
THE LAURENT PHENOMENONSERGEY FOMIN AND ANDREI ZELEVINSKYAbstract. A composition of birational maps given by Laurent polynomi-als need not be given by Laurent polynomials; however, sometimes|quiteunexpectedly|it does. We suggest a uni�ed treatment of this phenomenon,which covers a large class of applications. In particular, we settle in the a�r-mative a conjecture of D. Gale and R. Robinson on integrality of generalizedSomos sequences, and prove the Laurent property for several multidimensionalrecurrences, con�rming conjectures by J. Propp, N. Elkies, and M. Kleber.Contents1. Introduction 12. The Caterpillar Lemma 43. One-dimensional recurrences 74. Two- and three-dimensional recurrences 115. Homogeneous exchange patterns 20References 211. IntroductionIn this paper, we suggest a uni�ed explanation for a number of instances in whichcertain recursively de�ned rational functions prove, unexpectedly, to be Laurentpolynomials. We begin by presenting several instances of this Laurent phenomenonestablished in the paper.Example 1.1. (The cube recurrence) Consider a 3-dimensional array(yijk : (i; j; k) 2 H)whose elements satisfy the recurrenceyi;j;k = �yi�1;j;kyi;j�1;k�1 + �yi;j�1;kyi�1;j;k�1 + 
yi;j;k�1yi�1;j�1;kyi�1;j�1;k�1 :(1.1)Here H can be any non-empty subset of Z3 satisfying the following conditions:if (i; j; k) 2 H, then (i0; j0; k0) 2 H whenever i � i0; j � j0; k � k0;(1.2) for any (i0; j0; k0) 2 H, the set f(i; j; k) 2 H : i � i0; j � j0; k � k0g is �nite.(1.3)Date: April 25, 2001.1991 Mathematics Subject Classi�cation. Primary 14E05, Secondary 05E99, 11B83.Key words and phrases. Laurent phenomenon, Somos sequence, Gale-Robinson conjecture.The authors were supported in part by NSF grants #DMS-0049063, #DMS-0070685 (S.F.),and #DMS-9971362 (A.Z.). 1



2 SERGEY FOMIN AND ANDREI ZELEVINSKYTheorem 1.2. Let Hinit = f(a; b; c) 2 H : (a � 1; b � 1; c � 1) =2 Hg. For every(i; j; k) 2 H, the entry yi;j;k is a Laurent polynomial with coe�cients in Z[�; �; 
]in the initial entries ya;b;c, for (a; b; c) 2 Hinit.The cube recurrence (with � = � = 
 = 1) was introduced by James Propp [10],who was also the one to conjecture Laurentness in the case when H � Z3 is givenby the condition i + j + k � 0; in this case Hinit consists of all (a; b; c) 2 H suchthat a + b + c 2 f0; 1; 2g. Another natural choice of H was suggested by MichaelKleber: H = Z3�0, in which case Hinit = f(a; b; c) 2 Z3�0 : abc = 0g.Example 1.3. (The Gale-Robinson sequence) Let p, q, and r be distinct positiveintegers, let n = p+ q + r, and let the sequence y0; y1; : : : satisfy the recurrenceyk+n = �yk+pyk+n�p + �yk+qyk+n�q + 
yk+ryk+n�ryk :(1.4)David Gale and Raphael Robinson conjectured (see [7] and [8, E15]) that everyterm of such a sequence is an integer provided y0 = � � � = yn�1 = 1 and �; �; 
 arepositive integers. Using Theorem 1.2, we prove the following stronger statement.Theorem 1.4. As a function of the initial terms y0, : : : , yn�1, every term of theGale-Robinson sequence is a Laurent polynomial with coe�cients in Z[�; �; 
].We note that the special case � = � = 
 = 1, p = 1, q = 2, r = 3, n = 6 (resp.,r = 4, n = 7) of the recurrence (1.4) is the Somos-6 (resp., Somos-7) recurrence [7].Example 1.5. (Octahedron recurrence) Consider the 3-dimensional recurrenceyi;j;k = �yi+1;j;k�1yi�1;j;k�1 + �yi;j+1;k�1yi;j�1;k�1yi;j;k�2(1.5)for an array (yijk)(i;j;k)2H whose indexing set H is contained in the latticeL = f(i; j; k) 2 Z3 : i+ j + k � 0 mod 2g(1.6)and satis�es the following analogues of conditions (1.2){(1.3):if (i; j; k) 2 H, then (i0; j0; k0) 2 H whenever ji0 � ij+ jj0 � jj � k0 � k;(1.7) for any (i0; j0; k0) 2 H, the set f(i; j; k) 2 H : ji0 � ij+ jj0 � jj � k0 � kg(1.8) is �nite.Theorem 1.6. Let Hinit = f(a; b; c) 2 H : (a; b; c� 2) =2 Hg. For every (i; j; k) 2H, the entry yi;j;k is a Laurent polynomial with coe�cients in Z[�; �] in the initialentries ya;b;c, for (a; b; c) 2 Hinit.The octahedron recurrence on the half-latticeH = f(i; j; k) 2 L : k � 0g(1.9)was studied by W. H. Mills, D. P. Robbins, and H. Rumsey in their pioneeringwork [9] on the Alternating Sign Matrix Conjecture (cf. [1] and [10, Section 10] forfurther references); in particular, they proved the special case of Theorem 1.6 forthis choice of H.Example 1.7. (Two-term version of the Gale-Robinson sequence) Let p, q, and nbe positive integers such that p < q � n=2, and let the sequence y0; y1; : : : satisfythe recurrence yk+n = �yk+pyk+n�p + �yk+qyk+n�qyk :(1.10)



THE LAURENT PHENOMENON 3Using Theorem 1.6, one can prove that this sequence also exhibits the Laurentphenomenon.Theorem 1.8. As a function of the initial terms y0, : : : , yn�1, every term ym isa Laurent polynomial with coe�cients in Z[�; �].We note that in the special case � = � = 1, p = 1, q = 2, n = 5 (resp., n = 4),(1.10) becomes the Somos-5 (resp., Somos-4) recurrence [7].The last example of the Laurent phenomenon presented in this section is of asomewhat di�erent kind; it is inspired by [2].Example 1.9. Let n � 3 be an integer, and consider a quadratic formP (x1; : : : ; xn) = x21 + � � �+ x2n +Xi<j �ijxixj :De�ne the rational transformations F1; : : : ; Fn byFi : (x1; : : : ; xn) 7! (x1; : : : ; xi�1; P ��xi=0xi ; xi+1; : : : ; xn):(1.11)Theorem 1.10. For any sequence of indices i1; : : : ; im, the composition map G =Fi1 � � � � � Fim is given byG : x = (x1; : : : ; xn) 7! (G1(x); : : : ; Gn(x));where G1; : : : ; Gn are Laurent polynomials with coe�cients in Z[�ij : i < j].This paper is an outgrowth of [6], where we initiated the study of a new classof commutative algebras, called cluster algebras, and established the Laurent phe-nomenon in that context. Here we prove the theorems stated above, along with anumber of related results, using an approach inspired by [6]. The �rst step is toreformulate the problem in terms of generalized exchange patterns (cf. [6, De�ni-tion 2.1]), which consist of clusters and exchanges among them. The clusters aredistinguished �nite sets of variables, each of the same cardinality n. An exchangeoperation on a cluster x replaces a variable x 2 x by a new variable x0 = Px , whereP is a polynomial in the n�1 variables x�fxg. Each of the above theorems can berestated as saying that any member of the cluster obtained from an initial clusterx0 by a particular sequence of exchanges is a Laurent polynomial in the variablesfrom x0. Theorem 1.10 is explicitly stated in this way; in the rest of examplesabove, the rephrasing is less straightforward.Our main technical tool is \The Caterpillar Lemma" (Theorem 2.1), which es-tablishes the Laurent phenomenon for a particular class of exchange patterns (seeFigure 1). This is a modi�cation of the namesake statement [6, Theorem 3.2],and its proof closely follows the argument in [6]. (We note that none of the twostatements is a formal consequence of another.)In most applications, including Theorems 1.2 and 1.6 above, the \caterpillar"patterns to which Theorem 2.1 applies, are not manifestly present within the origi-nal setup. Thus, we �rst complete it by creating additional clusters and exchanges,and then apply the Caterpillar Lemma.The paper is organized as follows. The Caterpillar Lemma is proved in Sec-tion 2. Subsequent sections contain its applications. In particular, Theorems 1.2,1.4, 1.6, and 1.8 are proved in Section 4, while Theorem 1.10 is proved in Sec-tion 5. Other instances of the Laurent phenomenon treated in this paper include



4 SERGEY FOMIN AND ANDREI ZELEVINSKYgeneralizations of each of the following: Somos-4 sequences (Example 3.3), Elkies's\knight recurrence" (Example 4.1), frieze patterns (Example 4.3) and number walls(Example 4.4).We conjecture that in all instances of the Laurent phenomenon established in thispaper, the Laurent polynomials in question have nonnegative integer coe�cients.In other contexts, similar nonnegativity conjectures were made earlier in [4, 5, 6].Acknowledgments. We thank Jim Propp for introducing us to a number ofbeautiful examples of the Laurent phenomenon, and for very helpful comments onthe �rst draft of the paper. In particular, it was he who showed us how to deduceTheorem 1.8 from Theorem 1.6.This paper was completed during our stay at the Isaac Newton Institute forMathematical Sciences (Cambridge, UK), whose support and hospitality are grate-fully acknowledged. 2. The Caterpillar LemmaLet us �x an integer n � 2, and let T be a tree whose edges are labeled by theelements of the set [n] = f1; 2; : : : ; ng, so that the edges emanating from each vertexreceive di�erent labels. By a common abuse of notation, we will sometimes denoteby T the set of the graph's vertices. We will write t k��� t0 if vertices t; t0 2 T arejoined by an edge labeled by k.From now on, let A be a unique factorization domain (the ring of integers Zor a suitable polynomial ring would su�ce for most applications). Assume thata nonzero polynomial P 2 A [x1 ; : : : ; xn], not depending on xk , is associated withevery edge t k��� t0 in T . We will write t ���P t0 or t k���P t0 , and call P theexchange polynomial associated with the given edge. The entire collection of thesepolynomials is called a generalized exchange pattern on T . (In [6], we introduced amuch narrower notion of an exchange pattern; hence the terminology.)We �x a root vertex t0 2 T , and introduce the initial cluster x(t0) of n in-dependent variables x1(t0); : : : ; xn(t0). To each vertex t 2 T , we then associate acluster x(t) consisting of n elements x1(t); : : : ; xn(t) of the �eld of rational functionsA (x1 (t0); : : : ; xn(t0)). The elements xi(t) are uniquely determined by the followingexchange relations, for every edge t k���P t0:xi(t) = xi(t0) for any i 6= k;(2.1) xk(t)xk(t0) = P (x(t)).(2.2)(One can recursively compute the xi(t)'s, moving away from the root. Since theexchange polynomial P does not depend on xk, the exchange relation (2.2) doesnot change if we apply it in the opposite direction.)We next introduce a special class of \caterpillar" patterns, and state conditionson their exchange polynomials that will imply Laurentness.For m � 1, let Tn;m be the tree of the form shown in Figure 1.The tree Tn;m has m vertices of degree n in its \spine" and m(n�2)+2 verticesof degree 1. We label every edge of the tree by an element of [n], so that the nedges emanating from each vertex on the spine receive di�erent labels. We let theroot t0 be a vertex in Tn;m that does not belong to the spine but is connected toone of its ends. This gives rise to the orientation of the spine, with all the arrows
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Figure 1. The \caterpillar" tree Tn;m, for n = 4, m = 8pointing away from t0 (see Figure 1). We assign a nonzero exchange polynomialP 2 A [x1 ; : : : ; xn] to every edge t ��� t0 of Tn;m, thus obtaining an exchangepattern.For a rational function F = F (x; y; : : : ), we will denote by F jx g(x;y;::: ) theresult of substituting g(x; y; : : : ) for x into F . To illustrate, if F (x; y) = xy, thenF jx yx = y2x .Theorem 2.1. (The Caterpillar Lemma) Assume that a generalized exchange pat-tern on Tn;m satis�es the following conditions:For any edge � k���P �, the polynomial P does not depend on xk, and is not(2.3) divisible by any xi, i 2 [n].For any two edges � i���P � j��!Q �, the polynomials P and Q0=Qjxi=0(2.4) are coprime elements of A [x1 ; : : : ; xn].For any three edges � i���P � j��!Q � i���R � labeled i; j; i, we have(2.5) L �Qb0 � P = R��xj Q0xj ;where b is a nonnegative integer, Q0=Qjxi=0 , and L is a Laurentmonomial whose coe�cient lies in A and is coprime with P .Then each element xi(t), for i 2 [n], t 2 Tn;m , is a Laurent polynomial inx1(t0); : : : ; xn(t0), with coe�cients in A .(Note the orientation of edges in (2.4){(2.5).)Proof. Our argument is essentially the same as in [6, Theorem 3.2]. For t 2 Tn;m,let L(t) = A [x1 (t)�1; : : : ; xn(t)�1]denote the Laurent polynomial ring in the cluster x(t) with coe�cients in A . Weview each L(t) as a subring of the ambient �eld of rational functions A (x(t0)).In this notation, our goal is to show that every cluster x(t) is contained in L(t0).We abbreviate L0 = L(t0). Note that L0 is a unique factorization domain, soany two elements x; y 2 L0 have a well-de�ned greatest common divisor gcd(x; y)which is an element of L0 de�ned up to a multiple from the group L�0 of invertibleelements in L0; the group L�0 consists of Laurent monomials in x1(t0); : : : ; xn(t0)whose coe�cient belongs to A � , the group of invertible elements of A .To prove that all x(t) are contained in L0, we proceed by induction on m, thesize of the spine. The claim is trivial for m = 1, so let us assume that m � 2, and



6 SERGEY FOMIN AND ANDREI ZELEVINSKYfurthermore assume that our statement is true for all \caterpillars" with smallerspine. It is thus enough to prove that x(thead) � L0 , where thead is one of thevertices most distant from t0 (see Figure 1).We assume that the path from t0 to thead starts with the following two edges:t0 i���P t1 j��!Q t2. Let t3 2 Tn;m be the vertex such that t2 i���R t3. The followinglemma plays a crucial role in our proof.Lemma 2.2. The clusters x(t1), x(t2), and x(t3) are contained in L0. Further-more, gcd(xi(t3); xi(t1)) = gcd(xj(t2); xi(t1)) = 1.Proof. The only element in the clusters x(t1), x(t2), and x(t3) whose inclusionin L0 is not immediate from (2.1){(2.2) is xi(t3). To simplify the notation, let usdenote x = xi(t0), y = xj(t0) = xj(t1), z = xi(t1) = xi(t2), u = xj(t2) = xj(t3),and v = xi(t3), so that these variables appear in the clusters at t0; : : : ; t3, as shownbelow: y;x�t0 i�������P z;y�t1 j������!Q u;z�t2 i�������R v;u�t3 :Note that the variables xk , for k =2 fi; jg, do not change as we move among thefour clusters under consideration. The lemma is then restated as saying thatv 2 L0;(2.6) gcd(z; u) = 1 ;(2.7) gcd(z; v) = 1 .(2.8)Another notational convention will be based on the fact that each of the polynomialsP;Q;R has a distinguished variable on which it depends, namely xj for P and R,and xi for Q. (In view of (2.3), P and R do not depend on xi, while Q doesnot depend on xj .) With this in mind, we will routinely write P , Q, and R aspolynomials in one (distinguished) variable. For example, we rewrite the formulain (2.5) as R�Q(0)y � = L(y)Q(0)bP (y);(2.9)where we denote L(y) = Ljxj y. In the same spirit, the notation Q0, R0, etc., willrefer to the partial derivatives with respect to the distinguished variable.We will prove the statements (2.6), (2.7), and (2.8) one by one, in this order.We have: z = P (y)x ;u = Q(z)y = Q�P (y)x �y ;v = R(u)z = R�Q(z)y �z = R�Q(z)y ��R�Q(0)y �z + R �Q(0)y �z :Since R�Q(z)y ��R�Q(0)y �z 2 L0



THE LAURENT PHENOMENON 7and R�Q(0)y �z = L(y)Q(0)bP (y)z = L(y)Q(0)bx 2 L0 ;(2.6) follows.We next prove (2.7). We haveu = Q(z)y � Q(0)y mod z :Since x and y are invertible in L0, we conclude that gcd(z; u) = gcd(P (y); Q(0)) = 1(using (2.4)).It remains to prove (2.8). Letf(z) = R�Q(z)y � :Then v = f(z)� f(0)z + L(y)Q(0)bx :Working modz, we obtain:f(z)� f(0)z � f 0(0) = R0 �Q(0)y � � Q0(0)y :Hence v � R0 �Q(0)y � � Q0(0)y + L(y)Q(0)bx mod z :Note that the right-hand side is a polynomial of degree 1 in x whose coe�cientsare Laurent polynomials in the rest of the variables of the cluster x(t0). Thus (2.8)follows from gcd �L(y)Q(0)b; P (y)� = 1, which is a consequence of (2.4){(2.5). �We can now complete the proof of Theorem 2.1. We need to show that anyvariable X = xk(thead) belongs to L0. Since both t1 and t3 are closer to theadthan t0, we can use the inductive assumption to conclude that X belongs to bothL(t1) and L(t3). Since X 2 L(t1), it follows from (2.1) that X can be written asX = f=xi(t1)a for some f 2 L0 and a 2 Z�0 . On the other hand, since X 2 L(t3),it follows from (2.1) and from the inclusion xi(t3) 2 L0 provided by Lemma 2.2that X has the form X = g=xj(t2)bxi(t3)c for some g 2 L0 and some b; c 2 Z�0 .The inclusion X 2 L0 now follows from the fact that, by the last statement inLemma 2.2, the denominators in the two obtained expressions for X are coprimein L0. �3. One-dimensional recurrencesIn this section, we apply Theorem 2.1 to study the Laurent phenomenon forsequences y0; y1; : : : given by recursions of the formym+nym = F (ym+1; : : : ; ym+n�1);(3.1)where F 2 A [x1 ; : : : ; xn�1].For an integerm, let hmi denote the unique element of [n] = f1; : : : ; ng satisfyingm � hmi mod n. We de�ne the polynomials F1; : : : ; Fn 2 A [x1 ; : : : ; xn] byFm = F (xhm+1i; xhm+2i; : : : ; xhm�1i);(3.2)



8 SERGEY FOMIN AND ANDREI ZELEVINSKY
� h0i�������Fh0i � h1i�������Fh1i �h0i�����G1� h2i�������Fh2i �h0i�����G2� h3i�������Fh3i � h0i�������Fh0i � ��� � � � :

Figure 2. Constructing a caterpillar; n = 4.thus Fm does not depend on the variable xm. We introduce the in�nite \cyclicexchange pattern"t0 h0i�������Fh0i t1 h1i�������Fh1i t2 h2i�������Fh2i t3 h3i�������Fh3i t4 ��� � � � ;(3.3)and let the cluster at each point tm consist of the variables ym; : : : ; ym+n�1, labeledwithin the cluster according to the rule ys = xhsi(tm). Then equations (3.1) becomethe exchange relations associated with this pattern.To illustrate, let n = 4. Then the clusters will look like this:y1;y2;y3;y0�t0 4�������y1;y2;y3;y4�t1 1�������y5;y2;y3;y4�t2 2�������y5;y6;y3;y4�t3 3�������y5;y6;y7;y4�t4 4������� � � � :In order to include this situation into the setup of Section 2 (cf. Figure 1), we createan in�nite \caterpillar tree" whose \spine" is formed by the vertices tm, m > 0.We thus attach the missing n�2 \legs" with labels in [n]�fhm� 1i ; hmig, to eachvertex tm.Our next goal is to state conditions on the polynomial F which make it possibleto assign exchange polynomials satisfying (2.3){(2.5) to the newly constructed legs.The �rst requirement (cf. (2.3)) is:The polynomial F is not divisible by any xi, i 2 [n� 1].(3.4)For m 2 [n� 1], we setQm = Fmjxn 0 = F (xm+1; : : : ; xn�1; 0; x1; : : : ; xm�1):(3.5)Our second requirement isEach Qm is an irreducible element of A [x�11 ; : : : ; x�1n�1].(3.6)To state our most substantial requirement, we recursively de�ne a sequence ofpolynomials Gn�1; : : : ; G1; G0 2 A [x1 ; : : : ; xn�1]; more precisely, each Gm will bede�ned up to a multiple in A � . (Later, G1; : : : ; Gn�2 will become the exchangepolynomials assigned to the \legs" of the caterpillar labeled by n = h0i; see Fig-ure 2.)We set Gn�1 = F , and obtain each Gm�1 from Gm, as follows. Let�Gm�1= Gm��xm Qmxm :(3.7)



THE LAURENT PHENOMENON 9Let L be a Laurent monomial in x1; : : : ; xn�1, with coe�cient in A , such that�Gm�1= �Gm�1L(3.8)is a polynomial in A [x1 ; : : : ; xn�1] not divisible by any xi or by any non-invertiblescalar in A . Such an L is unique up to a multiple in A�. Finally, we setGm�1 = �Gm�1Qbm ;(3.9)where Qbm is the maximal power of Qm that divides �Gm�1. With all this notation,our �nal requirement is: G0 = F:(3.10)Theorem 3.1. Let F be a polynomial in the variables x1; : : : ; xn�1 with coe�cientsin a unique factorization domain A satisfying conditions (3.4), (3.6), and (3.10).Then every term of the sequence (yi) de�ned by the recurrenceym+n = F (ym+1; : : : ; ym+n�1)ymis a Laurent polynomial in the initial n terms, with coe�cients in A .Proof. To prove the Laurentness of some yN , we will apply Theorem 2.1 to thecaterpillar tree constructed as follows. We set thead = tN�n+1; this corresponds tothe �rst cluster containing yN . As a path from t0 to thead, we take a �nite segmentof (3.3):t0 h0i�������Fh0i t1 h1i�������Fh1i t2 h2i�������Fh2i � � � hN�1i�������FhN�1i tN�n hNi�������FhNi tN�n+1 :(3.11)We then de�ne the exchange polynomial Gj;k�1 associated with the leg labeled jattached to a vertex tk on the spine (see Figure 3) byGj;k�1 = Ghk�j�1i(xhj+1i; : : : ; xn; x1; : : : ; xhj�1i);where in the right-hand side, we use the polynomials G1; : : : ; Gn�2 constructed in(3.7){(3.9) above. � hk�1i�������Fhk�1i tkj�����Gj;k�1� hki�������Fhki �
Figure 3It remains to verify that this exchange pattern satis�es (2.3), (2.4), and (2.5).Condition (2.3) for the edges appearing in (3.11) is immediate from (3.4), while forthe rest of the edges, it follows from the de�nition of �Gm�1 in (3.8).Turning to (2.4), we �rst note that we may assume i = h0i = n (otherwise applya cyclic shift of indices). Under this assumption, we can identify the polynomials Pand Q0 in (2.4) with the polynomials Gm�1 and Qm in (3.9), for some value of m.(The special case of P attached to one of the edges in (3.11) corresponds to m = 1,



10 SERGEY FOMIN AND ANDREI ZELEVINSKYand its validity requires (3.10).) Then the condition gcd(Gm�1; Qm) = 1 followsfrom (3.6) and the choice of the exponent b in (3.9).Finally, (2.5) is ensured by the construction (3.7){(3.9), which was designedexpressly for this purpose. As before, the special case of P attached to one of theedges in (3.11) holds due to (3.10). �In the rest of this section, we give a few applications of Theorem 3.1. In all ofthem, conditions (3.4) and (3.6) are immediate, so we concentrate on the veri�cationof (3.10).Example 3.2. Let a and b be positive integers, and let the sequence y0; y1; : : :satisfy the recurrence yk = yak�2ybk�1 + 1yk�3 :We claim that every term of the sequence is a Laurent polynomial over Z in y0, y1,and y2. To prove this, we set n = 3 and construct the polynomials G2, G1, and G0using (3.7){(3.9). Initializing G2 = F (x1; x2) = xa1xb2 + 1, we obtain:Q2 = F (0; x1) = 1; �G1= F ��x2 Q2x2 = xa1x�b2 + 1; G1 =�G1= xa1 + xb2;Q1 = F (x2; 0) = 1; �G0= G1��x1 Q1x1 = x�a1 + xb2; G0 =�G0= 1 + xa1xb2 = F;as desired.Example 3.3. (Generalized Somos-4 sequence) Let a, b, and c be positive integers,and let the sequence y0; y1; : : : satisfy the recurrenceyk = yak�3yck�1 + ybk�2yk�4 :(The Somos-4 sequence [7], introduced by Michael Somos, is the special case a =c = 1, b = 2.) Again, each yi is a Laurent polynomial in the initial terms y0, y1,y2, and y3. To prove this, we set n = 4 and compute G3; : : : ; G0 using (3.7){(3.9)and beginning with G3 = F = xa1xc3 + xb2:Q3=F (0; x1; x2)=xb1; G3��x3 Q3x3=xa+bc1 x�c3 + xb2; G2=xa+bc1 + xb2xc3;Q2=F (x3; 0; x1)=xc1xa3 ; G2��x2 Q2x2=xa+bc1 +xbc1 x�b2 xab+c3 ; G1=xa1xb2 + xab+c3 ;Q1=F (x2; x3; 0)=xb3; G1��x1 Q1x1=x�a1 xb2xab3 + xab+c3 ; G0=xb2+xa1xc3=F;and the claim follows.Remark 3.4. The Laurent phenomena in Theorems 1.4 and 1.8 can also be provedby applying Theorem 3.1: in the former (resp., latter) case, the polynomial F isgiven by F = �xpxn�p + �xqxn�q + 
xrxn�r (resp., F = �xpxn�p + �xqxn�q).The proofs are straightforward but rather long. Shorter proofs, based on J. Propp'sidea of viewing one-dimensional recurrences as \projections" of multi-dimensionalones, are given in Section 4 below.



THE LAURENT PHENOMENON 114. Two- and three-dimensional recurrencesIn this section, we use the strategy of Section 3 to establish the Laurent phenom-enon for several recurrences involving two- and three-dimensional arrays. Our �rstexample generalizes a construction (and the corresponding Laurentness conjecture)suggested by Noam Elkies and communicated by James Propp. Even though theLaurent phenomenon in this example can be deduced from Theorem 1.6, we chooseto give a self-contained treatment, for the sake of exposition.Example 4.1. (The knight recurrence) Consider a two-dimensional array (yij)i;j�0whose entries satisfy the recurrenceyi;jyi�2;j�1 = �yi;j�1yi�2;j + �yi�1;jyi�1;j�1 :(4.1)We will prove that every yij is a Laurent polynomial in the initial entriesYinit = fyab : a < 2 or b < 1g;with coe�cients in the ring A = Z[�; �].We will refer to Yinit as the initial cluster, even though it is an in�nite set.Notice, however, that each individual yij only depends on �nitely many variablesfyab 2 Yinit : a � i; b � jg.Similarly to Section 3, we will use the exchange relations (4.1) to create a se-quence of clusters satisfying the Caterpillar Lemma (Theorem 2.1).This is done in the following way. Let us denote by H = Z2�0 the underlying setof indices; for h = (i; j) 2 H, we will write yh = yij . The variables of the initialcluster have labels in the setHinit = f(i; j) 2 H : i < 2 or j < 1g:In Figure 4, the elements of Hinit are marked by �'s.
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0Figure 4. The initial cluster and the equivalence classes hhiWe introduce the product partial order on H:(i1; j1) � (i2; j2) def, (i1 � i2) and (j1 � j2):(4.2)For an element h = (i; j) 2 H � Hinit , let us denote h� = (i � 2; j � 1); in thisnotation, the exchange relation (4.1) expresses the product yh �yh� as a polynomialin the variables yh0 , for h� < h0 < h.



12 SERGEY FOMIN AND ANDREI ZELEVINSKYWe write h� � h, and extend this to an equivalence relation � on H. Theequivalence class of h is denoted by hhi. These classes are shown as slanted lines inFigure 4. All our exchange polynomials will belong to the ring A [xa : a 2 H=� ].Note that Hinit has exactly one representative from each equivalence class. Wewill now construct a sequence of subsets H0 = Hinit; H1; H2; : : : , each having thisproperty, using the following recursive rule. Let us �x a particular linear extensionof the partial order (4.2), say,(i1; j1) � (i2; j2) def, (i1 + j1 < i2 + j2) or (i1 + j1 = i2 + j2 and i1 � i2):Restricting this linear ordering to the complement H�Hinit of the initial cluster,we obtain a numbering of the elements of this complement by positive integers:h0 = (2; 1); h1 = (2; 2); h2 = (3; 1); h3 = (2; 3); h4 = (3; 2);h5 = (4; 1); h6 = (2; 4); h7 = (3; 3); h8 = (4; 2);and so on. Having constructed Hm, we let Hm+1 = Hm [ fhmg � fh�mg. Toillustrate, the set H9 is shown in Figure 5.
s s s s s s s s s s

sss ssss sss sss ss00 Figure 5. Indexing set H9We next create the in�nite exchange patternt0 hh0i�������Phh0i t1 hh1i�������Phh1i t2 hh2i�������Phh2i t3 hh3i�������Phh3i t4 ��� � � � :(4.3)(cf. (3.3)) The cluster at each point tm is given by x(tm) = fyh : h 2 Hmg; asbefore, each cluster variable yh corresponds to the variable xhhi. The exchangepolynomial Phhi for an edge � hhi��� � with h = (i; j) is given byPhhi = �xh(i;j�1)ixh(i�2;j)i + �xh(i�1;j)ixh(i�1;j�1)i:(4.4)Then equations (4.1) become the exchange relations associated with this pattern.To establish the Laurent phenomenon, we will complete the caterpillar pattern byattaching \legs" to each vertex tm and assigning exchange polynomials to these legsso that the appropriate analogues of conditions (3.4), (3.6) and (3.10) are satis�ed.Since we now work over the polynomial ring A [xa : a 2 H=� ] in in�nitely manyindeterminates, the number of legs attached to every vertex tm will also be in�nite(one for every label a di�erent from hhm�1i and hhmi). This will not matter muchfor our argument though: to prove the Laurentness for any yhm , we will simply



THE LAURENT PHENOMENON 13restrict our attention to the �nite part of the in�nite caterpillar tree lying betweent0 and thead = tm+1, and to the legs labeled by hhki for 0 � k � m.The role of conditions (3.4) and (3.6) is now played by the observation that eachexchange polynomial Phhi is not divisible by any variable xa , and furthermore everyspecialization Phhi��xa 0 is an irreducible element of the Laurent polynomial ring.To formulate the analogue of (3.10), let us �x an equivalence class a 2 H=�and concentrate on de�ning the exchange polynomials for the legs labeled by a andattached to the vertices squeezed between two consecutive occurrences of the labela on the spine:� a���Pa � a1��� �a�����G1� a2��� �a�����G2� ��� �a������ ��� �a������ aN�2��� �a�����GN�2� aN�1��� � a���Pa � :(4.5)
We note that the labels a1; : : : ; aN�1 2 H=� appearing on the spine between thesetwo occurrences of a are distinct. For m = N � 2; N � 3; : : : ; 1, we denote by Gmthe exchange polynomial to be associated with the a-labeled leg attached betweenthe edges labeled am and am+1 (cf. (4.5)).The polynomialsGm are de�ned with the help of a recursive procedure analogousto (3.7){(3.9). We initializeGN�1 = Pa, and obtain eachGm�1 fromGm, as follows.The step (3.7) is replaced by �Gm�1= Gm��xam Qmxamwith Qm = Pam ��xa 0 :(4.6)We then compute �Gm�1 and Gm�1 exactly as in (3.8){(3.9). By the argumentgiven in the proof of Theorem 3.1, the equality G0 = Pa would imply the desiredLaurentness (cf. (3.10)).To simplify computations, we denote the equivalence classes \surrounding" a, asshown below: � � � � � � � � � � � � � � � � � � � � �� � � q p f c a � � �� � � f c a e b � � �� � � a e b g d � � �� � � � � � � � � � � � � � � � � � � � � :(4.7)In other words, if a = h(i; j)i, then b = h(i; j � 1)i, c = h(i� 1; j)i, etc. With thisnotation, we can redraw the pattern (4.5) as follows:� a��� � g��� � � � �a�����Gk�1� f��� �a�����Gk� e��� � d��� � � � �a�����G`�1� c��� �a�����G`� b��� � � � � a��� �;(4.8)
for appropriate values of k and `.



14 SERGEY FOMIN AND ANDREI ZELEVINSKYWe will call a value of m essential if Gm�1 6= Gm . We are going to see that theessential values of m are those for which am 2 fb; c; e; fg; in the notation of (4.8),these values are `+ 1, `, k + 1, and k.We initialize GN�1 = Pa = �xbxf + �xcxe . The values of m in the interval` < m < N are not essential since the variable xam does not enter Pa, which isfurthermore not divisible by Qm (because the latter involves variables absent in Pa).The �rst essential value is m = `+ 1, with am = b:Q`+1 = Pbjxa 0 = (�xaxd + �xexg)jxa 0 = �xexg ;�G`= Pa��xb Q`+1xb = ��xexgxb xf + �xcxe ;G` = �xgxf + xbxc :Step m = ` (here am = c):Q` = Pcjxa 0 = (�xexp + �xaxf )jxa 0 = �xexp ;�G`�1= G`��xc Q`xc = �xgxf + xb �xexpxc ;G`�1 = xcxgxf + xbxexp :Notice that G`�1 does not involve xd, so the value m = k + 2 is not essential, asare the rest of the values in the interval k + 1 < m < `.Step m = k + 1, with am = e:Qk+1 = Pejxa 0 = (�xcxg + �xaxb)jxa 0 = �xcxg ;�Gk= xcxgxf + xbxp �xcxgxe ;Gk = xfxe + �xbxp :Step m = k, with am = f :Qk = Pf jxa 0 = (�xaxq + �xcxp)jxa 0 = �xcxp ;�Gk�1= �xcxpxf xe + �xbxp ;Gk�1 = �xcxe + �xbxf :The values of m in the interval 0 < m < k are not essential since none of thecorresponding variables xam appears in Gk�1; in particular, m = 1 is not essential,since Gk�1 does not involve xg . HenceG0 = Gk�1 = �xcxe + �xbxf = Pa ;as desired. The Laurentness is proved.Remark 4.2. The Laurent phenomenon for the recurrence (4.1) actually holds ingreater generality. Speci�cally, one can replaceH by any subset of Z2which satis�esthe following analogues of conditions (1.2){(1.3) and (1.7){(1.8):if h 2 H, then h0 2 H whenever h � h0;(4.9) for any h0 2 H, the set fh 2 H : h � h0g is �nite.(4.10)Then take Hinit = fh 2 H : h� =2 Hg.



THE LAURENT PHENOMENON 15The proof of Laurentness only needs one adjustment, concerning the choice ofa linear extension � . Speci�cally, while proving that yh is given by a Laurentpolynomial, take a �nite set H(h) � H containing h and satisfying the conditionsif h0 2 H(h), then h00 2 H(h) whenever h00 � h0 and h00 2 H;(4.11) for any h0 2 H such that h0 � h, there exists h00 2 H(h) such that(4.12) h00 � h and h00 � h.(The existence of H(h) follows from (4.9){(4.10).) Then de�ne � exactly as beforeon the set H(h); set h0 � h00 for any h0 2 H(h) and h00 2 H�H(h); and de�ne � onthe complement H�H(h) by an arbitrary linear extension of �. These conditionsensure that the sets Hm needed in the proof of Laurentness of the given yh are wellde�ned, and that the rest of the proof proceeds smoothly.Armed with the techniques developed above in this section, we will now provethe main theorems stated in the introduction.Proof of Theorem 1.2. Our argument is parallel to that in Example 4.1, so weskip the steps which are identical in both proofs. For simplicity of exposition, wepresent the proof in the special case H = Z3�0; the case of general H requires thesame adjustments as those described in Remark 4.2.We de�ne the product partial order � and a compatible linear order � on H by(i1; j1; k1) � (i2; j2; k2) def, (i1 � i2) and (j1 � j2) and (k1 � k2);(i1; j1; k1) � (i2; j2; k2) def, (i1 + j1 + k1 < i2 + j2 + k2)or (i1 + j1 + k1 = i2 + j2 + k2 and i1 + j1 < i2 + j2)or (i1 + j1 = i2 + j2 and k1 = k2 and i1 � i2):For h = (i; j; k), we set h� = (i� 1; j � 1; k � 1); thus, the exchange relation (1.1)expresses the product yh �yh� as a polynomial in the variables yh0 , for h� < h0 < h.All the steps in Example 4.1 leading to the creation of the in�nite exchangepattern (4.3) are repeated verbatim. Instead of (4.4), the exchange polynomialsPhhi along the spine are now given byPh(i;j;k)i= �xh(i�1;j;k)ixh(i;j�1;k�1)i+�xh(i;j�1;k)ixh(i�1;j;k�1)i+
xh(i;j;k�1)ixh(i�1;j�1;k)i:The role of (4.7) is now played by Figure 6, which shows the \vicinity" of anequivalence class a. This �gure displays the orthogonal projection of H alongthe vector (1; 1; 1). Thus the vertices represent equivalence classes in H=� . Forexample, if a = h(i; j; k)i, thenb = h(i; j; k � 1)i ; c = h(i; j � 1; k)i ; d = h(i� 1; j; k)i ;e = h(i; j � 1; k � 1)i ; f = h(i� 1; j; k � 1)i ; g = h(i� 1; j � 1; k)i :With this notation, we have:Pa = �xdxe + �xcxf + 
xbxg :With the polynomials G1; G2; : : : de�ned as in (4.5), the essential values of mare now those for which am 2 fb; c; d; e; f; gg. (The veri�cation that the rest of thevalues are not essential is left to the reader.) We denote these values bym1; : : : ;m6 ,respectively.



16 SERGEY FOMIN AND ANDREI ZELEVINSKYs s s
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3Figure 6. The cube recurrenceThe computation of the polynomials Gm begins by initializingGN�1 = Pa = �xdxe + �xcxf + 
xbxg :Step m = m1, am = b:Qm1 = Pbjxa 0 = �xfxq + �xexp ;�Gm1�1= Gm1 ��xb Qm1b = �xdxe + �xcxf + 
 �xfxq+�xexpxb xg ;Gm1�1 = �xbxdxe + �xbxcxf + �
xfxgxq + �
xexgxp :Step m = m2, am = c:Qm2 = Pcjxa 0 = �xgxr + 
xexs;�Gm2�1= �xbxdxe + �xb �xgxr+
xexsxc xf + �
xfxgxq + �
xexgxp ;Gm2�1 = �xbxcxdxe+��xbxfxgxr+�
xbxexfxs+�
xcxfxgxq+�
xcxexgxp :Step m = m3, am = d:Qm3 = Pdjxa 0 = �xgxv + 
xfxu ;�Gm3�1= �xbxc �xgxv+
xfxuxd xe+��xbxfxgxr + �
xbxexfxs + �
xcxfxgxq + �
xcxexgxp ;Gm3�1 = ��xbxcxexgxv + �
xbxcxexfxu + �
xbxdxexfxs + �
xcxdxexgxp+��xbxdxfxgxr + �
xcxdxfxgxq :



THE LAURENT PHENOMENON 17Step m = m4, am = e:Qm4 = Pejxa 0 = �xbxr + 
xcxq ;�Gm4�1= Qm4xe (��xbxcxgxv + �
xbxcxfxu + �
xbxdxfxs + �
xcxdxgxp)+�xdxfxgQm4 ;Gm4�1 = �
xbxcxfxu + �
xbxdxfxs + �xdxexfxg+��xbxcxgxv + �
xcxdxgxp :Step m = m5, am = f :Qm5 = Pf jxa 0 = �xbxv + 
xdxp ;�Gm5�1= Qm5xf (�
xbxcxu + �
xbxdxs + �xdxexg) + �xcxgQm5 ;Gm5�1 = �xdxexg + �xcxfxg + �
xbxcxu + �
xbxdxs :Step m = m6, am = g:Qm6 = Pg jxa 0 = �xcxu + �xdxs ;�Gm6�1= Qm6xg (�xdxe + �xcxf ) + 
xbQm6 ;Gm6�1 = �xdxe + �xcxf + 
xbxg = Pa ;completing the proof. �We will now deduce the Gale-Robinson conjecture from Theorem 1.2.Proof of Theorem 1.4. To prove the Laurentness of a given element yN ofthe Gale-Robinson sequence (ym), we de�ne the array (zijk)(i;j;k)2H by settingzijk = yN+pi+qj+rk , with the indexing setH = H(N) = f(i; j; k) 2 Z3 : N + pi+ qj + rk � 0g :Then (1.4) implies that the zijk satisfy the cube recurrence (1.1). Note that Hsatis�es the conditions (1.2){(1.3). Thus Theorem 1.2 applies to (zijk), with Hinit =f(a; b; c) 2 Z3 : 0 � N + pa + qb + rc < ng. It remains to note that yN = z000 ,while for any (a; b; c) 2 Hinit , we have zabc = ym with 0 � m < n. �Proof of Theorem 1.6. This theorem is proved by the same argument as The-orem 1.2. We treat the Mills-Robbins-Rumsey special case (1.9) (cf. also (1.6));similarly to Theorem 1.2, the case of general H requires the standard adjustmentsdescribed in Remark 4.2. We use the partial order on the lattice L de�ned by(i; j; k) � (i0; j0; k0) : ji0 � ij+ jj0 � jj � k0 � k :For h = (i; j; k) 2 L, we set h� = (i; j; k� 2), and de�ne the equivalence relation �accordingly. Figure 7 shows equivalence classes \surrounding" a given class a (cf.Figure 6).The initialization polynomial GN�1 = Pa is given by Pa = �xcxd + �xbxe . Thetable below displays am, Qm, �Gm�1, and Gm�1 for all essential values of m.



18 SERGEY FOMIN AND ANDREI ZELEVINSKY
s c sc s cs c s6 -d a ce
p b q
s rj iFigure 7

am Qm �Gm�1 Gm�1b �xpxq �xcxd + �� xpxqxb xe xbxcxd + �xexpxqc �xqxr � xqxrxc xbxd + �xexpxq xbxdxr + xcxexpd �xpxs � xpxsxd xbxr + xcxexp �xbxrxs + xcxdxee �xrxs �xbxrxs + �xrxsxe xcxd �xbxe + �xcxdWe see that G0 = Ge�1 = Pa , completing the proof. �Proof of Theorem 1.8. The proof mimics the above proof of Theorem 1.4. Toprove the Laurentness of an element yN of the sequence (ym) satisfying (1.10),we de�ne the array (zijk)(i;j;k)2H by setting zijk = yN+`(i;j;k) , where `(i; j; k) =n i+j+k2 � pi� qj. The indexing set H is now given byH = H(N) = f(i; j; k) 2 Z3 : N + `(i; j; k) � 0g :Then (1.10) implies that the zijk satisfy the octahedron recurrence (1.5). It is easyto check that H satis�es the conditions (1.7){(1.8). Thus Theorem 1.6 applies to(zijk), with Hinit = f(a; b; c) 2 L : 0 � N+`(a; b; c) < ng, and the theorem follows.� We conclude this section by a couple of examples in which the Laurent phenom-enon is established by the same technique as above. In each case, we provide:� a picture of the equivalence classes \surrounding" a given class a, which playsthe role of (4.7) in Example 4.1;� the initialization polynomial GN�1 = Pa;� a table showing am, Qm, �Gm�1, and Gm�1 for all essential values of m.Example 4.3. (Frieze patterns) The generalized frieze pattern recurrence (cf., e.g.,[3, 11]) is yijyi�1;j�1 = " yi;j�1yi�1;j + � ;(4.13)



THE LAURENT PHENOMENON 19where " 2 f1;�1g. To prove Laurentness (over Z[�]), refer to Figure 8. ThenPa = " xb xc + �, and the essential steps are:am Qm �Gm�1 Gm�1b � " � xcxb + � " xc + xbc � " �xc + xb � + "�1xb xc
ss ss�� @@@@@@I �����c baai jFigure 8Example 4.4. (Number walls) Consider the 2-dimensional recurrenceyijyi;j�2 = ypi�1;j�1yri+1;j�1 + yqi;j�1 ;(4.14)where p, q, and r are nonnegative integers. To prove Laurentness, refer to Figure 9.Then Pa = xpdxrb + xqc , and the essential steps are:am Qm �Gm�1 Gm�1b xqf xpd�xqfxb �r + xqc xpdxqrf + xqcxrbc xpgxrf xpdxqrf + �xpgxrfxc �qxrb xpdxqc + xpqg xrbd xqg �xqgxd �pxqc + xpqg xrb xqc + xrbxpd

s s ss s ss6 -d c baag fj iFigure 9Remark 4.5. As pointed out by J. Propp, the Laurent phenomenon for certainspecial cases of Examples 4.3 and 4.4 can be obtained by specialization of Exam-ple 1.5.



20 SERGEY FOMIN AND ANDREI ZELEVINSKY5. Homogeneous exchange patternsIn this section, we deduce Theorem 1.10 and a number of similar results fromthe following corollary of Theorem 2.1.Corollary 5.1. Let A be a unique factorization domain. Assume that a collectionof nonzero polynomials P1; : : : ; Pn 2 A [x1 ; : : : ; xn] satis�es the following conditions:Each Pk does not depend on xk, and is not divisible by any xi, i 2 [n].(5.1) For any i 6= j, the polynomials Pji def= (Pj)jxi=0 and Pi are coprime.(5.2) For any i 6= j, we have(5.3) L � P bji � Pi=Pi��xj Pjixj ;where b is a nonnegative integer, and L is a Laurent monomial whosecoe�cient lies in A and is coprime with Pi.Let us de�ne the rational transformations Fi, i 2 [n], byFi : (x1; : : : ; xn) 7! (x1; : : : ; xi�1; Pixi ; xi+1; : : : ; xn):Then any composition of the form Fi1 � � � � � Fim is given by Laurent polynomialswith coe�cients in A .Proof. Let Tn denote a regular tree of degree n whose edges are labeled byelements of [n] so that all edges incident to a given vertex have di�erent labels.Assigning Pi as an exchange polynomial for every edge of Tn labeled by i, weobtain a \homogeneous" exchange pattern on Tn satisfying conditions (2.3){(2.5)in Theorem 2.1. This implies the desired Laurentness. �Example 5.2. Let n � 3 be an integer, and let P be a quadratic form given byP (x1; : : : ; xn) = x21 + � � �+ x2n +Xi<j �ijxixj :Theorem 1.10 is a special case of Corollary 5.1 for Pi = P ��xi=0 and A = Z[�ij : i <j]. Conditions (5.1){(5.2) are clear. To verify (5.3), note thatPi = Pji + x2j + xj�Xk �kjxk + X̀�j`xl� ;where k (resp. `) runs over all indices such that k 6= i and k < j (resp. ` 6= i and` > j). It follows thatPi��xj Pjixj = Pji + P 2jix2j + Pjixj �Xk �kjxk +X̀�j`xl� = Pjix2j Pi ;verifying (5.3).In the remainder of this section, we list a few more applications of Corollary 5.1.In each case, the veri�cation of its conditions is straightforward.Example 5.3. Let P and Q be monic palindromic polynomials in one variable:P (x) = (1 + xd) + �1(x+ xd�1) + �2(x2 + xd�2) + : : : ;Q(x) = (1 + xe) + �1(x + xe�1) + �2(x2 + xe�2) + : : : :
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