
1 1 Hankel Determinants

A sequence of indeterminants x0, x1, . . . is used to make a a Hankel array:

x0 x1 x2 x3 . . .
x1 x2 x3 x4 . . .
x2 x3 x4 x5 . . .
x3 x4 x5 x6 . . .

For each i ≥ 0, and n ≥ i, Hn,i is defined to be the i × i connected minor with xn
along the back diagonal.

hn,i = detHn,i

The c-table is the set of hn,i for n + 1 ≥ i. these determinants satisfy the Sylvester
identity:

hn,i−1 · hn,i+1 = hn−1,i · hn+1,i − h2n,i
2 A pattern of locations in the c-table of the form

N
W C E

S

is called a Sylvestor diamond.

n · s = w · e− c2

Suppose the following constellation occurs in the c-table, C is located as (s, i).

NN
NW N NE

WW W C E EE
SW S SE E

SS

Let Λ be the 3× 3 matrix whose entries are at the positions: NN NE EE
NW C SE
WW SW SS


3 Gragg’s identity is

c · det(Λ) = −c2(w · e+ n · s)
This identity is derived solely from Sylvester’s identity (5 times). If x0, x1, . . . are
indeterminates in the ring Z[x0, x1, . . .], then each Hankel det is an irreducible poly
in the x0, x1, . . . . One c may be cancelled to give:

1



det(Λ) = −c(w · e+ n · s)
Consider a larger region in the c-table. Suppose A = (s, i) and Z = (t, i′) are locations
as in the diagram:

A
. . .

B1 . . . . .
. . . . . . . B2

. . . . . . . . . .
M . . . . . . . . . . .

. . . . . W . . . . . .
. . . . . . . . . . N

Y1 . . . . . . . .
. . . . . . .

. . . . Y2
. . .
Z

4 Thus A is at the location of the i× i matrix with xs on the back diagonal , and Z
is at the location of the i′ × i′ matrix with xt on the back diagonal.

Let Λ be the matrix formed by putting the SW diagonal from A as the left hand
column and the SE diagonal as the top row:

Λ =



a . . . b2 . . . n
. . . . . . . . .
. . . . . . . . .
b1 . . . w . . . y2
. . . . . . . . .
. . . . . . . . .
m . . . y1 . . . z


This matrix Λ is indexed so that Λ[1, 1] = a and Λ[j, k] = z. The notation Λ[g, h, i; l,m, n]
will stand for the submatrix of Λ withe columns g, h, i and rows l,m, n For each pair
of locations A and Z as above, there is a polynomial φA,Z in Z[x0, x1, . . .]. These
polynomials have the following property. Let j′ be a row index with 1 < j′ < j, and
k′ be a columns index with 1 < k′ < k.

For each pair of locations A and Z, there is a poly φA,Z with the following property:
Let j′ be a row index with 1 < j′ < j let k′ be a column index with 1 < k′ < k. Refer



to the diagram for the locations of B1, B2, Y1, Y2,W . Thus

Λ[1, j′, j; 1, k′, k] =

 a b2 n
b1 w y2
m y1 z


5 Theorem There are two expressions for the det of this matrix:

(i) det Λ[1, j′, j; 1, k′, k] = y1φA,Y2 + y2φA,Y1 + zφA,W − wφA,Z

(ii) det Λ[1, j′, j; 1, k′, k] = b1φB2,Z + b2φB1,Z + aφW,Z − wφA,Z

We need to consider in more detail the region which has A and Z at opp corners
of a rectangle. From Λ, 4 rows are seleted, containing A; B1 (and C); Y2 and V ; and
Z. Four columns are selected containing A; B2 (and C; Y1 (and V ; Z.

A
. . .

B1 . . . B2

. . . . . . .
. . . . C . . . .

M . . . . . . . . . .
. . . . . . . . . . N
. . . . V . . . .

. . . . . . .
Y1 . . . Y2

. . .
Z

6 Let Λ bethe matrix by putting the SW diagonal emanating from A as the LH
column and the SE diagonal as the top row.

Λ =



a . b2 . . . . . . . n
. . . . . . . . . . .
b1 . c . . . . . . . .
. . . . . . . . . . .
. . . . . . . . . . .
. . . . . . . . v . y2
. . . . . . . . . . .
m . . . . . . . y2 . z





These four rows and columns define a matrix, which we call Γ. Thus

Γ =


a b2 . .
b1 c . .
. . v y2
. . y1 z


7 Polynomials ΩA,V,Z and ΥZ,C,A will be defined inductively depending on the lo-
cations A, C, V , and Z. These poly’s and φA,Z and φZ,A are defined only when
t− s+ j − 1 is an even integer and j − i ≥ 1.

(i) If Z is on either SW or SE diagonal, then all four are 0

(ii) Suppose A = (s, i), C = V = (s, i+ 2) and Z = (z, i+ 4). Then let p be the poly

p = −(hs−1,i+2 · hs+1,i+2 + (hs1,i+1 · hs,i+3)

These are the Hankel dets to W, E, N, and S of position C. Then

ΩA,V,Z = v · p = c · p = ΥZ,C,A

φS,T = p = φT,S

(iii) Suppose inductively that φS,T and φT,S have been defined when the difference
between S and T is strictly less than the difference between A and Z. Then ΩA,V,Z

and ΥZ,C,A are defined by

ΩA,V,Z = y1φA,Y2 + y2φA,Y1 − zφA,V −∆[1, 3, 4; 1, 3, 4]

ΥZ,C,A = b1φZ,B2 + b2φZ,B1 − zφZ,C −∆[1, 2, 4; 1, 2, 4]

8 (iv) The expressions φA,Z and φZ,A are defined by

φA,Z =
ΩA,V,Z

v

φZ,A =
ΩZ,C,A

c

Lemma 1 There is a polynomial identity

ΩA,V,Z · c = ΥZ,C,A · v
8 • Both c and v are Hankel dets and hence are irreducible polys in the xi. The
identity of Lemma 1 implies that if V 6= C, there is an equality

φA,Z =
ΩA,V,Z

v
=

ΥZ,C,A

c
= φZ,A



The case V = C is handled by (ii) above. In this case Gragg’s identity implies that

ΩA,V,Z = −∆[1, 2, 3; 1, 2, 3] = ΥZ,C,A

9 The proof of Lemma 1 makes use of the 8-term identity (below). Recall that

Γ =


a b2 . .
b1 c . .
. . v y2
. . y1 z



The determinant of Γ[g, h, i; l,m, n] will be denoted ∆[g, h, i; l,m, n]. The proof uses
the 8-term identity among the 3 by 3 dets of Γ.

Lemma 2 There is an 8 term identity:

∆[2, 3, 4; 2, 3, 4] · a−∆[2, 3, 4; 1, 3, 4] · b2
−∆[1, 3, 4; 2, 3, 4] · b1 + ∆[1, 3, 4; 1, 3, 4] · c
−∆[1, 2, 4; 1, 2, 4] · w + ∆[1, 2, 4; 1, 2, 3] · y2
+∆[1, 2, 3; 1, 2, 4] · y1 −∆[1, 2, 3; 1, 2, 3] · z = 0

The proof of 8-term id uses the cofactor expansion by the first and second rows, and
by the third and fourth columns. After taking the sum, and cancelling common terms
the id follows. Observe that the uncancelled terms are the cofactors of 8 entries of
the matrix.

Proof of Lemma 1 If Z is on either the SW or the SE diagonal from A, then

φA,Z ,ΩA,V,Z ,ΥZ,C,A, φZ,A

are all defined to be 0. For Z strictly within the SW and SE diagonals, teh proof is by
induction on diff levels A and Z. Start at diff = 4. Thus A = (s, i) and Z = (s, i+4).
Then C = V = (s, i + 2), c = v In this case φA,Z ,ΩA,V,Z ,ΥZ,C,A, φZ,A defined by (ii)
and statement is Gragg’s id.



Suppose diff A and Z is k, with k > 4. Then

ΩA,V,Z · c = y1φA,y2 · c+ y2φA,Y1 · c
−zφA,V · c−∆[1, 3, 4; 1, 3, 4] · c

= y1{b1φY2,B2 + b2φY2,B1

−aφY2,C −∆[1, 2, 3; 1, 2, 4]}
+y2{b1φY2,C −∆[1, 2, 3; 1, 2, 4]

−aφY1,C −∆[1, 2, 4; 1, 2, 3]}
−z{b1φV,B2 + b2φV,B

−aφV,C −∆[1, 2, 3; 1, 2, 3]}
−∆[1, 3, 4; 1, 3, 4] · c

ΥZ,C,A · v = b1φZ,B2 · v + b2φZ,B1 · v
−aφZ,C · v −∆[1, 2, 4; 1, 2, 4] · v

= b1{y1φB2,Y2 + y2φB2,Y1

−zφB2,V −∆[2, 3, 4; 1, 3, 4]}
+b2{y1φB1,Y2 + y2φB1,Y1

−zφB1,V −∆[1, 3, 4; 2, 3, 4]}
−a{y1φC,Y2 + y2φC,Y1

−zφC,V −∆[2, 3, 4; 2, 3, 4]}
−∆[1, 2, 4; 1, 2, 4] · v

The equality ΩA,V,Z · c = ΥZ,C,A · v follows from the 8-term id, and repeated use (9
times) of φS,T = φT,S. It follows that

ΩA,V,Z

v
=

ΥZ,C,A

c

11 The LHS depends only on the choice of rows and columns 1, 3, 4 of Γ, which are
the rows 1, j”, j and columns 1, k”, k of Λ. Similarly, The RHS depends only on the
choice of rows and columns 1, 2, 4 of Γ, which are the rows 1, j′, j and columns 1, k′, k

of Λ. Consequently, the poly
ΩA,V,Z

v
is the same for all choices of row j” and column



k” of Λ. Similarly, the fraction
ΥZ,C,A

c
is the same for all choices row j′ and column

k′ of Λ. This common quotient is the definition of φA,Z = φZ,A.
A special case occurs when A = (s, i) C = (s, i + 2) = V , and Z = (s, i + 4). Then
equation - becomes

det[1, 2, 3; 1, 2, 3] = c · ΦA,Z

where φA,Z = −(we+ ns)

• It follows from Lemma 1, that there is a polynomial identity

∆[1, 3, 4; 1, 3, 4] = vφA,Z − y1φA,Y2 − y2φA,Y1 + zφA,V

12 Example

Suppose a portion of the table is

Λ =


an bn+1 cn+2 dn+3 . .
bn−1 cn dn+1 en+2 . .
cn−2 dn−1 en fn+1 .
dn−3 en−2 fn−1 gn . .
. . . . . .


A special case of the 8-term identity is

∆[2, 3, 4; 1, 2, 3] · bn+1 −∆[1, 3, 4; 1, 2, 3] · cn +

∆[1, 2, 4; 1, 2, 3] · dn−1 − ∆[1, 2, 3; 1, 2, 3] · en−2 = 0

This can also be seen by obs that it is the exp of a 4 by 4 det with two equal columns.
Gragg’s id centered at Cn and Dn−1 are

det ∆[1, 2, 3; 1, 2, 3] = −cn · r
det ∆[2, 3, 4; 1, 2, 3] = −dn−1 · s

where r and s are each of the form (we - ns) for appropriate Sylvester Diamonds
centered at Cn and Dn−1 respectively. Using these identities, and rearranging terms,
we have

(r · en−2 −∆[1, 3, 4; 1, 2, 3]) cn = (s · bn+1 −∆[1, 2, 4; 1, 2, 3]) dn−1



In the notation of Lemma 1, r = φA,En and s = φFn−1,Bn−1 , and this equation would
be

ΩA,Dn−1,Fn−1 · cn = ΥFn−1,Cn,A · dn−1

Let p1 be the GCD of ΩA,Dn−1,Fn−1 and ΥFn−1,Cn,A Then

p1 = φA,Fn−1 =
ΩA,Dn−1,Fn−1

dn−1
=

ΥFn−1,Cn,A

cn
= φFn−1,A

and
p1 · dn−1 = en−2 · s−∆[1, 3, 4; 1, 2, 3]

There is a similar expression

en+2 · s′ −∆[1, 2, 3; 1, 3, 4] = p2 · dn+1

For the location Gn we have

ΩAn,En,Gn = g · r − fn−1 · p2 − fn+1 · p1 −∆[1, 3, 4; 1, 3, 4]

Reversing the roles of An and Gn there are polynomials r′, q1, and q2 with

ΥGn,Cn,An = a · r′ − bn−1 · q2 − bn+1 · q1 −∆[1, 2, 4; 1, 2, 4]

A calculation similar to that in Lemma 1, shows that

ΩAn,En,Gn · cn = ΥGn,Cn,An · en

In the notation of – and –, φAn,Gn is the GCD of the LHS and the RHS. Thus

φAn,Gn =
ΩAn,Cn,Gn

en
=

ΥGn,En,An

cn

13 Suppose ε is the error at Cn. Then the error at Gn will be

δ(gn) =

[
φAn,Gn + angn − dn−3dn+3

bn−1bn+1

+
a

c

(
e2n − en−2en+2

bn−1bn+1

)]
· ε

• For any position X, let δ(x) be the change at X that results from a change of δ(c)
at C. Assume the calculations are made in char 2, and that second order effects can
be ignored.With these assumptions,

δ(z) =

[
φA,Z − az +mn

b1b2
+
a

c

(
φC,Z +m2n2

b1b2

)]
· δ(c)

14 The FPA A fixed precision of p bits is chosen. A FPE is (m, e), where



(i) m is an odd integer of p bits;

(ii) e is an integer exponent.

Each entry in the c-table is a FPE, computed by the FPA. Specifically, s is com-

puted as S =
w · e− c2

n

16 Robbins Conjecture Suppose the c-table is computed by the FPA with mantissa
length p, and suppose the largest exponent in the computed c-table is q. Then each
computed expression is accurate in the lowest p− q bits.

The expression (m, e) corresponds to the polynomial

(mp−1t
p−1 + . . .+m2t

2 +m1t+ 1) · te

In every case the mantissa has p bits, with the lowest bit always 1.

N
W C E

S

s =
w · e− c2

n

Neglecting second order effects,

δ(s) =
e · δ(w) + w · δ(e)− 2 · δ(c) · c

n
− (we− c2) · δ(n)

n2

=
e · δ(w) + w · δ(e)− s · δ(n)

n

17 A portion of the c-table.



A
Bn−1 . Bn+1

Cn−2 . Cn . Cn+2

Dn−3 . Dn−1 . Dn+1 . Dn+3

En−4 . En−2 . En . En+2 . En+4

. . Fn−3 . Fn−1 . Fn+1 . Fn+3 . .

. . . . . Gn . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

Here the dots are locations at the centers of the Sylvester diamonds.

18 Proposition (p 21) Suppose that at location Cn = (n, i), cn is changed to cn + ε.
Assume that above Cn the computations are exact, and that the lower levels are
computed with high precision. Assume also that second order effects can be neglected.
Let

(1) r = max

{
ord(bn−1) + ord(bn+1)

ord(bn−1) + ord(bn+1) + ord(cn)− ord(an)

Then the change at any position in the c-table has order at least

ord(ε)− r

Change at Dn SI is used in the computation

bnDn = cn−1cn+1 − C2
n

= cn−1cn+1 − (cn + ε)2

= cn−1cn+1 − c2n − 2cnε− ε2

= bndn − 2cnε− ε2

Dn = dn −
2cn · ε+ ε2

bn

Change at Dn−1 SI is used in the computation

bn−1dn−1 = cn−2cn − c2n−1



bn−1Dn−1 = cn−2Cn − c2n−1
= cn−2(cn + ε)− c2n−1
= cn−2cn + cn−2ε− c2n−1
= bn−1dn−1 + cn−2ε

Dn−1 = dn−1 +
cn−2ε

bn−1
Changes along diagonals

The SW diagonal is {Cn, Dn−1, En−2, Fn−3, . . .}
The SW diagonal is {Cn, Dn+1, En+2, Fn+3, . . .}

The computation of en−2 is

cn−2en−2 = dn−3dn−1 + d2n−2

Then

∆(en−2) =
dn−3
cn−2

·∆dn−1 =

(
dn−3
cn−2

· cn−2
bn−1

)
· ε =

(
dn−3
bn−1

)
· ε

∆(fn−3) =
en−4
dn−3

·∆en−2 =

(
en−4
dn−3

· dn−3
bn−1

)
· ε =

en−4
bn−1

· ε

For each position on the diagonal emansating from Cn,

∆(hn−k,i+k) =
hn−k−1,i+k+1

bn+1

· ε

∆(hn+k,i+k) =
hn+k−1,i+k+1

bn+1

· ε

Change at En. En is defined by CnEn = Dn−1Dn+1 +D2
n. Let Y = Dn−1Dn+1−D2

n

We must show Y is divisible by cn.

bn−1Y = (cn−2Cn − c2n−1)Dn+1 − bn−1D2
n

= cn−2cnDn+1 − c2n−1Dn+1 − bn−1D2
n

= X1Cn − U

where X1 = cn−2Dn+1 and U = c2n−1Dn+1 + bn−1D
2
n



bn+1U = c2n−1(Cncn+2 − c2n+1) + bn+1bn−1D
2
n

= c2n−1cn+2Cn − c2n−1c2n+1 + bn−1bn+1D
2
n

= X2Cn + V

where X2 = c2n−1cn+2 and V − c2n−1c2n+1 + bn−1bn+1D
2
n

V = −c2n−1c2n+1 + bn−1bn+1D
2
n

= −(bnDn + c2n)2 + bn−1bn+1D
2
n

= −b2nD2
n − 2bncnD

2
n − c4n + bn−1bn+1D

2
n

= CnX3 + (anCn + bn−1bn+1ε)D
2
n

= CnX4 + bn−1bn+1D
2
nε

where X4 = X3 + anD
2
n

Change at En−1 The computation of en−1 is

cn−1en−1 = Dn−2Dn +D2
n−1

Let Y = Dn−2Dn −D2
n−1 We must show Y is divisible by cn−1.

bn−2Y = (cn−3Cn−1 − c2n−2)Dn − bn−2D2
n−1

= cn−3cn−1Dn − c2n−2Dn − bn−2D2
n−1

= X1cn−1 − U

where X1 = cn−3Dn and U = c2n−2Dn + bn−2D
2
n−1

bnU = c2n−2(Cn−1cn+1 − C2
n) + bn+2bnD

2
n−1

= c2n−2cn+1Cn−1 − c2n−2C2
n + bn−2bnD

2
n−1

= X2cn−1 + V

where X2 = c2n−2cn+1 and V − c2n−2c2n + bn−2bnD
2
n



V = −c2n−2C2
n + bn−2bnD

2
n−1

= −(bn−1Dn−1 + c2n−1)
2 + bn−2bnD

2
n−1

= −b2n−1D2
n−1 − 2bn−1cn−1D

2
n−1 − c4n−1 + bn−2bnD

2
n−1

= cn−1X3 + an−1cn−1D
2
n−1

= cn−1X4

where X4 = X3 + anD
2
n

En+1 is similar to En−1.

The first interesting case occurs at En. This is a special case of the inductive
step (later). It must be dealt with separately, because it is the starting point of an
induction based on the diffeence between A and Z. The value of En is

cnen = dn−1dn−1 − d2n

∆(en) =
dn−1∆(dn+1)

cn
+
dn+1∆(dn−1)

cn
− en∆(cn)

cn

=

(
dn−1cn+2bn−1 + dn+1cn−2bn+1 − enbn−1bn+1

cn

)
· ε

Let M be the matrix:

M =

 an bn+1 cn+2

bn−1 cn dn+1

cn−2 dn−1 en


Gragg’s identity centered at Cn is det(M) = p · cn , where p = −(ns + ew), and
n, s, w, e are the entries neighboring cn. Thus the change at En can be rewritten as

∆(en) =
pcn − ancnen + cn+2cncn−2 + andn−1dn+1

cnbn−1bn+1

=

(
p− anen + cn+2cn−2

bn−1bn+1

)
· ε+

(
andn−1dn+1

cnbn−1bn+1

)
· ε

The first fraction has order ≥ ord(ε)− ord(bn−1bn+1)



The second fraction has order ≥ ord(ε+ ord(an))− ord(cn)− ord(bn−1bn+1)

Taken together, thses show that

ord(∆(en)) ≥ ord(ε)− r

25 Change at Z

Λ =



a b2 . . . . . . . n1 n
b1 c . . . . . . . n3 n2

. . e . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .
m1 m3 . . . . . . . v y2
m m2 . . . . . . . y1 z


We want to show that

∆(z) =

[
φA,Z − az +mn

b1b2
+
a

c

(
φC,Z +m2n2

b1b2

)]
· ε

The expression for ∆(z) can be simplified as follows. For any two locationsS and T
let M and N be the locations at the opposite corners of the rectangle determined by
S and T . let

ψS,T = φS,T +mn

With this substitution, the identity becomes

y1ψA,Y2 + y2ψA,Y1 − zψA,V − vψA,Z = −avz + ay1y2

The expression for ∆z becomes

∆(z) =

(
cψA,Z − acz + aψC.Z

cb1b2

)
· ε



When Z is at location E ψC,E = −dn−1dn+1 It was established that

∆(en) =

(
c3n + ancnen − cn+2cncn−2 − andn−1dn+1

cnbn−1bn+1

)
· ε

=

(
cnψAn,En + ancnen + anψCn,En

cnbn−1bn+1

)
· ε

Start of induction based on diff between A and Z. The value of z is computed as

z =
y1 · y2 − y20

v

26 In Char 2, the change at C causes no change at Y0 (to the first order effects).
Inductively, assume that

∆(y1) =

(
cψA,Y1 − acy1 + aψC,Y1

cb1b2

)
· ε

∆(y2) =

(
cψA,Y2 − acy2 + aψC,Y2

cb1b2

)
· ε

∆(v) =

(
cψA,V − acv + aψC,V

cb1b2

)
· ε

∆(z) =

(
y1δ(y2) + y2δ(y1)− z∆(v)

v

)
· ε+(

cy1ψA,Y2 − y1acy2 + ay1ψC,Y2

vcb1b2

)
· ε+(

cy2ψA,Y1 − y2acy1 + ay2ψC,Y1

vcb1b2

)
· ε+(

−czψA,V − zacv − zaψC,V

vcb1b2

)
· ε

=

(
cψA,Z − acz + aψC,Z

cb1b2

)
· ε

SI is used in

c =
b1b2 − b20

a



where b1b2 − b20 is computed first, and then the result is divided by a. An error can
originate at C only if ord b1b2 = ordb20 Suppose this occurs. Each mantissa is an
odd integer with p bits, where p = precision. Therefore

ord∆(c) ≥ p+ ord(b1) + ord(b2)− ord(a)

Let q = max{ord(a), ord(c)} the change δ(z) at Z satisfies

ord∆(z) ≥ p− q


