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Abstract. Minimizing the Euclidean distance to a set arises frequently in

applications. When the set is algebraic, a measure of complexity of this
optimization problem is its number of critical points. In this paper we provide

a general framework to compute and count the real smooth critical points of a

data matrix on an orthogonally invariant set of matrices. The technique relies on
“transfer principles” that allow calculations to be done in the space of singular

values of the matrices in the orthogonally invariant set. The calculations often
simplify greatly and yield transparent formulas. We illustrate the method on
several examples, and compare our results to the recently introduced notion of

Euclidean distance degree of an algebraic variety.

1. Introduction

Finding an element of a subset V in Rn closest to a specified point y is a
common task in computational mathematics, often called the Euclidean distance
(ED) minimization problem:

minimize

n∑
i=1

(xi − yi)2 subject to x ∈ V.(1.1)

Our current work is motivated by the systematic study of the “critical points” of the
problem (1.1) in an algebraic setting, initiated in [12] and continued in [11,19,26].
There, the basic assumption is that V is a real variety — zero set of finitely many
polynomials with real coefficients. Consider now the set VC of complex points
satisfying the defining equations of V. Then a critical point of y ∈ Cn with respect
to (1.1) is any smooth (possibly complex) point x of VC such that y − x lies in the
normal space of VC at x, meaning that y − x lies in the span of the gradients of the
defining equations at x. It was shown in [12] that for a general data point y ∈ Cn,
the number of (complex) critical points of (1.1) is a constant. This constant is called
the Euclidean distance degree of V, denoted by EDdegree(V), and is a measure of
the algebraic complexity of expressing a minimizer of (1.1) as a function of y.

The work in this paper is geared towards understanding the (real) critical points
of orthogonally invariant matrix sets. Our theme is best illustrated with an example.
Fix positive integers r ≤ n ≤ t and consider the matrix set

Rn×tr := {X ∈ Rn×t : rank(X) ≤ r}.

Finding the closest matrix of rank at most r to a given matrix Y arises in many
applications. The set Rn×tr is a real variety, and the authors of [12] established that
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EDdegree(Rn×tr ) =
(
n
r

)
. They also provide a recipe for all the critical points of Y

on Rn×tr , which may be viewed as a generalization of the Eckart-Young theorem.
In the context of this paper, what is important about Rn×tr is that it is orthogonally

invariant, meaning that if X ∈ Rn×tr then for all orthogonal matrices U and
V of appropriate sizes, UXV > is also in Rn×tr . Alternately, membership of X
in the set Rn×tr is determined solely by the vector of singular values σ(X) =
(σ1(X), . . . , σn(X)). Indeed, a matrix X lies in Rn×tr if and only if its vector of
singular values σ(X) lies in the set

Rnr := {x ∈ Rn : rank(x) ≤ r},

where rank(x) denotes the number of nonzero coordinates of x. Observe that the
geometry of the piecewise linear set Rnr is much simpler than that of the highly
nonlinear set Rn×tr . In particular, Rnr is also a variety and EDdegree(Rnr ) =

(
n
r

)
.

The equality EDdegree(Rnr ) = EDdegree(Rn×tr ) is not accidental; in this paper, we
elucidate this phenomenon.

As alluded to above, our focus in this paper is on a (naturally defined) real analog
of critical points for (1.1). Namely, we say that x ∈ Rn is a (real) ED critical point
of y ∈ Rn relative to a set V ⊂ Rn (not necessarily a variety) if x is a smooth point
of V and y − x lies in the normal space to V at x; see Definition 2.1 for details.
Our main result shows that one can always obtain the ED critical points of an
orthogonally invariant matrix set by restricting to diagonal matrices, or equivalently,
to an absolutely symmetric set obtained from the singular values of the matrices.
In the last section, we explore the connection between ED critical points and the
critical points in the sense of [12] that happen to be real, a surprisingly subtle topic.
In particular, ED critical point calculations often help to understand EDdegree(V),
when V is a variety.

Sets constrained via their singular values are numerous in applications. Define
E ⊆ R3×3 to be the set of rank deficient matrices with two equal singular values:

(1.2) E := {X ∈ R3×3 : σ1(X) = σ2(X), σ3(X) = 0}.

A matrix X ∈ E is called an essential matrix in 3D computer vision and represents
a pair of calibrated pinhole cameras [17, Chapter 9]. The set E also happens to
be a real variety cut out by the following ten cubic equations in the entries of
X [14, Proposition 4]:

det(X) = 0, 2XX>X − tr(XX>)X = 0.(1.3)

Observe that E is orthogonally invariant as membership of a matrix X in E depends
only on its singular values. We will show that one can obtain the ED critical points
of E from the simpler set E3,2 of vectors in R3 with one coordinate zero and the
other two equal in absolute value.

The idea of studying orthogonally invariant matrix sets M ⊆ Rn×t via their
diagonal restrictions S = {x : Diagx ∈M} is not new, and goes back at least to von
Neumann’s theorem on unitarily invariant matrix norms [30]. In recent years, the
general theme has become clear: various analytic properties of M and S are in one-
to-one correspondence. This philosophy is sometimes called the “transfer principle”;
see for instance, [8]. For example, M is Cp-smooth around a matrix X if and only
if S is Cp-smooth around σ(X) [6,21,27,29]. Other properties, such as convexity [9],
positive reach [7], partial smoothness [6], and Whitney conditions [13] follow the
same paradigm. We note in passing that the setting of eigenvalue constrained sets
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of nonsymmetric matrices is more complicated; see e.g. [3, 23]. In the current work,
we derive a transfer theorem for the ED critical points of an orthogonally invariant
matrix set M and illustrate it on several examples. The manuscripts [7, 22, 24] play
a central role in our work. The transfer paradigm has many useful features. The
first is that in many instances, the calculation over the set S ⊆ Rn is simpler than
the original one over M. This can make the formulas for the number of ED critical
points ofM much more transparent as compared to the direct calculation in matrix
space. The case of Rn×tr is an example of this. Secondly, our method focuses on
(real) ED critical points as opposed to all complex critical points in the setting
of algebraic varieties. This is useful in applications and allows us to gauge the
difference between the real and complex situations (under appropriate conditions).

This paper is structured as follows. In Section 2 we establish basic notation and
define the key notion of ED critical points of a set in Rn with respect to a data
point y. Then in Section 3 we derive our main theorem that transfers the study of
ED critical points of an orthogonally invariant set of matrices to that of its diagonal
restriction. Section 4 illustrates the technique on some concrete examples deriving
formulas for the number of ED critical points in each case. Finally in Section 5 we
establish the relationships between our work and the results in [12], by restricting
to algebraic varieties. In particular, we compare our formulas to those for EDdegree
in several instances. We note in passing, that many of the results in the paper also
hold for complex matrices with respect to the standard Hermitian inner product.

2. ED critical points of subsets of Rn

Throughout this paper we consider the n-dimensional Euclidean space Rn, with
a fixed orthonormal basis. Let 〈·, ·〉 denote the inner product in this setting, and
‖ · ‖ denote the induced norm. The distance and the projection of a (data) point
y ∈ Rn onto a subset S ⊆ Rn, are defined by

distS(y) := inf
x∈S
‖y − x‖, and

projS(y) := {x ∈ S : distS(y) = ‖y − x‖}.
Computing the distance of y to S amounts to solving the optimization problem:

inf
x∈S

1

2
‖y − x‖2 = inf

x∈S

1

2

n∑
i=1

(yi − xi)2.(2.1)

A classical first-order necessary condition for a putative point x ∈ S to be optimal
for (2.1) is that the gradient of the object function, namely x− y, makes an acute
angle with every vector v in the tangent cone1

TS(x) := R+

{
lim
zi→x

zi − x
‖zi − x‖

: zi ∈ S
}
.

One can regard such points as generalized critical points of the distance minimization
problem (2.1). On the other hand, in order to compare and unify our work with
that in [12], we will impose an extra smoothness condition on a point x ∈ S in order
for it to be considered critical for (2.1). To this end, throughout the manuscript,
we fix p ∈ {2, 3, . . . ,∞, ω}, and say that a point x ∈ S is Cp-smooth if there is a
neighborhood Ω of x such that S ∩ Ω is an embedded Cp-smooth manifold (recall
that Cω means real analytic). In this case, the tangent cone TS(x) is the usual

1If x is an isolated point of S, then TS(x) is declared to consist only of the origin.
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Figure 1. A parabola in the plane with its evolute or ED discriminant.

tangent space in the sense of differentiable manifolds, and the criticality condition
above amounts to the inclusion y − x ∈ NS(x), where NS(x) denotes the normal
space to S at x — the orthogonal complement of TS(x).

From now on we abbreviate “Cp-smooth” to “smooth”. We will use S∗ to denote
the set of all smooth points of S. Here is then our main definition, attuned to the
one considered in [12].

Definition 2.1 (ED critical points). Consider a set S ⊆ Rn and a point y in Rn.
A point x ∈ S is an ED critical point of y on S if the following conditions hold:

(i) x ∈ S∗, and
(ii) y − x ∈ NS(x).

The symbol CS(y) will denote the set of all ED critical points of y on S, while the

cardinality of CS(y) will be denoted by C#
S (y).

By definition, all ED critical points of y on S are real and smooth. The number

of ED critical points C#
S (y) varies with y. For example, consider the parabola S

shown in Figure 1, with an additional curve called its ED discriminant or evolute.
All points y above the evolute have three ED critical points while below the evolute
they have one ED critical point. Since S is an algebraic variety, we can compute its
EDdegree which is three, i.e., SC has three distinct regular complex critical points
almost everywhere. We will comment more on the ED discriminant in the Appendix.

Letting Θ be the collection of all Lebesgue null subsets of Rn, the following
worst-case measure of criticality arises naturally:

C#(S) := inf
Γ∈Θ

sup
y∈Γc

C#
S (y),

where Γc is the set complement of Γ in the ambient space. Indeed, intuitively
if one believes that any single zero measure set Γ can be discarded, then C#(S)

measures the maximal value of C#
S (y) that has a non-negligible chance of being

encountered. For our purposes, one could think of C#(S) as a real analog of the
EDdegree considered in [12]. We discuss this further in Section 5.

We note in passing that this criticality measure can be infinite in pathological
situations (e.g. union of countably many co-centric circles in R2). On the other
hand, for structured sets, such as those that are semi-algebraic, this number is finite.

Proposition 2.2 (ED critical points of semi-algebraic sets). For any semi-algebraic
set S in Rn, the number C#(S) is finite.

Proof. Standard quantifier elimination shows that the set S∗ is semi-algebraic.
Define the manifolds Mi := {x ∈ S∗ : dim TS(x) = i} for i = 1, . . . , n. Again,
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quantifier elimination shows that the normal bundle

Ω :=
⊔
i

{(x, v) : x ∈Mi, v ∈ NMi(x)}

is a semi-algebraic subset of Rn × Rn having dimension n. Consider now the
mapping φ : Ω→ Rn defined by φ(x, v) = x+ v. Notice that CS(y) coincides with
the projection of the preimage φ−1(y) onto x. For dimensional reasons, there is a
full-measure set D ⊆ Rn so that for every y ∈ D the preimage φ−1(y) has finite
cardinality. Moreover, since preimages of a semi-algebraic map have a uniformly
bounded number of connected components (see e.g. [4, Theorem 3.12]), the quantity

C#
S (y) is uniformly bounded on D. The result follows. �

Next we consider ED critical points on a union of finitely many sets. Consider
a finite collection of sets {Si}i∈I in Rn and define the union U :=

⋃
i∈I Si. In

general, the two sets CU (y) and
⋃
i∈I CSi

(y) can be vastly different because of the
way the sets Si intersect. For instance, think of two half spaces whose union is Rn.
A simple situation in which more can be said is when locally around each critical
point x ∈ CU (y), the set U coincides with Si for some i ∈ I. In that situation, if
x ∈ CU (y) then x is also in CSi(y). An important situation in this paper is the case
of all Si being affine subspaces. We say that a finite collection of sets {Si}i∈I in Rn
is minimally defined if no Si is contained in any Sj for distinct indices i and j.

Proposition 2.3 (ED critical points of affine complexes). Consider a finite col-
lection of affine subspaces {Si}i∈I in Rn, that is minimally defined, and let U :=⋃
i∈I Si. Then we have

(2.2) U∗ = {x ∈ Rn : there exists unique i ∈ I with x ∈ Si}.
Consequently for any y ∈ Rn, we have

CU (y) =
⊔
i∈I

(
projSi

(y) ∩ U∗
)
,(2.3)

and the equality
C#(U) = |I|.

Proof. The inclusion ⊇ in (2.2) follows since the sets Si are affine. To see the reverse
inclusion, observe that the tangent cone to U at any point x coincides with the
union

⋃
i∈I: x∈Si

(Si−x). For x ∈ U∗, the cone TU (x) is itself a linear subspace, and

hence, by the minimality of the collection {Si}i∈I , there exists a unique index i ∈ I
satisfying x ∈ Si. This establishes (2.2). Equation (2.3) then follows immediately.

To see the last claim, consider the set

Z := {y ∈ Rn : ∃i ∈ I with projSi
(y) ∩ U∗ = ∅}.

We will show that Z is a finite union of proper affine subspaces of Rn. To see this,
consider a point y ∈ Z along with an index i ∈ I satisfying projSi

(y)∩U∗ = ∅. From
(2.2), we conclude that there exists j ∈ I, distinct from i, satisfying projSi

(y)∩Sj 6= ∅.
Thus y lies in the set S⊥i + (Si ∩ Sj). Since the collection {Si} is minimally defined,
the intersection Si ∩Sj has dimension strictly smaller than that of Si. Consequently
the affine space S⊥i + (Si ∩ Sj) has dimension strictly smaller than n. Taking the
union over all pairs of distinct indices i, j ∈ I, we deduce that Z is a finite union of

proper affine subspaces of Rn. Therefore, by (2.3), C#
U (y) = |I| for all y 6∈ Z which

proves that C#(U) = |I|. �
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Figure 2. the set E3,2

The following two elementary examples illustrate Proposition 2.3; these are
essentially the piecewise linear examples alluded to in the introduction. In the next
section, we will use them to obtain the ED critical points of the (nonlinear) matrix
sets Rn×tr and E . In what follows we set [n] := {1, . . . , n}.

Example 2.4 (Union of r-dimensional coordinate subspaces). For x ∈ Rn, define
the rank of x, denoted by rank(x), to be the number of nonzero coordinates of x.
Fix an integer r ∈ [n] and recall the set

(2.4) Rnr = {x ∈ Rn : rank(x) ≤ r}.

Define I to be the collection of distinct cardinality r subsets of [n]. Then |I| =
(
n
r

)
,

and

Rnr =
⋃
S∈I

span {ei}i∈S ,

where ei denotes the i’th coordinate vector in Rn. This representation of Rnr is
minimal and therefore, Proposition 2.3 implies the equality C#(Rnr ) = |I| =

(
n
r

)
.

Example 2.5 (k nonzero entries equal up to sign). Fix an integer k ∈ [n], and
let En,k be the set of points in Rn with the property that k of their coordinates
are equal in absolute value and the other n − k coordinates are zero. Note that
En,k can be written as the union of 2k−1

(
n
k

)
linear subspaces (minimally defined).

Proposition 2.3 then implies that C#(En,k) = 2k−1
(
n
k

)
. As a special case, the set

E3,2, which is a union of six lines in R3 (see Figure 2), satisfies C#(E3,2) = 6.

3. ED critical points of orthogonally invariant matrix sets

In this section we describe our main result which yields an elegant technique
for counting the ED critical points of orthogonally invariant matrix sets, based on
the tools established in [7,22,24]. Setting the notation, let Rn×t denote the set of
real n × t matrices, where we assume without loss of generality that n ≤ t. The
singular value map σ : Rn×t → Rn assigns to each matrix X ∈ Rn×t the vector of
its singular values σ(X) := (σ1(X), . . . , σn(X)) arranged in non-increasing order.
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The corresponding inverse map is defined as

σ−1(S) := {X ∈ Rn×t : σ(X) ∈ S} for any subset S of Rn.
We will be interested in subsets of Rn×t that are invariant under multiplication

on the left and right by orthogonal matrices. In what follows, we let Os denote the
group of real s× s orthogonal matrices.

Definition 3.1 (Orthogonal invariance).
A set M⊆ Rn×t is orthogonally invariant if

M = UMV > for all U ∈ On and V ∈ Ot.

An example of an orthogonally invariant matrix set is the essential variety

E = {X ∈ R3×3 : σ1(X) = σ2(X), σ3(X) = 0}
considered in the introduction. At first sight, E is a complicated set; it is a highly
nonlinear real variety cut out by the cubic polynomials in (1.3). Since orthogonally
invariant matrix sets are precisely those matrix sets for which membership is
determined solely by the singular values of its elements, the restriction of such sets
to the subspace of diagonal matrices plays an important role. Our strategy will
be to exploit this observation to calculate the ED critical points of orthogonally
invariant matrix sets.

A mapping π : [n] → {±1, . . . ,±n} is a signed permutation if the assignment
i 7→ |π(i)| is a permutation on [n] in the usual sense. We let Π±n denote the set of
signed permutations on [n]. Note that any signed permutation π ∈ Π±n induces a
linear map Rn → Rn which we also denote by π.

Definition 3.2 (Absolute symmetry). A set S ⊆ Rn is said to be absolutely
symmetric if

S = πS for all π ∈ Π±n .

For any set S ⊆ Rn, we call Π±nS := {πx : π ∈ Π±n and x ∈ S} the absolute
symmetrization of S.

For a vector x ∈ Rn, let Diagx ∈ Rn×t denote the matrix with x in its principal
diagonal and zeros elsewhere. If M⊆ Rn×t is orthogonally invariant, then the set
{x ∈ Rn : Diagx ∈ M} is absolutely symmetric, and we have the following basic
observation (see e.g. [24, Proposition 5.1]).

Theorem 3.3 (Diagonal Correspondence). A set M ⊆ Rn×t is orthogonally in-
variant if and only if there exists an absolutely symmetric set S ⊆ Rn such that
M = σ−1(S).

Thus the assignment σ−1 from the family of absolutely symmetric sets in Rn to
the family of orthogonally invariant sets in Rn×t is a bijection. As discussed in the
introduction, it so happens that various analytic properties of absolutely symmetric
sets S and orthogonally invariant sets σ−1(S) are in one-to-one correspondence;
see e.g. [6–9, 13, 21, 27, 29, 30]. This may seem somewhat surprising since σ is a
highly nonsmooth mapping; it is the absolute symmetry of the underlying set S that
makes up for the fact. As an illustration, we show in Theorem 3.4 how the transfer
principle for algebraicity can be used to see that the set of essential matrices E is
a variety, even without explicitly knowing its defining equations (1.3). The proof
is entirely analogous to the symmetric case in [8, Proposition 1.1]; we provide an
argument for completeness.
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Recall that a set V ⊆ Rn is called a real variety if there exist polynomials
f1, . . . , fs ∈ R[x1, . . . , xn] such that V = {x ∈ Rn : f1(x) = . . . = fs(x) = 0}. Note
that if x ∈ V, then

∑s
i=1 f

2
i (x) = 0, and conversely if a point x ∈ Rn satisfies∑s

i=1 f
2
i (x) = 0, then fi(x) = 0 for all i = 1, . . . , s, and hence, x ∈ V. Therefore, V

can be described as the set of real zeros of a single sum of squares polynomial with
real coefficients, which we call a defining polynomial of V.

Theorem 3.4 (Transfer of algebraicity). Suppose S ⊆ Rn is an absolutely symmetric
set. Then σ−1(S) ⊆ Rn×t is a real variety if and only if S is a real variety.

Proof. If σ−1(S) is a real variety, then S = {x ∈ Rn : Diagx ∈ σ−1(S)} is the
real variety cut out by the equations defining σ−1(S) when xij are set to zero for
all i 6= j. Suppose conversely that S is a real variety with defining polynomial

f ∈ R[x1, . . . , xn]. Consider the polynomial f̂(x) :=
∑
π∈Π±

n
f2(πx). Note that

f̂(x) is also a defining polynomial of S, and hence, σ−1(S) is the zero level set of

f̂ ◦ σ. To finish the proof, we just need to show that f̂ ◦ σ(X) is a polynomial in

the entries of X. To this end, since f̂ is invariant under sign changes, it is easy

to see that f̂ is a symmetric polynomial in the squares x2
1, . . . , x

2
n, that is we may

write f̂(x) = g(x2
1, . . . , x

2
n) for some symmetric polynomial g. By the fundamental

theorem of symmetric polynomials (see e.g. [25]) we may write g as a polynomial of
elementary symmetric polynomials ε1, . . . , εn. On the other hand, the expressions
εi(σ

2
1(X), . . . , σ2

n(X)) coincide with the coefficients of the characteristic polynomial
of X>X and are hence, polynomial expressions in the entries of X. �

Another useful illustration of transfer principles concerns the distance to orthogo-
nally invariant matrix sets. Recall that for a set S ⊆ Rn, the distance and projection
of a point y ∈ Rn to (respectively, onto) S are defined by distS(y) := infx∈S ‖y−x‖,
and projS(y) := {x ∈ S : distS(y) = ‖y− x‖}. (The distance and the projection in
the matrix space Rn×t are defined analogously with respect to the Frobenius norm

‖Y ‖ :=
√∑

i,j Y
2
ij .) Then for an absolutely symmetric set S ⊆ Rn, the following

holds [7, Proposition 8]:

(3.1) distσ−1(S)(Y ) = distS(σ(Y )).

This in turn implies the following result, which was essentially proved in [7, Proposi-
tion 8], though not formally recorded. We provide a proof sketch for completeness.

Proposition 3.5 (Projections onto orthogonally invariant matrix sets). If S ⊆ Rn
is an absolutely symmetric set, then for any matrix Y ∈ Rn×t , the projection
projσ−1(S)(Y ) is precisely the set{

U(Diagx)V > : U ∈ On, V ∈ Ot where
Y = U(Diag σ(Y ))V >,
x ∈ projS(σ(Y ))

}
.(3.2)

Proof. Consider first matrices U ∈ On, V ∈ Ot with Y = U(Diag σ(Y ))V > and a
vector x ∈ projS(σ(Y )). Define X := U(Diagx)V > and observe the equalities:

‖X − Y ‖ = ‖x− σ(Y )‖ = distS(σ(Y )) = distσ−1(S)(Y ),

where the last equality follows from (3.1). Hence the inclusion X ∈ projσ−1(S)(Y )

is valid, as claimed. Conversely, for any matrix X ∈ projσ−1(S)(Y ) observe

distσ−1(S)(Y ) = ‖X − Y ‖ ≥ ‖σ(X)− σ(Y )‖ ≥ distS(σ(Y )),
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where the first inequality follows from the Von Neumann’s trace inequality [18, p.
182]; see also [24, Theorem 4.6]. Equation (3.1) implies equality throughout. In
particular we get σ(X) ∈ projS(σ(Y )). Moreover, applying the equality characteri-
zation in the trace inequality [24, Theorem 4.6], we conclude that X and Y admit
a simultaneous ordered singular value decomposition, that is, there exist matrices
U ∈ On, V ∈ Ot with Y = U(Diag σ(Y ))V > and X = U(Diag σ(X))V >. This
completes the proof. �

A consequence of Proposition 3.5 is a convenient representation of the normal
space at a point in an orthogonally invariant manifold. First of, the set σ−1(S) is
smooth around X if and only if S is smooth around σ(X) (see e.g. [6, Theorem 2.4]).
Next recall that at any C2-smooth point x of a set M , the following equivalence
holds:

z ∈ NM (x) ⇐⇒ {x} = projM (x+ λz) for some λ > 0.

Proposition 3.5 and a short computation implies that at any smooth point X of
σ−1(S) the following formula holds:

Nσ−1(S)(X) =

{
U(Diag z)V > : U ∈ On, V ∈ Ot with

X = U(Diagσ(X))V >,
z ∈ NS(σ(X))

}
.

A more general expression without smoothness assumptions can be found in [24,
Theorem 7.1]. Using the above facts, we now derive a transfer principle for ED
critical points which is the main result of this section. The proof uses the following
lemma.

Lemma 3.6 (Transfer of Lebesgue null sets). Consider an absolutely symmetric
set S ⊆ Rn. Then S is Lebesgue null if and only if σ−1(S) is Lebesgue null.

We have placed the proof of the lemma above at the end of the section so as to
not stray from the narrative.

Theorem 3.7. (ED critical points of orthogonally invariant matrix sets)
Consider an absolutely symmetric set S ⊆ Rn and a matrix Y ∈ Rn×t along with a

singular value decomposition Y = U(Diagσ(Y ))V
>

. Suppose moreover, that Y has
all distinct singular values. Then for the orthogonally invariant set M := σ−1(S),
we have

(3.3) CM(Y ) = {U
(
Diagω

)
V
>

: ω ∈ CS(σ(Y ))}.

Consequently, we also obtain the equality C#(M) = C#(S).

Proof. Consider a critical point X ∈ CM(Y ). Then there exist orthogonal matrices
U and V , and a vector z ∈ NS(σ(X)) satisfying

X = U(Diagσ(X))V > and Y = X + U(Diag z)V >.

Hence we deduce
Y = U(Diag (σ(X) + z))V >.

By uniqueness of singular values and singular vectors, there exists a signed permu-
tation matrix π : Rn → Rn satisfying

σ(Y ) = π(σ(X)) + π(z).

On the other hand, it is easy to verify the inclusion π(z) ∈ NS(πσ(X)). Therefore,
we obtain π(σ(X)) ∈ CS(σ(Y )).
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Define now the extended signed permutation matrix π̂ :=

[
π 0
0 I

]
∈ Rt×t. Observe

then the equality

Y = U(Diagπ−1(σ(Y )))V > = (Uπ)(Diagσ(Y ))(V π̂)>.

Changing the left and the right singular vector pairs in U and in V by the same sign
change in the first place, if needed, we can ensure Uπ = U and V π̂ = V . Hence,

X = U(Diagσ(X))V > = U(Diagπ(σ(X)))V
>
,

as claimed.
Now to prove the reverse inclusion, consider a point ω ∈ CS(σ(Y )). Thus there

exists a vector z ∈ NS(ω) satisfying

σ(Y )− ω = z.

Choose a signed permutation π so that π(ω) is nonnegative and nonincreasing.
Observe then that

π(σ(Y ))− π(ω) = π(z) ∈ NS(π(ω)).

Defining

X := U(Diagω)V
>

= (Uπ)(Diagπ(ω))(V π̂)>,

we deduce

X + (Uπ)(Diagπ(z))(V π̂)> = (Uπ)(Diagπ(σ(Y )))(V π̂)> = Y.

The inclusion X ∈ CS(Y ) follows. This establishes equation (3.3).
Define now the set

∆ := {x ∈ Rn : |xi| = |xj | for some indices i 6= j}.

Consider a Lebesgue null set Γ ⊆ Rn. Then clearly the absolutely symmetric set

Γ̂ := ∆ ∪ Π±nΓ is Lebesgue null as well. Lemma 3.6 shows that σ−1(Γ̂) is also
Lebesgue null. Note for all π ∈ Π±n and y ∈ Rn, one has CS(πy) = πCS(y) and

hence C#
S (πy) = C#

S (y). Combining these observations, we obtain

C#(M) ≤ sup
Y ∈σ−1(Γ̂c)

C#
M(Y ) = sup

y∈Γ̂c

C#
S (y) ≤ sup

y∈Γc

C#
S (y),

where the middle equality follows from equation (3.3). Since Γ was an arbitrary null
set, we deduce C#(M) ≤ C#(S).

To see the reverse inequality, consider a Lebesgue null set Γ ⊆ Rn×t. Consider
the following subset of Γ:

Γ̂ := {Y ∈ Γ : UY V > ∈ Γ for all U ∈ On, V ∈ Ot}.

Clearly Γ̂ is an orthogonally invariant Lebesgue null set. Now trivially we have

sup
Y ∈Γ̂c

C#
M(Y ) ≥ sup

Y ∈Γc

C#
M(Y ).

On the other hand, it is easy to verify the equation CM(UY V >) = U(CM(Y ))V >

and thus, C#
M(UY V >) = C#

M(Y ) for all Y ∈ Rn×t and U ∈ On, V ∈ Ot. Hence

sup
Y ∈Γ̂c

C#
M(Y ) = sup

Y ∈Γc

C#
M(Y ).
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Notice Γ̃ := Γ̂ ∪ σ−1(∆) is also a Lebesgue null orthogonally invariant set. Hence
we deduce

sup
Y ∈Γc

C#
M(Y ) ≥ sup

Y ∈Γ̃c

C#
M(Y ) = sup

y∈σ(Γ̃)c
C#
S (y) ≥ C#(S),

where the middle equality follows from equation (3.3) and last inequality follows
from Lemma 3.6. Since Γ was an arbitrary Lebesgue null set, we deduce the reverse
inequality C#(M) ≥ C#(S), and hence equality, as claimed. �

The assumption that singular values of the data point Y are distinct is essential
in Theorem 3.7 as the following example shows.

Example 3.8 (Nondistinct singular values). Consider the orthogonally invariant
set M = {X ∈ R2×2 : det(X) = 0}. We may write M = σ−1(S) where
S := {(x1, x2) ∈ R2 : x1x2 = 0} is absolutely symmetric. Then CS((1, 1)) =
{(1, 0), (0, 1)}. On the other hand, one can verify that uu> ∈ CM(I2) for each
u ∈ R2 of norm one, where I2 is the 2× 2 identity matrix.

We now apply Theorem 3.7 to our two running examples.

Example 3.9 (Matrices of rank at most r). Fix r ≤ n and recall the orthogonally
invariant set

Rn×tr = {X ∈ Rn×t : rank(X) ≤ r}.
This set is a determinantal variety cut out by the (r + 1) × (r + 1) minors of a
symbolic n× t matrix. One sees that σ−1(Rnr ) = Rn×tr where Rnr is the absolutely
symmetric set defined in (2.4). Theorem 3.7 and Example 2.4 together imply that

C#(Rn×tr ) = C#(Rnr ) =

(
n

r

)
.

This number is also the ED degree of Rn×tr (cf. [12, Example 2.3]); we will revisit
this point in Section 5. In particular, the ED critical points of a general data matrix
Y , with singular value decomposition Y = U(Diag σ(Y ))V >, are the

(
n
r

)
matrices

obtained by setting to zero all possible choices of n−r singular values in this singular
value decomposition. The matrix

U (Diag (σ1(Y ), . . . , σr(Y ), 0, . . . , 0︸ ︷︷ ︸
n−r

)) V >

is a nearest element of Rn×tr to Y . This is precisely the statement of the classical
Eckart-Young theorem.

Example 3.10 (Essential variety). The essential variety E defined in (1.2) is
orthogonally invariant with E = σ−1(E3,2) where E3,2 is the absolutely symmetric
set defined in Example 2.5. Then by Theorem 3.7 and Example 2.5,

C#(E) = C#(E3,2) = 6.

Furthermore, for a matrix Y ∈ R3×3 along with a singular value decomposition
Y = U(Diagσ(Y ))V >, by (3.2), the matrix

U

(
Diag

(
σ1(Y ) + σ2(Y )

2
,
σ1(Y ) + σ2(Y )

2
, 0

))
V >

is a nearest element of E to Y . This is precisely Hartley’s result [16, Theorem 5]
which is well known in the computer vision community. The six ED critical points
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of a general Y = U(Diag σ(Y ))V > are the matrices U(Diag x)V > where x varies
over the following vectors:(

σ1(Y )+σ2(Y )
2

, σ1(Y )+σ2(Y )
2

, 0
)
,

(
σ1(Y )−σ2(Y )

2
, −σ1(Y )+σ2(Y )

2
, 0
)
,(

σ1(Y )+σ3(Y )
2

, 0, σ1(Y )+σ3(Y )
2

)
,

(
σ1(Y )−σ3(Y )

2
, 0, −σ1(Y )+σ3(Y )

2

)
,(

0, σ2(Y )+σ3(Y )
2

, σ2(Y )+σ3(Y )
2

)
,

(
0, σ2(Y )−σ3(Y )

2
, −σ2(Y )+σ3(Y )

2

)
.

We end the section with the proof of the lemma evoked in the proof of Theorem 3.7.

Proof of Lemma 3.6. Before we get to the main part of the proof, we need some
notation. To this end, define Otn to be the set of t× n matrices with orthonormal

columns. Note that Otn is a smooth manifold of dimension nt − n(n+1)
2 , and is

called a Stiefel manifold; see for example [2, Proposition A.4]. In particular On is a

manifold of dimension n(n−1)
2 . We deduce that the product manifold On×Otn×Rn

has dimension exactly nt, same as Rn×t. For any vector x ∈ Rn let sDiag x
denote the n× n diagonal matrix with x on the diagonal. Define now the mapping
Γ: On ×Otn × Rn → Rn×t by setting Γ(U, V, x) = U(sDiag x)V >. Notice that for
the absolutely symmetric set S, we have equality Γ(On ×Otn × S) = σ−1(S).

Suppose now that S is a Lebesgue null set. Then clearly the set On ×Otn × S
is Lebesgue null in the manifold On × Otn × Rn. Since Γ is smooth, the image
Γ(On ×Otn × S), which coincides with σ−1(S), is Lebesgue null Rn×t, as claimed.
Conversely, suppose that σ−1(S) is Lebesgue null. It is well-known that Γ is a local
diffeomorphism on an open full-measure subset of the domain manifold On×Otn×Rn.
To see this quickly, define the set

∆ = {x ∈ Rn : |xi| = |xj | for some indices i 6= j}.

Observe that since Γ is a semi-algebraic map, we may stratify On × Otn × ∆c

into finitely many smooth manifolds Mi so that the restriction of Γ to each Mi

has constant rank. Suppose now for the sake of contradiction that the derivative
of Γ has deficient rank on some maximal dimensional manifold Mi. Then by
the constant rank theorem [20, Theorem 5.13], there exists a nontrivial smooth
path (U(t), V (t), x(t)) in Mi so that Γ is constant on the path, meaning that the
matrices U(t)(sDiag x(t))V (t)> are equal for all t. On the other hand, taking
into account that the coordinates of x(t) are distinct and appealing to uniqueness
of singular values and singular vectors, we obtain a contradiction. Hence Γ is a
local diffeomorphism on an open full measure subset of On ×Otn × Rn. It follows
immediately that S is Lebesgue null, since otherwise the image Γ(On × Otn × S)
would fail to be Lebesgue null. This completes the proof. �

4. Applications

We now apply the techniques developed in the last section to calculate and count
the ED critical points of several orthogonally invariant matrix sets.

Example 4.1 (Matrices orthogonally equivalent to a given matrix). Fix a matrix
A ∈ Rn×t. We say X ∈ Rn×t is orthogonally equivalent to A if X = UAV > for some
U ∈ On and V ∈ Ot. Let MA ⊆ Rn×t be the set of matrices that are orthogonally
equivalent to A. Then MA is orthogonally invariant and MA = σ−1(σ(A)). By
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Theorem 3.7,

C#(MA) = |Π±n {σ(A)}| = 2n
n!

n1! . . . nk!
where σ(A) = (σ1, . . . , σ1︸ ︷︷ ︸

n1

, . . . , σk, . . . , σk︸ ︷︷ ︸
nk

).

Example 4.2 (Real orthogonal group). The real orthogonal group On is a special
case of the previous example because On is the set of n× n real matrices that are
orthogonally equivalent to the n× n identity matrix, namely,

On = σ−1((1, . . . , 1︸ ︷︷ ︸
n

)).

Hence C#(On) = 2n which is also the ED degree of On (cf. [11, Theorem 3.2]).
By Proposition 3.5, for any Y ∈ Rn×n with singular value decomposition Y =

U(Diagσ(Y ))V > where U, V ∈ On, one has UV > ∈ projOn(Y ). Moreover, if the
singular values of Y are distinct, then by Theorem 3.7, the set of critical points
of Y on On is {U(Diag x)V > : xi = ±1 ∀ i}. These results were also obtained by
Draisma and Baaijens [11] using algebraic methods.

Example 4.3 (Unit sphere of Schatten d-norm). The Schatten d-norm of a matrix
X ∈ Rn×t is defined as

‖X‖d :=

[
n∑
i=1

(σi(X))d

]1/d

.

Note the following fact: ‖UXV >‖d = ‖X‖d for any X ∈ Rn×t, U ∈ On, V ∈ Ot.
Hence the unit sphere of the Schatten d-norm

Fn,t,d := {X ∈ Rn×t : ‖X‖d = 1}
is orthogonally invariant. Assume d ≥ 2 is an even integer. One has Fn,t,d =
σ−1(Fn,d) where Fn,d is the affine Fermat hypersurface

Fn,d :=

{
x ∈ Rn :

n∑
i=1

xdi = 1

}
which is absolutely symmetric. Therefore, C#(Fn,t,d) = C#(Fn,d) for all t.

Consider the special case n = 2. For simplicity, we set Fd := F2,d. Then F2 is
the unit circle and C#(F2) = 2. Suppose d ≥ 4. For any y ∈ R2, a point x is an ED
critical point of y on Fd if and only if x lies on both Fd and the curve

γd := {x ∈ R2 : xd−1
1 (x2 − y2) = xd−1

2 (x1 − y1)}.(4.1)

The graph of γ4 is shown in Figure 3. By symmetry, we may assume that y1 > y2 > 0.
When y1 is small, the “optimal” points, m1,m2,m3,m4, on the pieces of γd in the
coordinate directions lie inside the curve Fd, namely,

mi ∈ {x ∈ R2 : xd1 + xd2 < 1}

for i = 1, . . . , 4. Hence, C#
Fd

(y) ≤ 8 for any point y except on a null set, and there is

an open set V in R2 such that C#
Fd

(y) = 8 for any y ∈ V . To sum up, by Theorem
3.7, we have

C#(F2,t,d) = C#(Fd) =

{
2 if d = 2

8 if d ≥ 4.
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Figure 3. The curves Fd and γd in Example 4.3 for d = 4

Example 4.4 (SL±n ). This example was considered in [11, Section 4]. Define the
orthogonally invariant set

SL±n := {X ∈ Rn×n : det(X) = ±1} = σ−1(Hn)

where Hn is the absolutely symmetric set defined as

Hn := {x ∈ Rn : x1 · · ·xn = ±1}.

Consider the special case n = 2. We evaluate C#(SL±2 ) by computing C#(H2).
The set H2 is a disjoint union of two hyperbolas:

H±2 := {x ∈ R2 : x1x2 = ±1}.

Since these hyperbolas are disjoint, for any y, one has

C#
H2

(y) = C#

H+
2

(y) + C#

H−
2

(y).

Notice that each of the sets CH±
2

(y) is defined by the roots of a univariate quartic.

Indeed,

CH+
2

(y) =

{(
x,

1

x

)
∈ R2 : q+

y (x) := x4 − x3y1 + xy2 − 1 = 0

}
and

CH−
2

(y) =

{(
x,
−1

x

)
∈ R2 : q−y (x) := x4 − x3y1 − xy2 − 1 = 0

}
.

By computing the trace forms of these quartics and applying Sylvester’s criterion
(see e.g. [28, Corollary 2.9]) we acquire these results:

C#
H2

(y) =

{
6 if D+(y) > 0 or D−(y) > 0

4 if D+(y) < 0 and D−(y) < 0

where the bivariate polynomials

D+(y) := −256 + 192y1y2 + 6y2
1y

2
2 + 4y3

1y
3
2 − 27y4

1 − 27y4
2
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Figure 4. Values of C#
H2

(y) for general y, in Example 4.4

and

D−(y) := −256− 192y1y2 + 6y2
1y

2
2 − 4y3

1y
3
2 − 27y4

1 − 27y4
2

are the discriminants of q+
y and q−y respectively; see Figure 4. Then by Theorem

3.7, we know

C#(SL±2 ) = 6.

5. Connections to the Euclidean distance degree

As mentioned in the introduction, this work was inspired by the general framework
in [12] for counting the critical points of the squared Euclidean distance function on
an algebraic variety. In this section we comment on the relationships between our
results and those in [12], beginning with some basic facts about real varieties [1, 31].

Consider a real variety V ⊆ Rn whose vanishing ideal is generated by the
polynomials f1, . . . , fs ∈ R[x1, . . . , xn]. Then the Zariski closure of V is VC := {x ∈
Cn : f1(x) = . . . = fs(x) = 0}, the smallest complex variety containing V. The
real part of VC, i.e., VC ∩ Rn, is precisely V and hence, the vanishing ideal of VC in
C[x1, . . . , xn] is also generated by f1, . . . , fs. Also, both V and VC have the same

dimension over R and C respectively. Recall that if VC =
⋃t
j=1Wj is a minimal

irreducible decomposition of VC, then for any j, the real part of Wj , denoted by U j ,
is an irreducible real variety whose Zariski closure is Wj . Moreover, V =

⋃t
j=1 U j is

a minimal irreducible decomposition of V. For simplicity, in the rest of this section
we will assume that VC is irreducible.

Denote by J(f) the s × n Jacobian matrix whose (i, j)-entry is ∂fi
∂xj

. Then a

point x ∈ VC is said to be regular if the rank of the Jacobian matrix evaluated at x,
rank(J(f)(x)), equals the codimension of VC. Let Vreg

C denote the regular points
of VC. It is known that Vreg

C is a Zariski open subset of VC, and its complement
is a proper subvariety in VC, denoted as Sing(VC), and called the singular locus of
VC. The set Vreg of regular points in V is precisely the set of real points in Vreg

C .
However, while Vreg

C is dense in VC in the Euclidean topology, Vreg may not be dense
in V or even V∗, the set of smooth (i.e., Cp-smooth) points in V. The following
example illustrates this behavior.
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Figure 5. The Cartan umbrella

Example 5.1 (Cartan umbrella). The Cartan umbrella is the real variety

V = {(x1, x2, x3) ∈ R3 : x3(x2
1 + x2

2)− x3
1 = 0}.

Here VC is irreducible, as is V. On the other hand, V is also the union of a surface
(which is not a real variety) and the x3-axis (Figure 5). No point on the x3-axis is
regular while all points on the x3-axis, except the origin, are smooth.

This example shows an important distinction between smooth and regular points
on a real variety. Our goal in this section is to elaborate on this difference in the
context of critical points as defined in [12]. Recall that the normal space at a regular

point x ∈ VC, denoted as N alg
VC (x), is the row space of J(f)(x). Given a data point

y ∈ Cn, and a real variety V, the authors of [12] study the set of critical points

Creg
VC (y) :=

{
x ∈ Vreg

C : y − x ∈ N alg
VC (x)

}
.(5.1)

Note that in the above algebraic setting, even though our input is a real variety
V ⊆ Rn, there is a natural passage into the complex numbers; the real variety V
is replaced by the complex variety VC, the data point can be any y ∈ Cn, and the
critical points of y are regular points in VC. This complexification yields the first key
result in [12], namely that for a fixed V, the number of critical points of a general
data point y ∈ Cn is a constant. In other words, the cardinality of Creg

VC (y), which

we will denote as C# reg
VC (y), is a constant. This constant is called the Euclidean

distance degree (EDdegree) of V in [12]. The phrase “general data point” refers

to the fact that C# reg
VC (y) is different from EDdegree(V) only if y lies on certain

proper subvarieties in Cn which we will describe in the Appendix. We remark that
if VC is reducible, then EDdegree(V) is the sum of the ED degrees of its irreducible
components.

Our results in this paper provide a method to compute the (smooth) ED critical
points of a real orthogonally invariant set of matrices. We did not require this set
to be a real variety, and the notion of smoothness (of critical points) was geometric
and not algebraic. Therefore, in order to connect our work to that in [12], we
need to restrict to real varieties V ⊆ Rn, data points y ∈ Rn, and understand the
relationships between the following two sets of critical points of y:

• CV(y), the set of ED critical points of y on V as in Section 2, and
• Creg

V (y), the set of regular critical points of y on V.
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As usual we denote the cardinalities of these sets by C#
V (y) and C# reg

V (y) respectively.
Also, note that Creg

V (y) = Creg
VC (y) ∩ Rn = Creg

VC (y) ∩ V . Since a regular point of V is
Cp-smooth for p ∈ {∞, ω}, for any y we have,

Creg
V (y) ⊆ CV(y) and so, C# reg

V (y) ≤ C#
V (y).(5.2)

However, for a given y, this inequality can be strict since there can be smooth points
on V that are not regular as we saw in the Cartan umbrella. In fact, in the Cartan
umbrella there is a dense set of y for which the inequality in (5.2) is strict since for
any y with y3 6= 0, there will be an ED critical point on the x3-axis.

Moving on to invariants of the entire set V , on the one hand, we have the quantity

C#(V) = infΓ∈Θ supy∈Γc C
#
V (y) from Section 2, and on the other hand, we have the

constant EDdegree(V) which is an upper bound to C# reg
VC (y) whenever Creg

VC (y) is
finite. Since the inequality in (5.2) can be strict, it is not clear that the number
C#(V) is always a lower bound to EDdegree(V). However, it is true under certain
conditions.

Theorem 5.2. If V is a real variety such that Vreg is Euclidean dense in V∗, then
we have the inequality C#(V) ≤ EDdegree(V).

This is an immediate consequence of the following lemma. Note that the Cartan
umbrella does not satisfy the assumptions of Theorem 5.2.

Lemma 5.3. Consider a real variety V ⊆ Rn (possibly reducible) such that Vreg is
Euclidean dense in V∗. Then there is an open set of points y ∈ Rn such that

for any irreducible component W of V, C# reg
WC

(y) = EDdegree(W),(5.3)

C#
V (y) = C#(V), and(5.4)

CV(y) ⊆ Creg
V (y).(5.5)

Proof. Fix an irreducible component W of V. Then from [12, Theorem 4.1] the set

of all y ∈ Cn for which C# reg
WC

(y) 6= EDdegree(W) lies in a proper subvariety D in
Cn. Consider the real variety DR := D ∩ Rn which contains all the real points y

with C# reg
WC

(y) 6= EDdegree(W). The Zariski closure of DR is a subvariety of D with
complex dimension equal to the real dimension of DR. Therefore, the real dimension
of DR is smaller than n, and hence DR is a proper subvariety in Rn. In particular,
the complement of DR in Rn is an open full measure set. Taking the intersection of
all such open full measure sets as we vary over the irreducible components of V , we
still have an open full measure set, and any point y in this set satisfies (5.3).

Since V is a variety, one has C#(V) <∞ by Proposition 2.2. Then by quantifier

elimination, the set {y ∈ Rn : C#
V (y) = C#(V)} is semialgebraic. Moreover, this

set cannot be Lebesgue null by the definition of C#(V). Therefore, it must contain
an open subset. Hence (5.4) holds for all y in some open set.

We now show that (5.5) holds for any point y in an open full measure set, which
will prove the lemma. For any i = 0, 1, . . . , n consider the submanifold

Mi := {x ∈ V∗ : dim(TV(x)) = i}.
These submanifolds Mi clearly partition V∗. We first claim Mi ∩ cl(Mj) = ∅ for all
distinct pairs i, j ∈ [n]. Note the symbol “cl” here denotes the Euclidean closure.
Indeed, if there existed some point x ∈Mi ∩ cl(Mj), then we would deduce for all
points y ∈ Mj sufficiently near x, the equality j = dim TV(y) = dim TV(x) = i, a
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contradiction. The middle equality follows from the fact that dim TV(·) is constant
in a neighborhood of x in V.

Now since Vreg is dense in V∗, the inclusion V∗ ⊆ cl(Vreg) =
⋃
i cl(Vreg ∩Mi)

holds. We claim that for any i, the set Vreg ∩Mi is Euclidean dense in Mi, namely,
Mi ⊆ cl(Vreg∩Mi). To see this, it suffices to establish Mi∩cl(Vreg∩Mj) = ∅ for any
j 6= i. This follows immediately by observing Mi ∩ cl(Vreg ∩Mj) ⊆Mi ∩ cl(Mj) = ∅.
It follows that for any i, the strict inequality

dim(Mi \ (Vreg ∩Mi)) < dimMi

holds (see [5, Proposition 3.16]). By dimension arguments, the dimension of the set⋃
x∈Mi\(Mi∩Vreg)

(x+NV(x))

is strictly less than n. In particular, its interior is empty. Taking the union over i,⋃
x∈V∗\Vreg

(x+NV(x))

also has empty interior. Any y which is not in this set satisfies (5.5). �

We conclude the paper by comparing C#(V) and EDdegree(V) in some of the
examples we saw in Section 3 and Section 4.

Example 5.4 (SL±n ). Every point in the Zariski closure of SL±n (c.f. Example 4.4)
is regular. Therefore by Theorem 5.2, we obtain

C#(SL±n ) ≤ EDdegree(SL±n ) = n2n.

The formula for EDdegree was derived in [11]. We saw in Example 4.4 that strict
inequality holds when n = 2.

Example 5.5 (Unit sphere of Schatten d-norm). Consider the set F2,2,d ⊆ R2×2

given in Example 4.3. For any d the Zariski closure of F2,2,d is regular everywhere.
By Theorem 5.2,

EDdegree(F2,2,d) ≥ C#(F2,2,d) = 8,

for d ≥ 4. From Macaulay2 [15] computations, EDdegree(F2,2,d) equals 16, 34, 64, 98
when d = 4, 6, 8, 10 respectively. This suggests the gap between C#(F2,2,d) and
EDdegree(F2,2,d) increases with d.

Example 5.6. Let E be the essential variety from (1.2). It is an irreducible variety
of codimension three in R3×3 [10, Proposition 3.6]. By the transfer of smoothness
(see the paragraph after the proof of Proposition 3.5), we know E∗ = E \ {0}.
Moreover, a straightforward computation verifies that any non-zero essential matrix
is a regular point of E . Thus Ereg = E∗ = E \ {0}, and by Theorem 5.2, we have

(5.6) EDdegree(E) ≥ C#(E) = 6.

With completely different tools, but entirely motivated by this work, one can prove
the equality EDdegree(E) = 6. The details will be described in a forthcoming paper.
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Appendix A

The Cartan umbrella illustrates a yet unexplored feature of the EDdegree con-

cerning the exceptional loci of points y at which C# reg
VC (y) can be different from

EDdegree(V). We comment briefly on this topic which deserves further investigation.
For each y ∈ Cn, the set Creg

VC (y) is the variety of a polynomial ideal called the
critical ideal of y (see (2.1) in [12]), and typically, this variety has EDdegree(V)-many
distinct complex solutions. There are two ways in which the critical ideal of y can
have fewer distinct roots; the first is because of roots with multiplicity, and the
second is because a root may wander off into Sing(VC) due to closure issues. These
situations create two exceptional loci in the space of data points y. The locus of
y ∈ Cn for which the critical ideal has roots with multiplicity is called the ED
discriminant of VC, and is denoted as ΣVC . The ED discriminant is typically a
hypersurface in Cn and can be computed from the equations of V (see Section 7
in [12] for algorithms and examples). We saw the ED discriminant of the parabola
{(x1, x2) ∈ R2 : x2 = x2

1} in Figure 1. It is the curve defined by

16y3
2 − 27y2

1 − 24y2
2 + 12y2 − 2 = 0.

The second type of exceptional locus has not been studied in [12] and was
suggested to us by Bernd Sturmfels. To describe it, let us denote the copy of Cn
that contains VC as Cnx and the copy that contains the data points y as Cny . The
ED correspondence of VC, denoted as EVC and described in [12, Section 4], is the
Zariski closure of:

{
(x, y) ∈ Cnx × Cny : x ∈ Vreg

C , y ∈ Cn, x− y ∈ N alg
VC (x)

}
.(A.1)

By [12, Theorem 4.1], the ED correspondence is an irreducible variety of dimension n
in Cnx×Cny . It admits two natural projections πx and πy into Cnx and Cny respectively.
Over general y ∈ Cn, the projection πy : EVC → Cny has finite fibers of cardinality
equal to EDdegree(V). The exceptional locus we are looking for is the set of data
points y ∈ Cn that have critical points that fall into the singular locus Sing(VC).
This is precisely the Zariski closure of the set

πy
(
EVC ∩ (Sing(VC)× Cny )

)
(A.2)

which we call the ED data singular locus of VC, and denote by DVC . This affine
scheme deserves further study, and we illustrate both DVC and ΣVC for the Cartan
umbrella in Example A.1. Note that DVC is empty for the parabola in Figure 1
since its singular locus is empty. The upshot of the above discussion is that for all
y ∈ Rn \DVC but in a connected component of Rny \ ΣVC , the number of regular

critical points on V, C# reg
V (y), is a constant.

Example A.1 (Cartan umbrella continued). The ED discriminant of the Cartan
umbrella in Example 5.1 is a degree 12 surface in the space of data points given by
the following equation:
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Figure 6. The Cartan umbrella with its ED discriminant on the
left and ED data singular locus on the right.
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The EDdegree of the Cartan umbrella is seven. The ED discriminant partitions
R3 into two regions where the real regular critical points are either one or three,
while the number of ED critical points is two or four. In particular, for all y ∈ R3

for which the polynomial defining the ED discriminant is positive, we get three real
regular critical points.

The ED data singular locus, DVC , is the reducible surface in C3 defined by

(y2
1 + y2

2) · (4y4
1 + 8y2

1y
2
2 + 4y4

2 + 4y3
1y3 + 36y1y

2
2y3 + 27y2

2y
2
3) = 0.

(see Figure 6) The data point y = (−2,−1, 2) lies on DVC but not on ΣVC . The
critical ideal of this point has seven distinct complex roots but one of them is
singular. Among the remaining six roots, two are real and, (−2,−1, 2) lies in the
region where the polynomial defining ΣVC is positive.

Acknowledgments. We thank Jan Draisma, Giorgio Ottaviani, and Bernd
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