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’Given sets A, B C R", find some point z € AN B.‘

Distance and projection:

dp(z) = mi}rgl |x—y| and Pp(z) = {nearest points of B to z}.
e

Finding points in P4 and Pp is often easy!

Method of alternating projections (von Neumann ’33):

Tk+1

Tk+-2

c PB(zk)
€ Pa(wry1)
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s
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Method of alternating projections

Compressed sensing:

{z :rankz < r}ﬂ{x:sz b}

Py vank z<r} (y) <= set n— r smallest coordinates in | - | to zero.

Low-order control:
{X = 0:rank X <7} {X : A(X) = b}

Pixr0:rank x<r} (V) <= diagonalize, set n — r smallest
eigenvalues to zero, set negative eigenvalues to zero.
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Successes

Alternating projection heuristics remain popular!

Simple:

e require a few lines of code,

e no data structures, not memory or space intensive
Versatile:

e Inverse eigenvalue problems (Chen, Chu '96)

Pole placement (Orsi, Yang '06)
Information theory (Tropp, Dhillon, Heath, Strohmer '05)
Low-order control design (Grigoriadis, Skelton ’96)

e Image processing (Bauschke, Combettes, Luke '02)
Hubble telescope (NASA ’95)
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Convergence of alternating projections
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Convergence of alternating projections

Tpr1 € Pplay)
Tpyo € Pa(zpe1)

The “angle” between A and B drives the convergence!
Key tool: Normal cones Ny(z) and Np(z)
L6

Q 4—&15

T <3

T4
Tl

P

Convergence theory: Bauschke, Borwein, Combettes, Deutsch,
Lewis, Luke, Malick, Phan, Trussell, von Neumann, Wang etc. ..
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Convergence of alternating projections

Transversality: Np(z) N —=Na(z) = {0}.
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Convergence of alternating projections

Transversality: Np(z) N —=Na(z) = {0}.

A

Figure: Not transverse Figure: Transverse
Convergence of alternating projections (D-Ioffe-Lewis "13):

A and B transverse at ¥ = local R-linear convergence.

7/21



Slope and error bounds

Common problem: Estimate

dist (z, [f < r]) (difficult)

8/21



Slope and error bounds

Common problem: Estimate

dist (2, [f < r]) (difficult)
“The residual”:

f@)—r  (easy)

8/21



Slope and error bounds

Common problem: Estimate

dist (2, [f < r]) (difficult)
“The residual”:
flz)=r  (casy)
Desirable quality: Exists x with

dist (z, [f < 7]) < k(f(2) —7)

8/21



Slope and error bounds

Common problem: Estimate

dist (2, [f < r]) (difficult)
“The residual”:
flz)=r  (casy)
Desirable quality: Exists x with
dist (z, [f < r]) < 5(f(2) = 1)

Eg: Hoffman’s error bound for linear programming.

8/21



Slope and error bounds

Common problem: Estimate

dist (2, [f < r]) (difficult)
“The residual”:

flz)=r  (casy)
Desirable quality: Exists x with
dist (z, [f < r]) < 5(f(2) = 1)
Eg: Hoffman’s error bound for linear programming.
Slope: “Fastest instantaneous rate of decrease”

[(@) = f(2)

|7 — =|

[Vf|(Z) := limsup
T—T

8/21



Slope and error bounds

Common problem: Estimate

dist (2, [f < r]) (difficult)
“The residual”:
flz)=r  (casy)
Desirable quality: Exists x with

dist (z, [f < 7]) < k(f(2) —7)

Eg: Hoffman’s error bound for linear programming.

Slope: “Fastest instantaneous rate of decrease”

[(@) = f(2)

|7 — =|

[Vf|(Z) := limsup
T—T

Restrict f: R® — R to a “slice” f~!(a, b).
Lemma (Error bound)
The following are equivalent.
Non-criticality:

M
K

Error-bound:

dist (z,[f < r]) < k(f(z) —r), whenr € (a,f(z))

8/21



Slope and error bounds

Common problem: Estimate

dist (2, [f < r]) (difficult)
“The residual”:

flz)=r  (casy)
Desirable quality: Exists x with
dist (z, [f < r]) < 5(f(2) = 1)
Eg: Hoffman’s error bound for linear programming.
Slope: “Fastest instantaneous rate of decrease”

[(@) = f(2)

|7 — =|

[Vf|(Z) := limsup
T—T

Restrict f: R® — R to a “slice” f~!(a, b).
Lemma (Error bound)
The following are equivalent.
Non-criticality:
0o 1
IVil=—
K
Error-bound:
dist (z,[f < r]) < k(f(z) —r), whenr € (a,f(z))

e Observed by Azé-Corvellec '04, Toffe 00.
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Transversality & error bounds

Coupling function:

Y(z,y) =da(z) + [z — yl + dp(y).

Error bound:
Np(z) N —Na(z) = {0}
I
max {|Vihs|(y), [Vib|(2)} = »
for x € Aand y € B, not in AN B.
!

Local linear convergence
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‘What about sublinear convergence?‘

@ C R"™ is semi-algebraic if is a finite union of

solution sets to finitely many polynomial inequalities.
Eg: semi-definite representable sets (Nesterov-Nemirovskii)
Theorem (D-Ioffe-Lewis)
A and B are semi-algebraic, AN B is compact, xyp near AN B

= alternating projections converge.

Generic transversality (D-loffe-Lewis):
If A and B are semi-algebraic, then
A+ a and B+ b are transverse for a.e. (a,b)
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Why semi-algebraicity?

24 2

14 1

14 -1

Figure: f(z) = z? Figure: v/f(x) = |z]

Desingularization: (Bolte-Daniilidis-Lewis '07)
For semi-algebraic f, there exists “nice” ¢ with

IV(pof)|(z) >1 for z ¢ critf.

Error bounds always applicable for semi-algebraic functions!

e Apply t
PP (e y) = 6a(a) + |z — 9] + ().
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Open questions

General paradigm:
no convexity = =  no global convergence.

Variants of alternating projections work globally!

e Integer programming;:
720 {z: Az < b}

(eg: sudoku, 3-SAT, 4 queens problem, etc ...)

Ongoing work with Artacho, Borwein.
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Active sets in optimization

Figure: @ is 4 x 4 Toeplitz spectrahedron

Definition (Partial Smoothness)
A set @ is partly smooth relative to M C @ if
1. (Smoothness) M is a smooth manifold,
2. (Sharpness) Ny = span Ng on M,
3. (Continuity) Ng varies continuously on M.
(Originates in Lewis '03) 14/21
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Q:={z:¢9(x)<0, fori=1,...,m}

where ¢1,..., gn are smooth.
Active indices:

I(z) ={i: g;(x) =0}
Reasonable conditions =

M :={z:I(z) =I1(z)} isa partly smooth manifold near

05 05

Figure: Q = {(z,y,2): 2> x(1—2z)+ 92 2> —z(l + ) +y?} 15/21
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Active sets in optimization

’Partial smoothness has classical roots! \
Eg: Sum of perturbed norms

min f(z ZHF

where F1,..., F,, are smooth.
Active indices: .
I(z) :={i: Fiy(z) =0}
Reasonable conditions = epi f is partly smooth relative to

M = {(z,f(:;)) I(z) = 1(2)}

S
\\ 53 S 'c'
N

Figure: f(z,y) := [2% + y? — 1| + |z — |
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’Why do optimizers care?

e Many optimization algorithms identify M in finite time!

Eg: Gradient projection, Newton-like, proximal point.
= Acceleration strategies!
Finite Identification: For 2 € M and v € ri Ng(), have

Ti — T, 05 — U
v; € NQ(.'EZ)

} — x; € M for all large ¢

finite identification <= partial smoothness (D-Lewis '13)

How to see this structure in eigenvalue optimization? ‘
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Spectral sets

Consider S™ := {n x n symmetric matrices} and the eigenvalue
map

X = (M(X),..., (X))

where

M(X) < .. < A(X).
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Spectral sets

Consider S™ := {n x n symmetric matrices} and the eigenvalue
map

X = (M(X),..., (X))

where
A(X) < <X

Spectral sets:
AHQ) = {X e8™: A(X) € Q)

where () is permutation-invariant.

(e.g. {X : Ap(X) <1} or {X :rank X <r})

How to describe partly smooth structure of A_l(Q)?
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Spectral sets

Eg:

VN

>

|z + |y <1




Spectral sets

Eg:

¢ &

|z + [yl <1 A (X)) + A (X)[ <1

Recognizing partial smoothness (Daniilidis-D-Lewis):
Q partly smooth at A\(X) relative to M
—> A\~ (Q) partly smooth at X relative to A~ (M).
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Eg:
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|z + [yl <1 A (X)) + A (X)[ <1

Recognizing partial smoothness (Daniilidis-D-Lewis):
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Spectral sets

Eg:

¢ &

|z + [yl <1 A (X)) + A (X)[ <1

Recognizing partial smoothness (Daniilidis-D-Lewis):

Q partly smooth at A\(X) relative to M

—> A\~ (Q) partly smooth at X relative to A~ (M).

For @ convex polyhedral cone,
AN e DT

ATE M) U Ny-1(g)(X)
Xex—I(M)

(Matrix-valued Bessel processes (D-Larsson '13))
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Summary

Analysis Algorithms

™~

Geometry

Applications
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Thank you.



