λ1(Y )} and ϕ

◦
2(Y ) = σ1(Y )

for the symmetric (4.6) and asymmetric (4.7) cases, respectively.
The evaluation of the affine minorant oracle requires an approximate solution

of the optimization problem that defines the value function v, and computation
of either an extreme eigenvalue or singular value to determine an affine minorant.
The Frank-Wolfe algorithm [25, 29] is well suited for evaluating the required

quantities, Each iteration of Frank-Wolfe updates the solution estimate via X
+ ←

X+α(X̂−X), where α is a step length, X̂ is a solution of the linearized subproblem

maximize
X̂

〈G, X̂〉 subject to ϕ(X̂) ≤ τ, (4.9)

and G := A∗∇ρ(AX− b) is the gradient of the constraint function evaluated at the
current primal iterate X. Note that the steplength in this case is easily obtained
as the minimizer of the quadratic objective along the intersection of [ϕ ≤ τ ] and

the ray X + R+(X̂ −X).
Solutions of the subproblem (4.9) depend on the extreme eigenvalues or singular

values of G [29, §4.2]. For the symmetric case (4.6), the constraint

ϕ1(X̂) = tr (X̂) + δSn
+

(X̂) ≤ τ is equivalent to tr (X̂) ≤ τ, X̂ � 0.

For the asymmetric case, the constraint ϕ2(X̂) ≤ τ is simply ‖X̂‖∗ ≤ τ . The

solutions X̂1 and X̂2, respectively, of the subproblems (4.9) corresponding to the
symmetric and asymmetric cases, have the form

X̂1 = UDiag (ξi)U
T
,

X̂2 = UDiag (ξi)V
T
,

with
k∑

i=1

ξi = τ, ξi ≥ 0.

For the symmetric case, the orthonormal n-by-k matrix U collects the k eigenvectors
of G corresponding to λ1(G). For the asymmetric case, the m-by-k matrix U and
n-by-k matrix V , respectively, collect the k left- and right-singular vectors of G
corresponding to the leading singular value σ1(G). In both cases, Krylov-based
eigensolvers, such as ARPACK [31] can be used for the required eigenvalue and
singular-value computation. If matrix-vector products with the matrix A∗y and
its adjoint are computationally inexpensive, the computation of a few rightmost
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eigenvalue/eigenvector pairs (resp., maximum singular value/vector pairs) is much
cheaper than the computation of the entire spectrum, as required by a method
based on projections onto the feasible region. Such circumstances are common, for
example when the operator A is sparse or it is accessible through a fast Fourier
transform.

The next example illustrates an application where the operator A is accessibly
only via its action on a matrix. It also gives us an opportunity to describe how the
level-set method can be easily adapted to to solve a maximization problem, which
requires computing the right-most root to the corresponding value function.

Example 4.2 (Euclidean distance completion) A common problem in distance ge-
ometry is the inverse problem: given only local pairwise Euclidean distance mea-
surements among a set of points, recover their location in space. Formally, given a
weighted undirected graph G = (V,E, ω) with a vertex set V = {1, . . . , n}, and a
target dimension r, the Euclidean distance completion problem asks to determine
a collection of points p1, . . . , pn in Rr approximately satisfying

‖pi − pj‖2 = ωij for all edges ij ∈ E.

This problem is also often called `2 graph embedding and appears in wireless
networks, statistics, robotics, protein reconstruction, and manifold learning [34].

A popular convex relaxation for this problem was introduced by Weinberger
et al. [55] and extensively studied by a number of authors [8, 9, 22]:

maximize
X

tr (X) subject to ‖PE ◦ K(X)− ω‖ ≤ σ,
Xe = 0, X � 0,

(4.10)

where K : Sn → Sn is the mapping [K(X)]ij = Xii +Xjj − 2Xij and PE(·) is the
canonical projection of a matrix onto entries indexed by the edge set E. Indeed,

if X is a rank r feasible matrix, we may factor it into X = PP
T

, where P is an
n× r matrix; the rows of P are the points p1, . . . , pn ∈ Rr we seek. The constraint
Xe = 0 ensures that the points pi are centered around the origin. Note that this
formulation maximizes the trace tr (X) = 1

2n

∑n
i,j=1 ‖pi − pj‖

2
, which helps to

“flatten” the realization of the graph.
It is well-known that for σ = 0, the constraints of problem (4.10) do not admit

a strictly feasible solution [21, 22, 30]. In particular, for small positive σ, the
feasible region is very thin and the solution to the problem is unstable. As a result,
algorithms maintaining feasibility are likely to have difficulties. In contrast, the
level-set approach is an infeasible method, and hence the poor conditioning of the
underlying problem does not play a major role.

The least-squares level-set problem that corresponds to the minimization for-
mulation of (4.10) is

minimize ‖PE ◦ K(X)− ω‖
subject to tr (X) ≥ τ, Xe = 0, X � 0.

(4.11)

The inequality tr (X) ≥ τ takes into account that the original formulation (4.10) is
a maximization problem. As a result, the root-finding method on the value function
corresponding to (4.11) approaches the optimal value τ∗ = OPT from the right.
To initialize the approximate Newton scheme, we need an upper bound τ0 on the
objective function, which is easily available from the diameter of the graph.
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τ

Fig. 4.2 A plot of the value function v(τ) of (4.11). Newton’s method converges to either the
min- or max-trace solution, depending on initialization. To solve (4.10), we need the maximal
root. Here, σ = 0.25, indicated by the solid horizontal line.

The gradient of the objective function is as sparse as the edge set E, and the
linear subproblem over the feasible region requires computing only a maximal
eigenvalue on a sparse matrix [22]. This makes the problem (4.11) ideally suited
for the Frank-Wolfe algorithm. The dual problem of (4.11) takes the form

maximize
y∈RE

, ‖y‖2≤1

Φ(y, τ) := 〈y, ω〉 − 2τλ
e
⊥

1 (Diag (Y e)− Y ),

where λ
e
⊥

1 (A) is the maximal eigenvalue of the restriction of the matrix A to the
space orthogonal to e, and Y = P∗E(y) is diagonal matrix formed from the vector y
padded with zeros. The expression of the dual objective follows from the fact that
K∗P∗E(y) = 2(Diag (Y e)− Y ). As described in §2.4, we use the sequence {yi} of
dual certificates generated by the Frank-Wolfe algorithm to establish at iteration k
an affine minorant at defined by

`k = min
i=1,...,k

Φ(yi, τ) and sk = 2λ
e
⊥

1 (Diag (Yke)− Yk)

where Yk = P∗E(yk). A full derivation and extensive numerical results are given
[22]. Figure 4.2 shows the iterations of Newton’s method applied to this problem.

A Proofs

Proof (Proof of Theorem 2.1) Since f is convex, the subdifferential ∂f(τ) is nonempty for
all τ ∈ (a, b). The claim concerning finite termination is easy to deduce from convexity; we
leave the details to the reader. Suppose neither sequence terminates finitely at τ∗. Let us first
consider the Newton iteration. Convexity of f immediately implies that the sequence τi is
well-defined and satisfies τ0 < τ1 < τ2 < · · · < τ∗. Monotonicity of the subdifferential then
implies g0 ≤ g1 ≤ g2 ≤ · · · ≤ g∗ < 0. Due to the inequalities f(τ∗) + ḡ(τk − τ∗) ≤ f(τk) and
gk < 0, we have

f(τk)− f(τ∗)
gk

≤ − g∗
gk

(τ∗ − τk),

and so

0 < τ∗ − τk+1 = τ∗ − τk +
f(τk)− f(τ∗)

gk
≤
(

1− g∗
gk

)
(τ∗ − τk).
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Upper semi-continuity of ∂f on its domain implies gk ↑ g∗. Hence τk converge q-superlinearly
to τ∗.

Now consider the secant iteration. As in the Newton iteration, it is immediate from convexity
that the sequence τi is well-defined and satisfies τ0 < τ1 < τ2 < · · · < τ∗. Monotonicity of the
subdifferential then implies g0 ≤ g1 ≤ g2 ≤ · · · ≤ g∗ < 0. We have

0 < g∗(τk − τ∗) ≤ f(τk)− f(τ∗),

and f(τk−1) + gk−1(τk − τk−1) ≤ f(τk), and hence

τk − τk−1

f(τk)− f(τk−1)
(f(τk)− f(τ∗)) ≤

f(τk)− f(τ∗)
gk−1

< 0.

Combining the two inequalities yields

f(τk)− f(τ∗)
f(τk)− f(τk−1)

(τk − τk−1) ≤ f(τk)− f(τ∗)
gk−1

≤ g∗
gk−1

(τk − τ∗) < 0.

Consequently, we deduce

0 < τ∗ − τk+1 = τ∗ − τk +
f(τk)− f(τ∗)
f(τk)− f(τk−1)

(τk − τk−1) ≤
(

1− g∗
gk−1

)
(τ∗ − τk).

The result follows.

Proof (Proof of Theorem 2.2) It is easy to see by convexity that the iterates τk are strictly
increasing and satisfy f(τk) > 0. For each index j ≥ 2 for which the algorithm has not
terminated, define the following quantities:

hj := τj − τj−1, θj :=
sj

sj−1

, and γj :=
`j

`j−1

.

Note that using the equation τj−1 − τj =
`j−1

sj−1
, we can write θj =

uj−1−`j
`j−1

. Clearly then the

bound, 0 ≤ θj ≤ α− γj , is valid. Define now constants βj ∈ [0, 1] by the equation γj = βjα.
Suppose k ≥ 2 is an index at which the algorithm has not terminated, i.e., uk > ε. Taking into
account the inequality `k ≥ uk

α
> ε

α
, we deduce

ε

α
≤ `k = `1

k∏
j=2

γj ≤ Cαk−1
k∏
j=2

βj . (A.1)

The defining equation for τk+1 and the definition of θj yield the equality

hk+1 =
`k
|sk|

=
`k
|s1|
·
k∏
j=2

θ
−1
j .

The bounds τ∗ − τ1 ≥ hk+1, `k ≥ ε
α

, and θj ≤ α− γj imply

τ∗ − τ1 ≥
`k
|s1|
·
k∏
j=2

θ
−1
j ≥ ε

α|s1|
(α
−1

)
k−1

k∏
j=2

(1− βj)−1
,

and rearranging gives

ε ≤ (τ∗ − τ1)|s1|αk
k∏
j=2

(1− βj) ≤ Cαk
k∏
j=2

(1− βj). (A.2)

Combining (A.1) and (A.2), we get

ε ≤ Cαk min


k∏
j=2

βj ,
k∏
j=2

(1− βj)

 . (A.3)
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One the other hand, observe k∏
j=2

βj

 k∏
j=2

(1− βj)

 =

k∏
j=2

βj(1− βj) ≤ 0.5
2(k−1)

,

and hence

min


k∏
j=2

βj ,
k∏
j=2

(1− βj)

 ≤ 0.5
k−1

. (A.4)

Combining equations (A.4) and (A.3), the claimed estimate k − 1 ≤ log2/α

(
αC
ε

)
follows.

Proof (Proof of Theorem 2.3) The proof is identical to the proof of Theorem 2.2, except for
some minor modifications. The only nontrivial change is how we arrive at the bound θj ≤ α−γj .
For this, observe τj−1−τj = `j−1/sj−1, and because the function τ 7→ `j+sj(τ−τj) minorizes
f , we see

uj−1 ≥ `j + sj(τj−1 − τj) = `j + sj

(
`j−1

sj−1

)
= `j + θj`j−1.

After rearranging, we get the desired upper bound on θj :

θj ≤
uj−1 − `j
`j−1

≤ α− γj .

Finally, we remark that with the approximate Newton method, we can start indexing at j = 0
instead of j = 1. This explains the different constants in the convergence result.

Lemma A.1 (Concavity of the parametric support function) For any convex function

f : Rn → R and vector z ∈ Rn, the univariate function t 7→ δ
∗
[f≤t](z) is concave.

Proof It follows from convexity of f that

λ · [f ≤ a] + (1− λ) · [f ≤ b] ⊆ [f ≤ λa+ (1− λ)b] ∀a, b ∈ R and λ ∈ [0, 1],

where [f ≤ α] defines the α-level set of f , and the summation of the level sets indicates their
Minkowski (i.e., direct) sum. Moreover, for any convex sets C and D such that C ⊆ D, δ

∗
C ≤ δ∗D.

Thus,

λ · δ∗[f≤a](z) + (1− λ) · δ∗[f≤b](z) = δ
∗
λ·[f≤a]+(1−λ)·[f≤b](z) ≤ δ∗[f≤λa+(1−λ)b](z),

which implies concavity of the function at hand..

Proof (Proof of Proposition 3.1) For this proof only, let ‖ · ‖ denote the 2-norm. Note the
inclusion s/‖y‖ ∈ ∂τΦ1 (y/‖y‖, τ). Use the same computation from (2.2) to deduce that the
affine function

τ
′ 7→ (ˆ̀− σ)− s

‖y‖ (τ
′ − τ)

minorizes f1.

From the definition of ˆ̀, Φ1, and Φ2, it follows that

u− σ
ˆ̀− σ

=
(u− σ)‖y‖

Φ2(y, τ) + 1
2
‖y‖2 − σ‖y‖

=
2(u− σ)‖y‖

`
2

+ ‖y‖2 − 2σ‖y‖
. (A.5)

Taking into account the equivalence

u− σ
`− σ ≤ α ⇐⇒ u+ (α− 1)σ

α
≤ `,
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we deduce

`
2

+ ‖y‖2 − 2σ‖y‖ ≥ α−2
(

(u+ (α− 1)σ)
2

+ ‖αy‖2 − 2σα‖αy‖
)
≥ 2α

−1
(u− σ)‖y‖,

where the rightmost inequality follows from the computation

(u+ [α− 1]σ)
2

+ ‖αy‖2 − 2ασ‖αy‖ − 2(u− σ)‖αy‖
= (u+ [α− 1]σ)

2
+ ‖αy‖2 − 2‖αy‖(u+ [α− 1]σ)

= (u+ [α− 1]σ − ‖αy‖)2 ≥ 0.

Because the right-hand side of (A.5) is non-negative, we can deduce that ˆ̀≥ σ. Finally, the

required inequality (u− σ)/(ˆ̀− σ) ≤ α also follows from (A.5).

Lemma A.2 (−λmin)
?
(y) = δS(−y), where S = K∗ ∩ {x | 〈e, x〉 = 1}.

Proof The following formula is established in [49]:

∂(−λmin)(x) = {−y | 〈y, e〉 = 1, 〈y, z − (x− λmin(x)e)〉 ≥ 0 for all z ∈ K}

or equivalently

∂(−λmin)(x) = {−y | 〈y, e〉 = 1,−y ∈ NK (x− λmin(x)e)}
=
{
−y

∣∣ 〈y, e〉 = 1, y ∈ K∗, 0 = λmin(x)− 〈y, x〉
}
.

Here the symbol NK denotes the normal cone to K. Now for any y ∈ ∂(−λmin)(x), we have
〈x, y〉 = −λmin(x). Observe range ∂(−λmin) = −S. Hence by the equality in the Fenchel-Young
inequality, for any y ∈ −S, we have (−λmin)

?
(y) = 0. On the other hand, for any y with 〈y, e〉 6=

−1, we have (−λmin)
?
(y) ≥ 〈te, y〉 − (−λmin)(te) = t(〈y, e〉+ 1) for any t ≥ 0. Letting t→∞,

we deduce (−λmin)
?
(y) = +∞. Similarly, consider y /∈ −K∗. Then we may find some x ∈ K

satisfying 〈x, y〉 > 0. We deduce (−λmin)
?
(y) ≥ 〈tx, y〉 − (−λmin)(tx) = t(〈y, x〉 − (−λmin)(x))

for any t ≥ 0. Letting t→∞, we deduce (−λmin)
?
(y) = +∞. We deduce that (−λmin)

?
is the

indicator function of −S, as claimed.

Remark A.1 (Projection onto a conic slice sets) This remark is standard. Fix a proper convex
cone K and consider the projection problem

min
x

{
1
2
‖x− z‖2 | 〈c, x〉 = 1, x ∈ K

}
.

Equivalently, we can consider the univariate concave maximization problem

max
β

min
x∈K

L(x, β) = max
β

min
x∈K

1
2
‖x− z‖2 + β(〈c, x〉 − 1)

= max
β

min
x∈K

1
2
‖x− (z − βc)‖2 + β(〈c, z〉 − 1)− 1

2
β
2‖c‖2

= max
β

1
2

dist
2
K(z − βc) + β(〈c, z〉 − 1)− 1

2
β
2‖c‖2.

We can solve this problem for example by bisection, provided projections onto K are available.
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