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Abstract

Given two arbitrary closed sets in Euclidean space, a simple transversality
condition guarantees that the method of alternating projections converges
locally, at linear rate, to a point in the intersection. Exact projection onto
nonconvex sets is typically intractable, but we show that computationally-
cheap inexact projections may suffice instead. In particular, if one set is
defined by sufficiently regular smooth constraints, then projecting onto the
approximation obtained by linearizing those constraints around the current
iterate suffices. On the other hand, if one set is a smooth manifold represented
through local coordinates, then the approximate projection resulting from
linearizing the coordinate system around the preceding iterate on the manifold
also suffices.
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1 Nonconvex alternating projections

The method of alternating projections for finding a point in the intersection of two
closed convex sets enjoys an enduring popularity. A suitable regularity or transver-
sality condition ensures local linear convergence, even for nonconvex sets. With a few
exceptions (notably including manifolds of fixed-rank matrices), exact projection—
finding exact nearest points—for nonconvex sets is practically unrealistic. Nonethe-
less, the alternating projection philosophy remains appealing because we can often
approximate the projection cheaply without losing linear convergence.

We present two examples, both feasibility problems involving a closed set Q, onto
which we suppose we can project easily. The first example concerns the constraint
system 

G(x) ≤ 0
H(x) = 0

x ∈ Q,

for C2-smooth maps G (into Rn) and H. For this problem, we consider the following
algorithm, which involves just projections onto Q and various polyhedra.

Algorithm 1.1
while x ∈ Q not feasible do

choose minimal norm s satisfying
G(x) +∇G(x)s ≤ 0 and H(x) +∇H(x)s = 0;

choose x+ ∈ Q minimizing |x+ s− x+|;
x = x+;

end while

The second example concerns the system

F (x) ∈ Q,

for a C2-smooth map F . Now we consider the following algorithm.

Algorithm 1.2
while x not feasible do

choose y ∈ Q minimizing |y − F (x)|;
choose s minimizing |F (x) +∇F (x)s− y|;
x = x+ s;

end while

By interpreting each algorithm as an approximate alternating projection scheme,
we derive reasonable conditions for local linear convergence to a feasible solution.
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2 The geometry of alternating projections

We now describe our setting more formally. Consider a Euclidean space X with
norm | · |. Given a nonempty closed set Q ⊂ X, we define the distance function
dQ : X→ R by

dQ(z) = min
{
|x− z| : x ∈ Q

}
,

for any point z ∈ X. The projection PQ(z) consists of the attaining (or nearest)
points x: it is a nonempty closed set, but may not be a singleton if Q is nonconvex.
Given a second nonempty closed set M ⊂ X, the method of alternating projections
is the following iteration.

Algorithm 2.1 (Alternating projections)
choose z ∈ Q;
while z 6∈M do

choose x ∈ PM(z);
choose z′ ∈ PQ(x);
z = z′;

end while

Consider any point of intersection x̄ ∈ Q∩M satisfying the transversality condition

(2.2) NQ(x̄) ∩ −NM(x̄) = {0},

where the notation NQ(·) denotes the (limiting) normal cone to Q. (We refer the
reader to [8] for standard terminology in variational analysis.) Then, as shown in [1],
providing the initial point z0 ∈ Q is sufficiently close to x̄, the generated sequence of
points z0, z1, z2, . . . in Q converges linearly to a point ẑ ∈ Q∩M : there exist positive
constants c < 1 (a “rate” determined by a quantitative version of the transversality
condition (2.2)) and ρ > 0 such that |zk − ẑ| < ρck for all iterations k = 0, 1, 2, . . ..
In fact just a weaker notion of intrinsic transversality [1] suffices.

This convergence result is striking in its generality, assuming nothing about
the closed sets Q and M beyond their transversal intersection. This underlying
assumption is subtle, but in fact a more intuitive assumption suffices, under a modest
geometric assumption about one of the sets.

Specifically, consider the following idea from [3].

Definition 2.3 A set Q ⊂ X is super-regular at a point x̄ if, given any angle γ > 0,
for any points z ∈ Q and x 6∈ Q sufficiently close to x̄, and any point z′ ∈ PQ(x)
with z′ 6= z, the angle between the vectors z − z′ and x− z′ is at least π

2
− γ.

In particular, closed convex sets are everywhere super-regular, as are manifolds
defined by C1-smooth equations with linearly independent gradients.
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Somewhat stronger but more standard than super-regularity is the notion of
prox-regularity: the set Q is prox-regular at a point x̄ ∈ Q f the projection PQ is
single-valued near x̄ (see [7]). In that case PQ is also Lipschitz near x̄, and satisfies
the following characterization:

(2.4) PQ(z) = x ⇔ z − x ∈ NQ(x)

for all points z, x ∈ X near x̄. Furthermore, Q is then super-regular at x̄, as shown
in [3].

Now consider the following simple geometric condition (called “0-separability”
in [4]), specifically designed with alternating projections in mind.

Definition 2.5 A set Q ⊂ X intersects a set M ⊂ X separably at a point x̄ ∈M∩Q
if there exists an angle α > 0 such that, for any point z ∈ Q \M sufficiently close
to x̄, and any points x ∈ PM(z) \Q and z′ ∈ PQ(x), the angle between the vectors
z − x and z′ − x is at least α.

It is easy to check that this property follows from intrinsic transversality, and hence
in particular from transversality. Notice that, unlike those conditions, the separable
intersection property is not symmetric in the sets M and Q.

These properties together imply linear convergence of alternating projections,
beginning close to the intersection. To see this, suppose that both Definition 2.3
and Definition 2.5 hold: the set Q intersects the set M separably at the point x̄
and is super-regular there. Now recall the following simple geometric argument,
identical to the approach in [3], and extended further in [4]. Consider one iteration
of the algorithm, starting from a point z, and generating the points x and z′ in
turn. Given any angle γ > 0, the triangle near the intersection point x̄ defined by
the three points z, x and z′ has angle at least α at x (by separability) and at least
π
2
− γ at z′ (by super-regularity), and hence at most π

2
+ γ − α at z. The Sine Rule

shows
|z′ − x|

sin(π
2

+ γ − α)
≤ |z − x|

sin(π
2
− γ)

.

Now fix any constant τ in the interval (cosα, 1). By fixing γ sufficiently small, we
deduce that the next point generated by the algorithm, x′ ∈ PM(z′), satisfies

(2.6) |z′ − x′| ≤ |z′ − x| ≤ τ |z − x|.

An easy induction argument now shows linear convergence of the iterate sequence
z0, z1, z2, . . . to a point in the intersection Q ∩M . The rate is

√
τ , which we can

make arbitrarily close to
√

cosα.
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3 Inexact projections

In general, computing exact projections on nonconvex sets may be an unrealistic
subproblem. In this work we consider to what extent we can relax the projection
operations while still retaining the geometry underlying the simple linear conver-
gence argument. In our approach, we distinguish the roles of the sets M and Q.
For simplicity, we assume that we can compute exact nearest points in the set Q,
which might, for example, be a semidefinite-representable convex set. On the other
hand, we rely only on relaxed projections onto the set M , projecting instead onto
approximations of M using information from previous iterates. Earlier work on in-
exact alternating projection schemes include [3, Thm 6.1] and [2]. In our current
development, a direct approach is more convenient.

We first consider the following generalization of alternating projections, which
allows small errors in the computation of the projection PM(z).

Algorithm 3.1 (Inexact alternating projections)
choose z ∈ Q and ε ≥ 0;
while z 6∈M do

choose x ∈ X with dPM (z)(x) ≤ εdM(z);
choose z+ ∈ PQ(x);
z = z+;

end while

When the tolerance ε is zero, we recover the exact alternating projections scheme.
When ε > 0, however, we no longer even require the point x to lie in the set M .

Suppose that Q intersects M separably at a point x̄, as holds in particular
under the usual transversality assumption (2.2). Suppose furthermore that Q is
prox-regular (and hence super-regular) at x̄. Then, providing ε is sufficiently small,
starting this scheme at any point z ∈ Q near x̄ again results in linear convergence
to a point in the intersection Q∩M . To see this, notice that at each iteration there
exists a point x′ ∈ PM(z) satisfying |x− x′| ≤ ε|z − x′|. Denote by x′+ ∈ PM(z+) a
corresponding such point at the next iteration, and let z′ = PQ(x′). As before, after
initially fixing any constant τ in the interval (cosα, 1), we deduce |z′−x′| ≤ τ |z−x′|.
Furthermore, if we fix a local Lipschitz constant κ > 0 for the projection PQ, then
we have

|z+ − z′| = |PQ(x)− PQ(x′)| ≤ κ|x− x′| ≤ κε|z − x′|.
An immediate consequence is

|z+ − x′+| ≤ |z+ − x′| ≤ |z+ − z′|+ |z′ − x′| ≤ (κε+ τ)|z − x′|.

Again, providing ε < 1−τ
κ

, we deduce linear convergence of the iterates z to a point in
the intersection Q∩M . As we reduce ε to zero, the convergence rate of the approx-
imate algorithm grows arbitrarily close to that of the exact alternating projection
scheme.
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With this convergence result in mind, we make the following definition.

Definition 3.2 A map Φ: X→ X is an inexact projection onto a closed set M ⊂ X
around a point x̄ ∈M if

dPM (z)

(
Φ(z)

)
= o
(
dM(z)

)
as z → x̄.

We have then proved the following result.

Theorem 3.3 Suppose a closed set Q intersects a closed set M separably at a point
x̄, and is prox-regular there. If Φ is an inexact projection onto M around x̄, then
starting from any nearby point z ∈ Q, the inexact alternating projection iteration

z ← PQ
(
Φ(z)

)
converges linearly to a point in the intersection M ∩Q.

4 Inexact projection onto constraint sets

In this section we show how to compute computationally-cheap inexact projections
for constraint sets of the form

(4.1) M = {x ∈ X : G(x) ≤ 0, P (x) ≤ 0, H(x) = 0},

for maps G : X→ Rn, G : X→ Rm and H : X→ Y, where Y is a second Euclidean
space. We focus on a neighborhood of a point x̄ ∈ M where P (x̄) < 0: nearby,
the map P models the inactive constraints. The assumption that the maps G, P ,
and H are everywhere defined is just for notational convenience. We make the
following classical assumption about the derivative maps ∇G(x̄) : X → Rn and
∇H(x̄) : X→ Y and their adjoints ∇G(x̄)∗ : Rn → X and ∇H(x̄)∗ : Y → X.

Assumption 4.2 (Linear independence constraint qualification)
The maps G, P and H are C2-smooth around a point x̄ ∈ X satisfying G(x̄) = 0,
P (x̄) < 0, and H(x̄) = 0, and they satisfy the condition

∇G(x̄)∗w +∇H(x̄)∗y = 0 ⇒ w = 0 and y = 0.

Under these assumptions, the set M is strongly amenable at x̄, in the sense of [5],
and hence in particular prox-regular there [6, Proposition 2.5].

We can construct an inexact projection for the constraint set M as follows.
For any point z in X near x̄, we consider the projection of z onto the polyhedral
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approximation to the set M obtained by linearizing its defining constraints at z: in
other words, we solve the convex quadratic program

(4.3)


minimize 1

2
|x− z|2

subject to G(z) +∇G(z)(x− z) ≤ 0
P (z) +∇P (z)(x− z) ≤ 0
H(z) +∇H(z)(x− z) = 0

x ∈ X.

As a consequence we deduce, under reasonable conditions, local linear convergence
of the first algorithm we presented in the introduction.

Our aim, then, is to prove the following result.

Theorem 4.4 Consider the constraint set M defined by equation (4.1). Suppose
the linear independence constraint qualification (Assumption 4.2) holds. For points
z ∈ X near the point x̄, denote by Φ(z) the projection onto the linearized constraints,
so Φ(z) is the unique optimal solution of the quadratic program (4.3). Then, the
map Φ is an inexact projection onto M around x̄:

|Φ(z)− PM(z)| = O(dM(z)2) as z → x̄.

Proof Near x̄, the constraint involving the continuous map P has no impact on
the set M , so for the time being we ignore it. Denote the nonnegative orthant in
Rn by Rn

+, and the set of complementary pairs of vectors by

Ω = {(w, s) ∈ Rn
+ ×Rn

+ : 〈w, s〉 = 0}.

Then any point x ∈ X near x̄ and vector p ∈ X satisfies x ∈ M and p ∈ NM(x) if
and only if there exists a pair (w, s) ∈ Ω and a vector y ∈ Y satisfying G(x) + s = 0
and p = ∇G(x)∗w +∇H(x)∗y.

For any nearby point z ∈ X, we can now characterize the unique projection
PM(z) using the property (2.4). Consider the following set-valued mapping

Ψ: X×Rn ×Rn ×Y →→ Rn ×Y ×X

defined by setting Ψ(x,w, s, y) to be the single point G(x) + s
H(x)

x+∇G(x)∗w +∇H(x)∗y

T

if (w, s) ∈ Ω, and to be empty otherwise. Then, for all points z and x near the point
x̄, the condition 0

0
z

T

∈ Ψ(x,w, s, y) for some w ∈ Rn, s ∈ Rn, y ∈ Y
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is necessary and sufficient for x = PM(z).
We claim that the map Ψ is metrically regular at (x̄, 0, 0, 0) for (0, 0, x̄). To see

this, we linearize around the point x̄ to obtain the following new set-valued mapping
Ψ̂ : X×Rn ×Rn ×Y →→ Rn ×Y ×X. Define the set Ψ̂(x,w, s, y) to be the single
point  ∇G(x̄)(x− x̄) + s

∇H(x̄)(x− x̄)
x+∇G(x̄)∗w +∇H(x̄)∗y

T

if (w, s) ∈ Ω, and to be empty otherwise. This map differs from the map Ψ by the
map that takes (x,w, s, y) ∈ X×Rn ×Rn ×Y to the point G(x)−∇G(x̄)(x− x̄)

H(x)−∇H(x̄)(x− x̄)(
∇G(x)−∇G(x̄)

)∗
w +

(
∇H(x)−∇H(x̄)

)∗
y

T

.

This latter map is continuously differentiable around the point (x̄, 0, 0, 0), with zero
derivative. Hence, using the coderivative criterion [8], metric regularity of the maps
Ψ and Ψ̂ at (x̄, 0, 0, 0) for for (0, 0, x̄) are equivalent.

For all (u, v, z) ∈ Rn ×Y ×X and x ∈ X, the condition u
v
z

T

∈ Ψ̂(x,w, s, y) for some w ∈ Rn, s ∈ Rn, y ∈ Y

is just the necessary and sufficient first-order condition for x to be an optimal solu-
tion for the convex quadratic program

minimize 1
2
|x− z|2

subject to ∇G(x̄)x ≤ ∇G(x̄)x̄+ u
∇H(x̄)x = ∇H(x̄)x̄+ v

x ∈ X.

This problem is feasible, by the linear independence constraint qualification, and
hence has a unique optimal solution ξ(u, v, z), which satisfies the first-order con-
dition. Hence the set Ψ̂−1(u, v, z) is nonempty, and every element (x,w, s, y) ∈
Ψ̂−1(u, v, z) must satisfy

x = ξ(u, v, z)

s = u−∇G(x̄)(x− x̄)

∇G(x̄)∗w +∇H(x̄)∗y = z − x.

Thus the point z − ξ(u, v, z) must lie in the range S = ∇G(x̄)∗Rn +∇H(x̄)∗Y. By
the linear independence constraint qualification, the linear map

(w, y) 7→ ∇G(x̄)∗w +∇H(x̄)∗y
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has a linear inverse K : S → Rn × Y. We deduce that Ψ̂−1(u, v, z) is a singleton
{(x,w, s, y)}, where

x = ξ(u, v, z)

s = u−∇G(x̄)(ξ(u, v, z)− x̄)

(w, y) = K(z − ξ(u, v, z)).

For any fixed point z ∈ X, the dependence of the optimal solution ξ(u, v, z) on
the parameters (u, v) ∈ Rn ×Y is globally Lipschitz, with constant independent of
z (see [9], and also the discussion in Facchinei-Pang, Section 4.7), and on the other
hand, for fixed (u, v), as a function of the point z, it is globally 1-Lipschitz (being a
projection). Hence the function ξ is globally Lipschitz. Consequently the map Ψ̂−1

is single-valued and Lipschitz, so the map Ψ̂ is metrically regular, and hence so is
the map Ψ at (x̄, 0, 0, 0) for for (0, 0, x̄), as we claimed.

Equipped with this metric regularity property, we can now prove the desired
inexact projection property for the constraint set M defined by equation (4.1). For
any point z in X near x̄, we solve the convex quadratic program (4.3). To see that
this calculation results in an inexact projection, in the sense of Definition 3.2, we
can ignore the inactive constraints modeled by the map P , and consider the unique
optimal solution xz of the convex quadratic program

minimize 1
2
|x− z|2

subject to G(z) +∇G(z)(x− z) ≤ 0
H(z) +∇H(z)(x− z) = 0

x ∈ X.

Define a C2-smooth map A : X→ Rn×Y by A(z) =
(
G(z), H(z)

)
, for points z ∈ X.

By the linear independence constraint qualification, the linear map ∇A(z) : X →
Rn ×Y is one-to-one for all z near x̄, and hence the composition

∇A(z)∇A(z)∗ : Rn ×Y → Rn ×Y

is positive definite. The point

x = z −∇A(z)∗
(
∇A(z)∇A(z)∗

)−1
A(z)

is feasible for the quadratic program. Hence we deduce

|xz − z| ≤
∣∣∣∇A(z)∗

(
∇A(z)∇A(z)∗

)−1
A(z)

∣∣∣ → 0

as z → x̄, so xz → x̄. Furthermore, for all z near x̄, the optimal solution xz is also
feasible for the the linearized problem (4.3), so it is also the unique optimal solution
of that problem.
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Using the first-order optimality conditions, there exist a unique slack vector
sz ∈ Rn and multiplier vectors wz ∈ Rn and yz ∈ Y such that (wz, sz) ∈ Ω and

G(z) +∇G(z)(xz − z) + sz = 0

H(z) +∇H(z)(xz − z) = 0

xz +∇G(z)∗wz +∇H(z)∗yz = z.

In fact wz and yz are also unique, by the linear independence constraint qualification,
which furthermore implies

(4.5) |wz|+ |yz| = O(|xz − z|)

as z → x̄. The C2-smoothness of G and H implies

G(xz) + sz = O(|xz − z|2)
H(xz) = O(|xz − z|2).

Furthermore we have

xz +∇G(xz)
∗wz +∇H(xz)

∗yz − z
= (∇G(xz)−∇G(z))∗wz + (∇H(xz)−∇H(z))∗yz

= O(|xz − z|)|wz|+O(|xz − z|)|yz|
= O(|xz − z|2)

by equation (4.5). By the metric regularity of the map Ψ, we deduce

|xz − PM(z)| = O(|xz − z|2) as z → x̄.

Notice the inequalities

|xz − z| ≤ |xz − PM(z)|+ |PM(z)− z|

= O(|xz − z|2) + dM(z) ≤ 1

2
|xz − z|+ dM(z)

for all z near x̄, which imply |xz − z| ≤ 2dM(z), and hence

|xz − PM(z)| = O(dM(z)2) as z → x̄.

This completes the proof that the map z 7→ xz is an inexact projection. 2

When the set M is defined only by equalities, the assumptions imply that it is
a manifold around the point x̄. As we note in the next section, manifolds also have
dual representations, in terms of local coordinates. Given such a representation, as
we see next, another approach to approximate alternating projections is available,
which in particular allows us to dispense with the assumption that the set Q is
prox-regular.
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5 Approximate projections: a second approach

We return to the basic alternating projections convergence scheme that we outlined
in Section 2. In contrast with the previous section, we consider a different approach
to errors in the computation of the projection PM(y). Shifting notation slightly,
we again consider alternating projections for two closed sets M and Q, this time
in a Euclidean space Y. We suppose, at a common point ȳ, that M intersects Q
separably (as opposed to vice versa, as before) and that M is super-regular there
(as opposed to prox-regularity of Q, as before).

Consider the following algorithm.

Algorithm 5.1 (Approximate alternating projections)
choose z ∈M and ε ≥ 0;
while z 6∈ Q do

choose y ∈ PQ(z);
choose z′ ∈M with dPM (y)(z

′) ≤ ε|y − z|;
z = z′;

end while

Notice that, unlike in the previous inexact alternating projection scheme (Algo-
rithm 3.1), we now require the approximate projection z′ to lie in the set M .

Our assumptions again imply linear convergence of this algorithm, beginning
close to the intersection point ȳ, providing that the tolerance ε is sufficiently small.
To see this, as before consider one iteration of the algorithm, starting from a point z,
and generating the points y and z′ in turn, choose z′′ ∈ PPM (y)(z

′) and let y′ ∈ PQ(z′)
denote the next point generated. For any constant τ in the interval (cosα, 1), the
analog of inequalities (2.6) still hold,

|z′′ − y| ≤ τ |z − y|,

and so we have

|z′ − y′| ≤ |z′ − y| ≤ |z′ − z′′|+ |z′′ − y| ≤ (ε+ τ)|z − y|.

For any nonnegative ε < 1− τ , we deduce linear convergence of the iterate sequence
of iterates z to a point in the intersection Q∩M , now with rate

√
τ + ε, which again

we can make arbitrarily close to
√

cosα.
With this convergence result in mind, we make the following definition, capturing

the idea of approximating the projection of a point y ∈ Y onto a set M ⊂ Y by an
inexact estimate Φ(z, y) that depends on a base point z ∈M .

Definition 5.2 A faithful approximation of the projection onto a setM ⊂ Y around
a point ȳ ∈M is a map Φ: V ×Y →M , where V is a neighborhood of ȳ in M , with
the following property: given any constant ε > 0 and angle α > 0, if points z ∈ M
and y 6∈M are sufficiently close to ȳ, then any point ẑ ∈ PM(y) such that the angle
between the vectors z−y and ẑ−y is at least α must satisfy |ẑ−Φ(z, y)| ≤ ε|y− z|.
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We have then proved the following result.

Theorem 5.3 Suppose a closed set M intersects a closed set Q separably at a point
ȳ, and is super-regular there. If Φ is a faithful approximation of the projection
onto M around ȳ, then starting from any nearby point z ∈ M , the approximate
alternating projection iteration

z ← Φ(z, y) for any y ∈ PQ(z)

converges linearly to a point in the intersection M ∩Q.

6 Smooth inclusions

We apply the approximate alternating projections framework of the previous section
to the following problem. Given two Euclidean spaces X and Y, a continuously
differentiable map F : X→ Y, and a closed set Q ⊂ Y, we consider the problem of
finding a point x ∈ X satisfying

F (x) ∈ Q.

We can then consider the following simple splitting algorithm, which alternates
between projections onto the set Q and linear least squares problems.

Algorithm 6.1 (Linearized alternating projections)
choose x ∈ X;
while F (x) 6∈ Q do

choose y ∈ PQ
(
F (x)

)
;

choose s ∈ X minimizing |F (x) +∇F (x)s− y|;
x = x+ s;

end while

In the case Q = {0}, this is simply the Gauss-Newton method for the nonlinear least
squares problem of minimizing |F (·)|2. On the other hand, if we replace the linear
approximation F (x) +∇F (x)s in the algorithm by the exact value F (x+ s), then,
under reasonable conditions, the method becomes the exact alternating projection
algorithm of Section 2 for the intersection of Q with a certain smooth manifold,
namely the image under the map F of an open set containing the iterates x. We can
then deduce linear convergence close to well-behaved solutions. Here, we parallel
that development to prove local linear convergence of Algorithm 6.1 by interpret-
ing it as a version of the approximate projection scheme in the previous section:
Algorithm 5.1.

More formally, we summarize the assumptions we need below.
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Assumption 6.2 The map F is continuously differentiable around the point x̄,
with one-to-one derivative ∇F (x̄), and satisfies F (x̄) ∈ Q. Furthermore, there
exists an angle α > 0 such that whenever two vectors x, x′ ∈ X near x̄ satisfy

∇F (x′)∗(y − F (x′)) = 0 and F (x) 6= y 6= F (x′) for some y ∈ PQ
(
F (x)

)
,

then the angle between the vectors F (x)− y and F (x′)− y is at least α.

Under this assumption, we study Algorithm 6.1 in a neighborhood of a particular
solution x̄ of our problem. The one-to-one assumption on the derivative in particular
allows us to work with the following basic terminology for manifolds.

Definition 6.3 A set M ⊂ Y is a manifold around a point ȳ ∈ M when there
exists a corresponding local coordinate system: a continuously differentiable map F
from another Euclidean space X into Y whose restriction to some open set U ⊂ X
is a diffeomorphism onto an open neighborhood V of ȳ in M.

Assumption 6.2 hence guarantees that, for any sufficiently small neighborhood U of
x̄, the image M = F (U) is a manifold around the point ȳ = F (x̄), and the map F is
a local coordinate system. Furthermore, the normal space to the manifold is given
by

NM

(
F (x)

)
= Null

(
∇F (x)∗

)
,

for all x near x̄. Thus the angle condition is exactly the property that M inter-
sects the set Q separably at the point ȳ. It holds in particular under the usual
transversality condition (2.2), which here becomes

NQ

(
F (x̄)

)
∩N

(
∇F (x̄)∗

)
= {0}.

Our aim is to prove the following result.

Theorem 6.4 (Local linear convergence) If Assumption 6.2 holds, then, start-
ing from any point x ∈ X sufficiently close to the solution x̄, the linearized alternat-
ing projections method, Algorithm 6.1, converges linearly to a point in the solution
set F−1(Q).

7 Faithful approximate projections on manifolds

As in Definition 6.3, consider a local coordinate system F for a manifold M around
a point ȳ ∈M . We can calculate approximate projections onto the manifold M via
a map Φ: V ×Y → Y defined as follows. For coordinate vectors x ∈ U and points
y ∈ Y, define

(7.1) Φ(F (x), y) = F (x+ s) where s ∈ Y minimizes |F (x) +∇F (x)s− y|.
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Notice that the vector s is unique, since the derivative map ∇F (x) is one-to-one.
Calculating s is a simple least squares problem. If y is close to the point F (x), then
the vector s is small, and hence the point F (x + s) lies on the manifold M , and is
close to the point F (x)+∇F (x)s, which is the projection of y onto the tangent space
TM(x). In this sense, the map Φ(F (x), ·) approximates the projection mapping PM
near the point F (x). We can make this statement more precise as follows.

Theorem 7.2 The map Φ defined by equation (7.1) is a faithful approximation of
the projection for the manifold M around the point ȳ.

Proof Suppose the result fails, so there exists an angle α > 0 and a constant ε > 0,
and sequences zk ∈M , yk ∈ Y, and z′k ∈ PM(yk), all converging to ȳ, and satisfying

εk = |z′k − zk| ≥ |yk − zk| sinα and |z′k − Φ(zk, yk)| > ε|yk − zk|.
Note the inequality

(7.3) εk ≤ |z′k − yk|+ |yk − zk| ≤ 2|yk − zk|.
Denote the coordinates of zk, z

′
k by xk, x

′
k ∈ U respectively (clearly distinct), so

F (xk) = zk and F (x′k) = z′k. Since F is a diffeomorphism between U and V , the
sequences (xk) and (x′k) both converge to the common limit x̄ ∈ U , the coordinates
of ȳ. Define δk = |x′k − xk|: the diffeomorphism property ensures εk = O(δk) and
δk = O(εk). After taking a subsequence, we can suppose the unit vectors 1

δk
(x′k−xk)

converge to a unit vector u.
Now define vectors wk = yk − z′k ∈ NM(z′k). Notice ∇F (x′k)

∗wk = 0, and

|wk| ≤ |yk − zk|+ |zk − z′k| = O(εk) + εk = O(εk) = O(δk).

Taking a further subsequence, we can then suppose that the vectors 1
δk
wk converge

to some vector in the null space of ∇F (x̄)∗.
By definition, Φ(zk, yk) = F (xk + sk), where the vector sk ∈ X minimizes the

function
s 7→ |F (xk) +∇F (xk)s− yk|.

We deduce
∇F (xk)

∗(F (xk) +∇F (xk)sk − F (x′k)− wk) = 0,

so
sk =

(
∇F (xk)

∗∇F (xk)
)−1∇F (xk)

∗(F (x′k)− F (xk) + wk
)
.

We deduce 1
δk
sk → u. Hence

(xk + sk)− x′k = o(δk)

so inequality (7.3) implies

Φ(zk, yk)− z′k = F (xk + sk)− F (x′k) = o(δk) = o(εk) = o(|yk − zk|)
which is a contradiction. 2

Theorem 6.4 (Local linear convergence) now follows directly from Theorem 5.3.
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