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• Active sets in optimization
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Method of alternating projections

Given sets A,B ⊂ Rn , find some point x ∈ A ∩ B.

A

B
x

Distance and projection:

dB(x) = min
y∈B
|x − y| and PB(x) = {nearest points of B to x}.

Finding points in PA and PB is often easy!

Method of alternating projections (von Neumann ’33):

xk+1 ∈ PB(xk)
xk+2 ∈ PA(xk+1)

A

B

x0
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Method of alternating projections

Compressed sensing:

{x : rank x ≤ r}
⋂
{x : Ax = b}

P{x: rank x≤r}(y) ⇐⇒ set n− r smallest coordinates in | · | to zero.

Low-order control:

{X � 0 : rankX ≤ r}
⋂
{X : A(X) = b}

P{X�0: rankX≤r}(Y ) ⇐⇒ diagonalize, set n − r smallest
eigenvalues to zero, set negative eigenvalues to zero.
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Successes

Alternating projection heuristics remain popular!

Simple:

• require a few lines of code,
• no data structures, not memory or space intensive

Versatile:

• Inverse eigenvalue problems (Chen, Chu ’96)
• Pole placement (Orsi, Yang ’06)
• Information theory (Tropp, Dhillon, Heath, Strohmer ’05)
• Low-order control design (Grigoriadis, Skelton ’96)
• Image processing (Bauschke, Combettes, Luke ’02)
• Hubble telescope (NASA ’95)
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Convergence of alternating projections

xk+1 ∈ PB(xk)
xk+2 ∈ PA(xk+1)

A

B

x0

The “angle” between A and B drives the convergence!

Key tool: Normal cones NA(x) and NB(x)

x1

x4

x3x2

x5

x6
x7Q

Convergence theory: Bauschke, Borwein, Combettes, Deutsch,
Lewis, Luke, Malick, Phan, Trussell, von Neumann, Wang etc. . .
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Convergence of alternating projections

Transversality: NB(x̄) ∩ −NA(x̄) = {0}.

Eg:

B
x

A

Figure: Not transverse

A

Bxx

Figure: Transverse

Convergence of alternating projections (D-Ioffe-Lewis ’13):

A and B transverse at x̄ =⇒ local R-linear convergence.
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Slope and error bounds
Common problem: Estimate

dist (x, [f ≤ r ]) (difficult)

“The residual”:
f (x)− r (easy)

Desirable quality: Exists κ with

dist (x, [f ≤ r ]) ≤ κ(f (x)− r)

Eg: Hoffman’s error bound for linear programming.
Slope: “Fastest instantaneous rate of decrease”

|∇f |(x̄) := limsup
x→x̄

f (x̄)− f (x)
|x̄ − x|

Restrict f : Rn → R to a “slice” f−1(a, b).

Lemma (Error bound)
The following are equivalent.
Non-criticality:

|∇f | ≥ 1
κ

Error-bound:

dist (x, [f ≤ r ]) ≤ κ(f (x)− r), when r ∈ (a, f (x))

• Observed by Azé-Corvellec ’04, Ioffe ’00.
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Transversality & error bounds

Coupling function:

ψ(x, y) = δA(x) + |x − y|+ δB(y).

Error bound:
NB(x̄) ∩ −NA(x̄) = {0}

⇓

max {|∇ψx |(y), |∇ψy|(x)} ≥ κ

for x ∈ A and y ∈ B, not in A∩B.
⇓

Local linear convergence

A

B

x0
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Convergence
• Transversality is necessary but not verifiable.

Eg:

A

B

What about sublinear convergence?

Q ⊂ Rn is semi-algebraic if is a finite union of
solution sets to finitely many polynomial inequalities.

Eg: semi-definite representable sets (Nesterov-Nemirovskii)
Theorem (D-Ioffe-Lewis)
A and B are semi-algebraic, A ∩ B is compact, x0 near A ∩ B
=⇒ alternating projections converge.

Generic transversality (D-Ioffe-Lewis):
If A and B are semi-algebraic, then

A + a and B + b are transverse for a.e. (a, b)
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Why semi-algebraicity?

Figure: f (x) = x2

Figure:
√

f (x) = |x|

Desingularization: (Bolte-Daniilidis-Lewis ’07)
For semi-algebraic f , there exists “nice” φ with

|∇(φ ◦ f )|(x) ≥ 1 for x /∈ crit f .

Error bounds always applicable for semi-algebraic functions!
• Apply to

ψ(x, y) = δA(x) + |x − y|+ δB(y).
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Open questions
General paradigm:

no convexity =⇒ no global convergence.

Variants of alternating projections work globally!
• Integer programming:

Z2 ∩ {x : Ax ≤ b}

(eg: sudoku, 3-SAT, 4 queens problem, etc . . . )

Ongoing work with Artacho, Borwein.
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Active sets in optimization.
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Active sets in optimization
Figure: Q is 4× 4 Toeplitz spectrahedron

Definition (Partial Smoothness)
A set Q is partly smooth relative toM⊂ Q if
1. (Smoothness)M is a smooth manifold,
2. (Sharpness) NM = spanNQ onM,
3. (Continuity) NQ varies continuously onM.

(Originates in Lewis ’03)

14/21



Active sets in optimization
Figure: Q is 4× 4 Toeplitz spectrahedron

Definition (Partial Smoothness)
A set Q is partly smooth relative toM⊂ Q if
1. (Smoothness)M is a smooth manifold,
2. (Sharpness) NM = spanNQ onM,
3. (Continuity) NQ varies continuously onM.

(Originates in Lewis ’03)

14/21



Active sets in optimization
Figure: Q is 4× 4 Toeplitz spectrahedron

Definition (Partial Smoothness)
A set Q is partly smooth relative toM⊂ Q if
1. (Smoothness)M is a smooth manifold,
2. (Sharpness) NM = spanNQ onM,
3. (Continuity) NQ varies continuously onM.

(Originates in Lewis ’03) 14/21



Active sets in optimization
Partial smoothness has classical roots!

Eg: Smooth constraints
Q := {x : gi(x) ≤ 0, for i = 1, . . . ,m}

where g1, . . . , gm are smooth.

Active indices:
I (x) = {i : gi(x) = 0}

Reasonable conditions =⇒
M := {x : I (x) = I (x̄)} is a partly smooth manifold near x̄

Figure: Q = {(x, y, z) : z ≥ x(1− x) + y2, z ≥ −x(1 + x) + y2}
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Active sets in optimization
Partial smoothness has classical roots!

Eg: Sum of perturbed norms

min
x

f (x) :=
m∑

i=1
‖Fi(x)‖

where F1, . . . ,Fm are smooth.

Active indices:
I (x) := {i : Fi(x) = 0}

Reasonable conditions =⇒ epi f is partly smooth relative to
M := {(x, f (x)) : I (x) = I (x̄)}

Figure: f (x, y) := |x2 + y2 − 1|+ |x − y|
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Active sets in optimization

Why do optimizers care?

• Many optimization algorithms identifyM in finite time!
Eg: Gradient projection, Newton-like, proximal point.

=⇒ Acceleration strategies!

Finite Identification: For x̄ ∈M and v̄ ∈ riNQ(x̄), have

xi → x̄, vi → v̄
vi ∈ NQ(xi)

}
=⇒ xi ∈M for all large i

finite identification ⇐⇒ partial smoothness (D-Lewis ’13)

How to see this structure in eigenvalue optimization?
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Spectral sets
Consider Sn := {n × n symmetric matrices} and the eigenvalue
map

X 7→ (λ1(X), . . . , λn(X))

where
λ1(X) ≤ . . . ≤ λn(X).

Spectral sets:
λ−1(Q) = {X ∈ Sn : λ(X) ∈ Q}

where Q is permutation-invariant.

(e.g. {X : λn(X) ≤ 1} or {X : rankX ≤ r})

How to describe partly smooth structure of λ−1(Q)?
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Spectral sets
Eg:

|x|+ |y| ≤ 1 |λ1(X)|+ |λ2(X)| ≤ 1

Recognizing partial smoothness (Daniilidis-D-Lewis):
Q partly smooth at λ(X̄) relative toM
=⇒ λ−1(Q) partly smooth at X̄ relative to λ−1(M).

For Q convex polyhedral cone,
λ−1(Q) ∗←→ [λ−1(Q)]∗

λ−1(M) ∗←→
⋃

X∈λ−1(M)
Nλ−1(Q)(X)

(Matrix-valued Bessel processes (D-Larsson ’13))
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Summary

Geometry

Applications

Analysis Algorithms
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Thank you.

21/21


