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Abstract 

We consider circular planar graphs and circular planar resistor networks. Associated 
with each circular planar graph F there is a set n(F) = { (P; Q) } of pairs of sequences of 
boundary nodes which are connected through F. A graph F is called critical if removing 
any edge breaks at least one of the connections (P: Q) in n(F). We prove that two critical 
circular planar graphs are Y-A equivalent if and only if they have the same connections. 
If a conductivity ;, is assigned to each edge in F, there is a linear from boundary voltages 
to boundary currents, called the network response. This linear map is represented by a 
matrix A:. We show that if (F,7) is any circular planar resistor network whose underly- 
ing graph F is critical, then the values of all the conductors in F may be calculated from 
A.  Finally, we give an algebraic description of the set ot" network response matrices that 
can occur for circular planar resistor networks. @ 1998 Published by Elsevier Science 
inc. All rights reserved. 
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1. Introduction 

This article is a cont inuat ion of  Refs. [5-7], and was inspired by Refs. [1,2]. 
Some related results have been announced in Ref. [3]. 
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A graph with boundary is a triple F = (V, Ys, E), where (V~E) is a finite graph 
with V = the set of nodes, E = the set of edges, and VB is a non-empty subset of 
V called the set of boundary nodes. F is allowed to have multiple edges (i.e., 
more than one edge between two nodes) or loops (i.e., an edge johnng a node 
to itsell). 

A circular planar graph is a graph with boundary which is embedded in a 
disc D in the plane so that the boundary nodes lie on the circle C which bounds 
D, and the rest of F is in the interior of D. The boundary nodes can be labelled 
v l , . . . ,  v, in the (clockwise) circular order around C. A pair of sequences of 
boundary nodes (P;Q)=(Pl,.. . ,Pk;ql,. . . ,qk) such that the sequence 
(pl, . . .  ,Pk,qk,-.. ,ql) iS in circular order is called a circular pair. 

A circular pair (P; Q) = (pl , . . .  ,Pk;ql,. . .  ,qk) of boundary nodes is said to 
be connected through F if there are k disjoint paths ~ l , . . . ,  ~k in F, such that ~ti 
starts at p~, ends at q~ and passes through no other boundary nodes. We say 
that • is a connection from P to Q. The notion of a connection between a pair 
of sequences of boundary nodes appears in Refs. [ 1,2]. The definition of a well- 
connected critical graph was given in Ref. [l]. In this paper, we consider graphs 
which are not necessarily well-connected. 

For each circular planar graph F, let n(F) be the set of all circular pairs 
(P;Q) of boundary nodes which are connected through F. 

There are two ways to remove an edge from a graph. 
I. By deleting an edge. 
2. By contracting an edge to a single node. (An edge joining two boundary 

nodes is not allowed to be contracted to a single node.) 
We say that removing an edge breaks the connection from P to Q if there is a 

connection from P to Q through F, but there is not a connection from P to Q 
after the edge is removed. A graph F is called critical if the removal of any edge 
breaks some connection in n(F). 

Theorem 1. Suppose Fi and F2 are two critical circular planar graphs. Then 
n(Fi) = n(F2) if and only if FI and F2 are Y-A equivalent. 

A conductivity on a graph F is a function 7 which assigns to each edge e in E 
a positive real number ),(e). A resistor network (F,),) consists of a graph with 
boundary together with a conductivity function ~,. 

Suppose (F,?) is a resistor network with n boundary nodes. There is a linear 
map from boundary functions to boundary functions, constructed as follows. 
To each function f =  {.f(v,)} defined at the boundary nodes, there is a unique 
extension o f f  to all the nodes of F which satisfies Kirchhoff's current law at 
each interior node. This function then giw~.s a current I where l(v~) is the cur- 
rent into the network at boundary node v~. The linear map which sendsf  to I is 
called the Dirichlet-to-Neumann map in Refs. [5-7]. This map is represented by 
an n x n matrix, A~.(= A(F, ?)), called the network response. 
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Theorem 2. Suppose ( r, 7) is a circular planar resistor network which is critical as 
a graph. Then the values of the ~ouductors are uniquely determined by, and can be 
calculated f iom A;. 

In this situation we say ? is recoverable from A;,. 

Notation. Suppose A = {as.,} is a matrix, P = (Pl,- . . ,Pk) is an ordered subset 
of the rows, and Q = (q l , . . .  , qm)  is an ordered subset of the columns. Then 
A(P; Q) denotes the k × m matrix obtained by taking the emries of A which are 
in rows p i , . . .  ,Pk and columns qi , . . .  ,qm. Specifically, for each 1 -<. i ~< k and 
1 <~j<~m, 

A(P; Q)~j = apl ,q / .  

A pair of sequences of indices (P; Q) = ,tpl,... ,Pk;ql, . . .  ,q~.) is called a cir- 
cularpair i fa cyclic permutation of (Pl, . . .  ,Pk; qk, . . . .  ql) is in order. If (P; Q) is 
a circular pair of indices, A(P; Q) is called a circ,alar minor of A. 

Definition 1.1. For each integer n t> 2, let O.n be the set of n x n symmetric 
matrices M for which the sum of the entries in each row is 0, and which satisfy 
the following condition. 

I fM(P;Q) is a k x k circular minor of M, then (- l)~detM(P;Q) >10. 

This condition says that if M E f2,, and (P; Q) is a circular pair of indices, 
then the matrix -M(P; Q) is totally non-negative as in Ref. [9]. This condition 
implies that if M E 12,,, each off-diagonal entry is non-positive and each diago- 
nal entry is non-negative. 

Theorem 3o Suppose M is #i 12,,. Then there is a circular planar graph with a 
conductivity 7 so that M = A(F, 7). 

Definition 1.2. Suppose F is a circular planar graph with n boundary nodes, and 
rr = n(F) is the set of circular pairs (P;Q) which are connected through F. A 
subset f2(n) of I2n is defined by the following condition. For each circular pair 
of indices (P; Q) = (pl , . . .  ,Pk;ql,.. .  ,Pk), 

(a) If (e; Q) Err, then ( -1 )  k det M(P; Q) > O. 
(b) If (P; ~) ¢rt, then det M(P; Q) = O. 

Let (F, ?) be a critical circular planar resistor network and n(F) = ft. In Sec- 
tion 4, we show that the network response matrix A~. is in fJ(n). In Section 12, 
we show that if M E f2(n), then there is a conductivity )' on/"  so that M = A~.. 
More generally, we have the 7ollowing. 
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Theorem 4. Suppose F is a critical circular planar graph with N edges and 
7t = 7t( F). Then the map which sends I' to A., is a diffeomorphism of  (R+) N onto 
fl(~). 

Remark 1. Theorems 1-4 show that there is a close relationship between 
circular planar resistor networks and matrices. The set of network response 
matrices for all circular planar graphs with n boundary nodes is ~n, which is 
the disjoint union of the sets ~(~). For each M E [2,, let 7z = { (P, Q) } be the set 
of circular pairs (P;Q) of indices for which det M(P; Q) ~ O. Associated with 
this ~, there is a circular planar graph F with ~ ( F ) =  ~, and there is a 
conductivity ), on F with A(F, . / )= M. The graph F may be chosen to be 
critical, and then F is unique to within Y-A equivalence. If a graph F is chosen 
in this Y - A  equivalence class, then the conductivity ~, on F which gives 
M = A(F, ~,) is unique. 

Remark 2. For each of the sets 7t, let N(Tt) be the number of edges in a 
critical graph with 7t(/")= 7t. Suppose F be a circular planar graph with N 
edges. Then F is critical if and only if N = N(Tt(F)). If F is not critical, then 
there is a critical graph F', with 7t(F') = 7t(F). The graph F' may be obtained 
from F by removal (by deletion and/or contraction) of N -  N(Tt(F)) edges. If 
), is a conductivity on F, there is a conductivity ~,' on F' so that A(F', ~,') = 
A(F, ~,). 

This paper is almost entirely self-contained, in addition to matrix algebra, 
the proofs make use of the medial graphs of Steinitz and Theorem 5.2 of Ref. 
[7]. In Section 2, Schur complements are used to prove a determinant identity, 
originally due to Dodgson, that is used extensively in Section 10. For (A, ~) a 
resistor network, the response matrix A;. is constructed in Section 3. The im- 
portant properties of A;. are established in Section 4. Section 5 describes 
Y-A and A -  Y transformations of planar graphs. The medial graph of a cir- 
cular planar graph, is defined in Section 6. In Section 7, the methods of Stein- 
itz are used to show that in each Y-A equivalence class of critical circular 
planar graphs there is a standard representative. In Section 8, we define three 
ways to adjoin an edge to a graph and we describe the effects of each of these 
adjunctions on the response matrices. Theorem 2 was proven in Ref. [7] for the 
standard representative of a well-connected critical circular planar graph. Sec- 
tion 9 of the present paper makes use of Ref. [7] to prove Theorem 2 for an 
arbitrary critical graph. Section l0 uses Dodgson's identity to prove some 
facts about the matrices M in 12n. In Section 11, we show that removing a 
boundary edge or boundary spike from a critical graph results in another crit- 
ical graph. In Section 12, we prove Theorems 3 and 4. In Section 13, we prove 
Theorem 1. 



E.B. Curtis et al. I Linear Algebra and its Applications 283 (1998) !!5-150 

2. The Schur complement 

119 

Suppose M is a square matrix and D be a non-singular square submatrix of 
M. For convenience, assume that D is the lower right-hand corner of M, so 
that M has the block structure. 

M =  C " 

The Schur complement of D in M is the matrix M / D  = A - BD -~ C. The Schur 
complement satisfies the following determinantal identity. 

det M = det ( M / D ) .  det D. 

If E is a non-singular square submatrix of D, then 

det M = det ( M / D ) .  det ( D / E ) .  det E. 

In this situation, the following quotient formula is due to Haynsworth [41. 

M / D  = (M/E) / (D/E/ .  

Let A = {aij } be an n x n matrix, and ah.k is a non-zero entry. The 1 x 1 ma- 
trix with entry ah.k is denoted by [ah.k]. For the Schur complement, A/[ah.k], we 
have 

detA = (--l)h+kah.k • det (A/[ah.~]). 

Suppose A is an n x n matrix, with n >i 2. If i and j are any two indices, A [i; j] 
will denote the (n - I )  x (n - l )  matrix obtained by deleting row i and column j. 
Similarly, if (h,i) and (j,k) are indices, then A[h, i ; j ,k]  will denote the 
(n-2) x (n-2) matrix obtained by deleting rows h and i and columns j and k. 
We shall make extensive use of the following identity, due to Dodgson [8]. 

Lemma 2.1. For any  indices [h, i ; j ,k]  with I <~ h < i <~ n and 1 <~j < k <~ n, 

det A. det A[h, i ; j ,k]  = det A[h;j] . det A[i; k] - det A[h; k] . det A[i;A. 

Proof. By re-ordering the rows and columns, we may assume that the indices 
are (h,i) = (1,2) and (j,k) =(1,2). Let B =  A[1,2;1,2]. Then A has the form: 

A =  c d y , 

w z B 

where x and y are 1 x 01-2) row vectors, w and z are 01-2) x 1 column vectors. 
Temporarily assume that B is non-singular. For the Schur complement A I B  we 

have: 
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A / B  = [a - xB- tw  b - x B - ' z ]  
c -  yB- lw  d -  yB- l z  ' 

det (A/B)  = (a - xB-~y)(d - yB-Zz) - (b - xB- l z ) (c  - yB- lw)  

= det(A[2; 2]/B) • det(A[l; I]/B) - det(A[l; 2]/B). det(A[2; I]/B). 

Using the determinantal identity for Schur complements, we have 

det A. det B = det A[2; 2 ] - d e t  A[l; l] - det A[I; 2]. det A[2; 1]. 

This is a polynomial relation which holds for the n-' values of the entries of A 
whenever det B ~= 0. Therefore it is an identity in the coefficients of A. UI 

3. Resistor networks 

In this section we construct the response matrix A(F, I') for a resistor net- 
work (F,y). This is done first when F is connected as a graph; the response ma- 
trix for a general network is obtained by taking the direct sum of the response 
matrices of the connected components. 

Suppose ([', 7) = (V, VB, E, 7) is  a connected resistor network, with d vertices 
numbered v t , . . . ,  Yd. The Kirchhoff matrix K = K(F, I') is the d x d matrix K 
constructed as follows. 
I. If i # j then K,,/= - ~ "/(e), where the sum is taken over all edges e joining 

v, to v/. (If there is no edge joining v, to vj, then K,:/=0.) 
2. K~.~ = ~_, 7(e), where the sum is taken over all edges e with one endpoint at v; 

and the other endpoint not v~. 
The Kirchhoff matrix has the following interpretation. If u is a voltage de- 

fined at the nodes of F, then c = Ku is the resulting current flow. In coordinates, 
if u = {u(v,) }, then c / =  ~ K~ju(v~) is the current flowing into the network at 
node vj. 

If a function f is imposed at the boundary nodes, the function u which sat- 
isfies Kirchhoffs current law cj = 0 at each interior node v/, and which agrees 
with f a t  the boundary nodes, is called the potential due tof .  

Suppose there are N edges numbered e j , . . . ,  eN. A d x N matrix Q is con- 
structed as follows. If e is an edge .joining v; to rj with i < j, then 

Q,.k = + x / ~ ,  

Qh,, = O, otherwise. 
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A calculat ion shows that  K = Q.  QT. Thus  K is positive semi-definite. Suppose  
x = (x l , . . .  ,Xd). Then  x K x  v = 0  if and only if xQ  --~:: 0. Let e - v, v i be an edge in 
F. Then x Q  = 0 implies that  

Thus  x~ = xj. Since F is connected  as a graph,  xK rx = 0 if and only if xi = xj for 
all vertices v,. and  vj. 

Lemma 3.1. Suppose (F, 7) is a connected resistor network. Let P = ( P I , . . . ,  Pk ) 
be a non-empty proper subset o f  the vertices. Then the matrix K(P; P) is positive 
definite. 

Proof. Let A :-- K(P;P),  and suppose  y =  ( y l , . . .  ,Yk) is a vector with yAy T = O. 
Let x = ( X l , . . . ,  xa) be the vector  with xp, = y, for 1 <~ i <~ k, and Xi = 0 if/" is not  
in P. Then xKx T = yAy v = 0. Since P is a proper  subset of  V, at least one of  the 
x, is 0. Since F is connected, all the x~ must be 0. Hence the y; are 0 also. I-1 

Suppose ( F , ) ' ) = ( V ,  Vs, E,7)  is a connected resistor network. Let 
I = V - Vs be the set of  interior nodes. By Lemma 3.1, if ! is not empty, the 
matrix K ( I , I )  is nonsingular. 

Theorem 3.2. Suppose (F, 7) is a connected resistor network. Then the network 
response matrix  A. is the Schur c~nnplement 

A : . = K / K ( I : i ) .  

Proof. l f  i is the empty  set, K / K ( I ; I )  is defined to be K, and A;. = K. Otherwise,  
I is non-empty .  For  convenience,  assume the nodes are numbered  so that  
V~ = {vl, v 2 , . . . ,  v,,}, and I = {v,,+l, v,,+2,.. . , t ,d}. Let D = K(I:I ) .  The  K has a 
block structure.  

K =  C 

Suppose t h a t f  = {f(v;); i = ! . . . .  ,n} is a funct ion imposed at the boundary  
nodes. Let g = {g(vi);i = n + 1 . . . .  ,d} be the resulting potential  at the interior 
nodes. Kirchhoff ' s  current  law says that  the sum of  the currents into each in- 
terior node is 0. Thus  

This implies that  (A - B D ~ C ) f  = c. Therefore  the response matrix represent- 
ing the Di r i ch le t - to -Neumann  map  is A.,. = A - BD-~C. U] 
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If A = (a l , . . .  ,a~) and B = (b l , . . .  ,b,) are two sequences of nodes. A + B 
stands for the sequence ( a t , . . . ,  a~, b l , . . .  ,b,). 

Lemma 3.3. Suppose (F, 7) is a connected resistor network, and let A.,. be its 
response matrix. Let P and Q be two sequences of  boundary nodes of F. Then the 
submatrix A;,(P; Q) is obtained as the Schur complement 

A;,(P; Q) = K(P + I; Q + I)/K(I;I) .  

Proof. This follows from Theorem 3.2 and the definition of Schur comple- 
ment. El 

Suppose F = (V, Vs, E) is a connected graph with n boundary nodes. Let p 
be one of the boundary nodes. Let F'= (V', V[~,E') be the graph with 
V' = V, V~ = Vn - p and E' = E. That is f" is the same as f', except that p is de- 
clared to be an interior node. If 7 is a conductivity on f', we assign the same 
values to the conductors in F'. Let Af. denote the response matrix for F'. By 

J 

Theorem 3.2, 

A~, - K / K ( I  + p; I + p). 

Suppose P = (pl , . . .  ,pk) and Q = ( q l , . . .  ,qk) are two sequences of boundary 
nodes, and p is a boundary node not in P U Q. 

r .  

Lemma 3.4. h~ this situation, 
t ° I. A.,,(P, Q) = A.,.(P + p; Q + p)/A.,,(p;p) 

2. det AI.(P; Q) = det A:,(P + p; Q + p)/det A.,,(p;p) 

Proof. The first follows from the Haynsworth quotient formula. The second 
follows from the determinantal identity for Schur complements. I-I 

4. Connections and determinants 

Suppose F = (V, VH, E) is a connected graph with boundary. F is not as- 
sumed to be planar. Let 1 = V - VB denote the set of interior nodes. If p and 
q are two boundary nodes, a path from p to q through F is a sequence of edges 
p, rt, rt, r2 . . . .  , r,,,, q in F where the r i are distinct interior nodes. Suppose 
P = (Pl, . . . .  p~) and Q = (q l , . . .  ,qk) are two disjoint sets of boundary nodes. 
A connection from P to Q through F is a set ~ = (~i , . . . ,  ~k) of disjoint paths 
through F, where for each l ~< i ~ k, ~t~ is a path from Pi to Q,(~I, and T is an 
element of the permutation group Sk. Let *6;(P; Q) be the set of connections 
from P to Q. For each 0t = (~l , . . . ,~k)  in *6(P; Q), let 
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r~ be the permutat ion of  (q~ ,q , , , . . .  ,q~) which results at the endpoints  of the 
paths (~ ,  ~_, . . . .  , ~k); 
E~ be the set of  edges in ~; 
J~ be the set of  interior nodes which are not the ends of any edge in ~. 

Lemma 4.1. Let (F, 7) be a connected resistor network. Let P = (P~,p2, . . .  ,p,)  
a n d  Q = (q~ , q2, . . . , qk ) be two disjoint  sequences  o f  boundary  nodes. Then  

det A ( P ; Q ) . d e t K ( l , l )  = ( - l ) * Z s g n ( r ) {  E YIT(e) .detK(d~;d~)}.  
rES~ ~Erc', ( P;Q)eE E~ 

T~=T 

Proof. Let v = k + k', where k' is the number of  interior nodes in .r,. Let the 
interior nodes be numbered rg for i = k + 1 , . . . ,  k + k'. By taking t/ae Schur 
complement with respect to K ( I , I ) ,  we have 

det A(P; Q) . det K(I,I) = det K(P + I; Q + 1). 

The v x v matrix K ( P  + I; Q + I) is denoted M = {m~,/}. Then 
I '  

det M = Z s g n ( a ) r g m i . . , i  ,. 
aES,. i=: I 

Here S,. denotes the symmetric group on v symbols. For  each 1 <~ i ~< k, let n~ be 
the first index j for which crJ(i) ~< k. For  each 1 <~ i ~< k, and 0 <~ j ~ n~, let 
a( i , j )  = a/(i). Let r be the permutat ion of 1 , 2 , . . . ,  k where r(i) = a(i, ni). Thus 
each a ~ S,. gives a diagram of  the following form: 

l a ( I  0 )  ° ° ° ° = , ~ a ( I  l ) ~ a ( I  2) • a(I n,) r(I) ,  

2 = a ( 2 , 0 )  " " " " b-~ --  ~ a(2, 1) ~ a(2,2)  ~ . . .  a(2, n,). r(2), 

k = a ( k  O) ° " a(k 1) ~--, a(k ,  2) " , , ~-~ . . .  ~ a ( k , n , )  = r(k) .  

Let A be the subset of  { l , 2 , . . . , v }  consisting of the a ( i , j )  for 
1 <~ i ~ k, 0 ~< j < n~. Let t = Y~ n,., which is the cardinality of A. Let B be the 
set { 1,2, ., v} - A .  Then a may be expressed as a product tr = tk • p, where 
q~ is a permutat ion of A, and p ~s a permutation of  B. Let q~ be expressed as 
a product of  disjoint cycles ~/~ = ~ l"  t/~2 . . .~,-.  Then sgn( t r )= ( - 1 )  '-~ sgn(p). 
Then z will also be expressed as a product of  s cycles, z = ~t " ~'2"'" ~'s and 
sgn(z) = ( - 1 )  k-'~. Thus sgn(a) = ( - I )  k~' sgn(r)sgn(p). 

The diagram above determines a set ~ = (~1 . . . .  , ~k) of sequences of  nodes in 
F, where 0ti is the sequence a(i ,0),  a ( i , l ) ,  . . . .  a(i,  ni). For each l<<. i~k ,  
a(i,  O) = Pi and a(i,  ni) = q~t~. For  each 1 ~< i ~ k, and 0 < j < n~, a( i , j )  is the in- 

i '  terior node z,,.i/. The product  I-L:~m~,,lil can be uon-zero only if 
0e = (~l,ct . , , . . . ,~k) forms a connection thrcmgh F from P to Q. For  each 
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0t ~ ~(P; Q), let S(0t) be the set of a ~ S,. for which the connection is ~t. As a var- 
ies over S(~t),/~ varies over the permutations of J~. Then 

I* 

sgn(tr)flm,.~(i, : ~ ( -1 )  k+' s g n ( z ) f l ( - ~ ( e ) ) ,  sgn(/~) • - -  
aES(~) i= ! aEs(a) eEE~ 

= ( -1 )  k sgn(t) ,  f l y ( e ) . de tK(J~ ; J~ ) .  
eEE~ 

flmi4•(i) 
iEJ~ 

For each z E Sk, take the sum over all ~ which induce this 3. Then take the sum 
over all ~ E S~, and the proof is complete. I--1 

This answers a question raised by Ref. [2]. In particular, it follows from 
Lemma 4.1 that if det A(P; Q) = 0, then either 
1. There is no connection from P to Q; or 
2. There are (at least) two connections • and / / f rom P to Q, with permutations 

r~ and T/~ of opposite sign. 
The following theorem is very important for our purposes. It was first 

proved for well-connected circular planar networks in Ref. [7], and for general 
circular planar networks in Ref  [1]. The proof we give here is based on Lemma 
4.1. 

Theorem 4.2. Suppose F is a circular planar resistor network and 
(P; Q) = (pl , . . . , Pk ; ql , . . . , qk ) is a circular pair o f  sequences o f  boundary nodes. 

(a)/f (P; Q) are not connected through F, then det A(P; Q) = O. 
(b)If (P; Q) are comwcted through F, then ( - I )  ~" det A(P; Q) > O. 

Proof. We first consider the case when F is connected as a graph. By Lemma 
3.1, g ( l , l )  is positive definite, so det g ( J , J )  > 0 for all J c_ I. The sequence 
(p l , . . .  ,Pk, q k , . . . ,  ql) is in circular order around the boundary of F. If there is 
a connection from P to Q, it must connect p~ to q~ for 1 ~< i <~ k. Thus each 
which appears in Lemma 4.1 is the identity permutation, so all the terms in the 
sum have the same sign. In the general case, F is a disjoint union of connected 
components Fi, and A(F, 7) is a direct sum of the A(Fi. yi). [-1 

When we say that removal of an edge e from F breaks the connection from 
P to Q, we mean that P and Q are connected through F (possibly in many 
ways), and that P and Q are not connected through the graph F' which is 
the graph F with e removed. By Theorem 4.2, this is equivalent to the two as- 
sertions that det A(P; Q) # 0, and det A'(P; Q) = O. 

An edge e between a pair of adjacent boundary nodes is called a boundary 
edge. If r is a boundary node which is joined by an edge to only one other node 
p which is an interior node, the edge rp is called a boundary spike. 
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Corollary 4.3. Suppose F is a connected circular planar resistor network and 
e = pq is a boundmT edge, such that deleting e breaks the connection between a 
circular pair (P;Q) = (pl, . . .  ,Pk; q l , . . ,  ,qk). Then pq is either Plql or Pkqk, and 

det A(P; Q) = -7(e)" det A(P - p; Q - q). 

Proof. The edge pq must be either plql or Pkqk. As the two cases are similar, 
WLOG assume the formei'. We consider d e t K ( P + l ; Q + l )  as a linear 
function F(z) of the first column z of K(P + I; Q + l). Let ~ =~,(e). Then 
z = x + y, where 

[ - ~ ]  and y =  [~] .  x =  0 

Then F ( z ) =  F ( x ) +  F(y). But F ( y ) =  0, since P and Q are not connected 
through F after p~q, is deleted. Thus 

det K(P + I; O + I) = -~  det K(P - pj + I; Q - q~ + I). 

The result follows by taking the Schur complement with respect to K(I; I), and 
using Lemma 3.3. i-3 

Corollary 4.4. Suppose F is a connected circular planar resistor network and 
rp is boundaIT spike joining a boundary node r to an interior node p. Suppose 
that contracth~g rp breaks the connection between a circular pair 
(P;Q) = (P l , . . . ,Pk ;q l , . . . , qk ) .  Then r ~. PUQ,  and 

det A(P + r; O + r) = y(pr), det A(P; Q). 

Proof. It is clear that r ¢ P U Q. Let ~ = ?(pr). Then K(P + r + 1; Q + r + 1) has 
a submatrix K(r,p;r ,p)  which has the form: 

The remaining entries of K(P + r + 1; Q + r + I) in the column corresponding 
to r are 0, and the remaining entries of K(P + r + I; Q + r + I) in the row cor- 
responding to r are 0. Thus 

d e t K ( P + r + l ;  Q + r + l ) = ~ d e t K ( P + l ;  Q + I )  

- c d e t K ( P + l - p ;  Q + l - p ) .  

The assertion of the corollary follows upon dividing by K(I; I), interpreting 
each of the terms as the determinant of a Schur complement, and using Lemma 
3.3. I--I 
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5. Y-A transformations 

Suppose F = ( V, VH, E) is a circular planar graph, and s is a trivalent interior 
node with incident edges sp. sq and st, as in Fig. l(A). A Y-A transJbrmation 
removes the vertex s, the edges sp. sq, sr and adds three new edges pq, qr, 
and rp as in Fig. l(B). Similarly, if pqr is a triangle in F as in Fig. l(B), then 
a A-Y transformation removes the edges pq, qr, and rp, inserts a new vertex 
s, and adds three new edges ps, qs, and rs, to arrive at Fig. l(A). All other 
nodes are fixed during the transformatioa. 

We say that two circular planar graphs FI and ,U2 a re  Y-A equivalent if F~ 
can be transformed to F,, by a sequence of Y-A or A-Y transformations. 

Lemma 5.1. I f  Fi and F2 are two circuko" pkmar graphs which are 

equivalent, then rt(Fl)=n(F2). 

Y-A 

Proof. Suppose F! is transformed into F2 where the Y of Fig. I(A) is replaced 
by the triangle of Fig. l(B). Let ~t and fl be disjoint paths in FI where ~t passes 
through p and fl passes through edges rs and sq. The corresponding paths in F2 
are • and if, where ff is the same as fl except that the two edges rs and sq are 
replaced by the single edge rq. [3 

Lemma 5.2. Suppose Fi and ['2 are two circular planar graphs which are Y-A 
equivalent. Then FI is critical i f  and only ~]" F2 is critical. 

Proof. Suppose/ ' t  is transformed into F2 where the Y of Fig. I(A) is replaced 
by the triangle of Fig. l(B). Assume that Fi is not critical. We need to consider 

three cases. 
(I) Suppose e is an edge in FI which is not ps, qs, or rs and e can be removed 

without breaking a connection in n(FI ). Then removal of the same edge in F2 
breaks no connection in re(F2). 

\ /  
P 

/ ' r  (B) q 

Fig. i. (A) Y with incident edges ,~p. sq. st" changed to (B) A with edges pq, qr, rp. 
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(2) Suppose deletion. , ,s no connection in n(F~ ). Then deletion of/~r 
breaks no connection in n(1"2). 

(3) Suppose contraction of ps breaks no connection in n(F~ ). Then delelion 
of rq breaks no connection in n(F2). 

Assume that F2 is not critical. Again there are three cases. 
(4) Suppose e is an edge in F2 which is not pq, qr, or rp and e can be removed 

without breaking a connection in n(F2). Then removal of the same edge in/'~ 
breaks no connection in n(F~). 

(5) Suppose deletion of rq breaks no connection in n(F2). Then contraction 
of ps breaks no connection in n(Fi). 

(6) Suppose contraction of rq breaks no connection in n(F,.). Then contrac- 
tion of rs breaks no connection in n(Fi). El 

Lemma 5.3. Suppose F] and F2 are two circular planar graphs which Y-A 
equivalent, l[';,! is a conductivity on Fi then there is a conductivity ;'2 on F2, with 

= A(F2,72). 

Proof. Suppose F! is transformed into F2 where the Y of Fig. I(A) is replaced 
by the triangle of Fig. l(B). Suppose 71(ps)=a, ),l(qs)=b, ?l(rs)=c. The 
corresponding conductivity ;'2 on F2 is 

ab 
 '2(pq) : 

a + b + c '  
bc 

,,(q )-- 
a + b + ¢ '  

a c  
= 

" a + b + c  
and ),2(e)= 71(e) for all other edges. 

Suppose FI is transformed into F2 where the triangle of Fig. I(B) is replaced 
by the Y of Fig. I(A). Suppose ),l(pq)=a, ;,i(qr)=b, 71(rp)=c. The corre- 
sponding conductivity )'2 on F2 is 

ab + ac + bc 

ab + a¢ + bc 
~'2 ( q s )  -'= 

= 

¢ 

ab + ac + bc 
a 

and 72(e) = ~,~(e) for all other edges. If u is a fur~ction defined at the nodes of F! 
which satisfies Kirchhoffs current law, the same function (omitting the point s) 
satisfies KirchholTs current law on F2. Hence A(Fl,','l) = A( F2, ,',.). V1 

Lemma 5.2. Suppose F! and F2 are two circular planar graphs which are Y-A 
equivalent. I f  )'l is recoverable from A(Fi,Ti) ,  then 72 is recoverable .fi'om 

A(F2,~'2). 
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Proof. This follows from Lemma 5.3. I-1 

6. Medial graphs 

Suppose/" = (V, Vs, E) is a circular planar graph with n boundary nodes. F 
is assumed to be embedded in the plane so that the boundary nodes 
1)~, 1)2,..., v, occur in clockwise order around a circle C and the rest of F is 
in the interior of C. The construction of the medial graph ~;//(F) is similar to 
that in (Ref. [10], p. 239). The medial graph . # ( F )  depends on the embedding. 
First, for each edge e of F, let m,, be its midpoint. Next, place 2n points t~ ,t,., . . .  
,t2,, on C so that 

tl < 1)1 "( t2 < 13 < !)2 < " ' "  ~ t2n-I < 1)n < t2n < tl 

in the clockwise circular order around C. 
(I) The vertices of .////(F) consist of the points me for e E E, and the points ti 

for i = 1,2 . . . .  ,2n. 
(2) The edges in . / / (F)  are as follows. Two vertices me and mr are joined by 

an edge whenever e and fhave  a common vertex and e and f a r e  incident to the 
same face in F. There is also one edge for each point tj as follows. The point t2i 
is joined by an edge to m,. where e is the edge of the form e = t,;r which comes 
first after arc t,,t2, in clockwise order around v~. The point t.,,_~ is joined by an 
edge to ml where f is the edge of the form f = v,s which comes first after arc 
1);t2,_ t in counter-clockwise order around v;. 

The vertices of the form m,. of .//(F) are 4-valent; the vertices of the form t, 
are l-valent. An edge uv of .//(F) has a direct extension wt, if the edges uv and 
vw separate the other two edges incident to the vertex v. A path u0ut . . .  uk in 
. / / (F) is called a geodesic art, if each edge u~_lu~ has edge u,u~.! as a direct ex- 
tension. A geodesic arc uout . . ,  uk is called a geodesic if either 

(1) u0 and uk are points on the circle C, 
or (2) uk = u0 and Uk-tuk has UoU~ as direct extension. 
A subgraph ~ of . /I(F) is called a/ens provided that: 
{I) .~' consists of a simple closed path UoUt...UkVo1)l...l;mUo and all the 

nodes and edges of .//(/") in the bounded connected component of the comple- 
ment of ~ in the plane. 

(2) u0ut ...ukt,0 and t'0t~t . . .  1),,u,~ are two geodesic arcs such that no inner 
edge of ~ is incident to u0 or tro. 

If each geodesic in . / / (F)  begins and ends on C, has no self-intersection, and 
if . / / (F) has no lenses, we say that .... / /(F) is lensless. 

A triangle in ./ /(F) is a triple {]~g,h} of geodesics which intersect to form a 
triangle with no other intersections within the configuration, as in Fig. 2(A). 

Suppose {l~g,h} form a triangle as in Fig. 2(A). A motion of [f,g,h} consists 
of replacing this configuration with that of Fig. 2(B). 



E.B. Curtis et al. I L#war Algebra amt its Applicathms 283 (1998) i 1 5 1 5 0  129 

h 

f f 

Fig. 2. (A) Triangle changed by motion of {J~ g, h} to another triangle (B). 

Lemma 6.1. Two circuho" planar graphs are Y-A equivah, nt iJ'and only (f theh" 
medial graphs are equivalent under motions. 

Proof. Each Y-A transformation of !" corresponds to a motion on .//(F). 
Conversely, a motion on .//(F) corresponds to a Y-A transformatio~ of F. I--i 

We shall make extensive use of the following lemma. Our proof is an adap- 
tation of a proof of Steinitz to our situation; see Refs. [10,11). 

Lemma 6.2. Suppose F is a circuko" planar graph, for which .... //(F) is lensless. 
Suppose g atut h intersect at p. Suppose g intersects C at q an,t h intersect C at r. 
Assume .~ = { . f l , . . .  , f , ,}  is a set of  geodesics with the pr,:per O, that fiJr each 
1 <. i <~ m, .[i, #ltersects g between p and q (/'and only (l.,fi intersects h between p 
and r. Then a./inite sequence o./'motions will remove all members q/'.~./i'om the 
sector qpr. 

Proof. For each i = i . . . .  ,m, let v~ be the point of inte~.,.et:tion (il" there is one) 
o f j i  with g between p and q. For each ./i which intersects another of the./) 
within sector qpr, let D.'ke the first point of intersection on./i alter v; in sector 
qpr. Let ~ = {D;} be the set of points obtained in this w-~y. If "~' is empty, let./i 
be the geodesic in .~- such that vi is closest to p, and {g,hJil form a triangle. A 
motion will remove,/i from sector qpr. Otherwise, f~ is non-empty. Each point 
Di E ~ is the point of intersection of two of the geodesics, say ji and.[i. Let D 
be a point in ~ for which the number of regions within the configuration 
formed by./i and J) and g is a minimum. This minimum must be one, or there 
would be another geodesic which intersects ./i between v; and D or which 
intersects fj  between v /and D. Then {gJi~} form a triangle. A motion will 
reduce the number of regions within sector qpr. After a finite number of 
motions, no / i  crosses into the sector. 1:3 

Lemma 6.3. Suppose F is a circular planar graph, Jor which ,//(F) has a lens. 
Then F is Y-A equivalent to a graph F' which )Tas either a pair of  edges in series, 
or a pair o/'edges hl parallel. 



130 E.B. Otrtis et al. I Lhlear Algebra anti its Applications 283 (1998) 115-150 

Proof. Suppose g and h ~,:,~ two geodesics which intersect at pt and P2 to form a 
lens ~ .  w.l.o.g, assume that £e is a lens with the fewest number of regions 
inside Le. Each geodesicf which intersects g between pi and p~, also intersects h 
between p~ and p2, or there would be a lens with fewer regions than Le. An 
argument similar to that of Lemma 6.2 shows that all of these f may be 
removed from ~'e. Thus F is Y - A  equivalent to a graph F' for which , , , / /(F') has 
an empty lens. This empty lens corresponds either to a pair of edge: in series (if 
there is a vertex of F' within ~ ) ,  or to a pair of edges in parallel (if there is no 
vertex of F' within Le). i3 

Lemma 6.4. I f  F is a cr i t i ca l  c i r c u l a r  p k m a r  g raph ,  t hen  . / / ( F )  is l ens less .  

Proof. If there were a lens, a closed geodesic or a geodesic with a self- 
intersection in . / / ( F ) ,  then F would be Y - A  equivalent to a graph F' with a pair 
of edges in series or in parallel, or with an interior pendant or an interior loop. 
In each case an edge could be removed from F' without breaking any 
connection, so F' would not be critical, and hence also F would not be 
critical. D 

In Section 13, we show that i f . / / ( f ' )  is lensless, then F is critical. 

7. Standard graphs 

Suppose F is a circular planar graph with n boundary nodes which is embed- 
ded in the plane so that the boundary nodes ~,~, . . . .  I,,, occur in clockwise order 
on a circle C and the rest of F is in the interior of C. Assume the medial graph 
.//(F) is lensless. Then .//(F) has n geodesics each of which intersects C twice. 
The n geodesics intersect C in 2n distinct points. These 2n points are labelled 
tj , . . . . t,,,, so that 

ti <: I;I < t2 < t3 < !:2 < " ' "  < t2n-I < ~',a "< t2. < tl 

in the circular order around C The geodesics are labelled as follows. Let gi be 
the geodesic which begins at t~. The remaining geodesics are labelled 
g:, g.~,..., g,, so that if i < j, then the first point of intersection of g~ with C oc- 
curs before the first point of intersection of g, with C in the clockwise order 
starting from t~. For each i = I, 2, . . . .  2n, let :; be the number associated with 
the geodesic which intersects C at t,. in this way we obtain a sequence 
z = z ~ , z 2 , . . .  ,::,,, called the :-sequence for . / / ( F ) .  Each of the numbers from 
1 to n occurs in - exactly twice. If i < j, and if the occurrences of i and j appear 
in - in the order 

. . . i . . . j . . . i . . . j . . .  
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we say that i and j interlace in z; otherwise, we say that i and j do not interlace 
in z. 

Suppose z = z~,z,.,... ,z2,, is a sequence which contains each of  the numbers 
1 , 2 , . . . ,  n twice. Assume that if i < j ,  the first occurrence of  i comes before the 
first occurence of j .  Associated with this sequence, there is a standard arrange- 
ment d ( z ) ,  of  n pseudolines {gi} in the disc, constructed as follows. Place 2n 
points in clockwise order around the circle C t~nd label them x~, . . .  ,x, and 
y , , . . .  ,y, as follows. The points labelled xi and y~ are to be placed at positions 
corresponding to the two occurrences of  i in the sequence z~ , . . . , z ; , ,  with 
xi < y~. We join each x, to y~ by a geodesic g~. I1 i and j interlace in z, then g~ 
will be made to inters,~ct gj; the point of  intersection is denoted x(ij) ,  with 
the convention that xq, i) denotes the same point as x(id). 

First, join x~ to yt by pseudoline g,. After g, , . . . ,gm_~ have been placed 
within C, the pseudoline g,, joining x,, to y,,, is placed as follows. For  each 
i ~< m -  1. if m interlaces i in -. place a point x(i.m) on g, closer to y~ than 
any previously placed point on gi. Now let g., join x., to y,,, passing through 
the points x(i,m) which have just been placed. The points ),~ which are be- 
tween x,,, and y,. occur in the same order on C as the points x(i,m) occur 

on gin. 
When all the pseudolines g~ , . . .  ,g,, are in place, the arrangement .~,'(.:) has 

sequence z. The intersection points x(id) occur as follows. For  each 
i ~< m -  1, the points x(id) which are on g~ appear  between x, and 3', so that: 
I. If i < j < k, then x(ij) appears before x(i,k). 
2. If j < i < k, then x(ij) appears before x(i,k). 
3. I f . / <  k < i, then x(id) and x(i,k) appear on g, in the same order as .l'j and Yk 

appear in z. 
Let {x l , . . .  ,x,,} t., {yl, . . . ,Y,,} = { t , , . . . ,  t,,,} where t~ < . . .  < t2,, in the 

clockwise order around the circle C. Place n boundary points v , , . . . ,  v,, on C 
so that the points 

tl < /)1 < t2 < t3 < t~2 < . . .  < t2n-I ~ [~n ~ t2n 

are in clockwise circular order on C. Next color the regions formed by .//(F(z)) 
inside C in two colors, black and white, with each vi in a black region. To ob- 
tain the standard graph F(z), for which . / /(F(z))= A(z), we must assume that 
each of  the black regions contains at most one of  the vertices ~,. After a vertex 
has been placed in each black region, they are joined by edges, with one edge 
passing through each of  the points x(id). 

Lemma 7.1. Let F be a connected circular planar graph with n boundmT nodes. 
Assume .if(F) is lensless. Let z = z l ,z2, . . .  ,z2,, be the z-sequence associated with 
F, and let F(z) be the standard graph constructed above. Then F is Y -  A 
equivalent to F(-). 
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Proof .  We make motions in J / (F )  to transform it to A(z). Geodesic gi intersects 
the outer circle C at two points xi and yi, with xj < y~. The points x~ ,x2, . . .  ,x,, 
and yl, Y~,... ,y,, occur in the order of z around C. If i and j interlace in :, the 
geodesic gj intersects gi. Let x(id) = x(],i) be the point of intersection of gi with 
gj, and let S(id') be the sector formed by x~, x(id) and xj. The location of the 
points x(id') is changed by the motions of tit'(F). 

Let k be the first index for which gk intersects a previous geodesic. Then gk 
must intersect gk-~. Consider the geodesics from the set {gk+~,gk+2,...,g~} 
which intersect gk between x(k - l,k) and xk. Any such geodesic also intersects 
gk-t between x ( k -  l ,k) and x~_~. Lemma 6.2 implies that finite sequence of 
motions will remove gk+l,... ,g~ from the sector S(k - l,k). This process is re- 
peated to remove all intersections of gk+~,...,g, from the sectors S(i,k) for 
i = k - 2 , . . . , l .  

We perform a similar process at steps k + 1 , . . . ,  n - 1. After step (m-1), the 
geodesics are in position so that if i < j < m, the geodesics gm,gm+l,gk+l,... ,g,, 
have no intersections within any of the sectors S(id). Note that for each 
1 ~< i < m, if gm intersects gi, then for all j < m the point of intersection 
x(i,m) is between x(id) and y~ on g~. Also the set of points 

{Xm,X(m, 1 ) , . . . , x ( m , m -  l),y,,} 

occur in the following order along gin: if j < m and k < m, with j ~ k, then 
x(md) and x(m,k) appear in the same order along gm as ),j and Yk appear in z. 

For step (m), Lemma 6.2 implies that we can remove geodesics gin+t,... ,g,, 
from the sectors S(/,m) for I ~<.] < m. These geodesics are removed from the 
sectors S(/,m) in the same order in which the x(md) appear on g,,,. 

Cont inue  until  m = n - I, when  all intersect ions are as in .d(z) .  I-7 

Theorem 7.2. Suppose Fi and 1"2 are two connected circular planar graphs, each 
with n boundary nodes. Assume the medial graphs ..¢/'(1"1) and ./[1(1"2) are 
lensless. Then 1"1 and F2 are Y-A equivalent if and only if .J//(F! ) and.#(F2) and 
have the same z-sequence. 

Proof.  A Y-A transformation does not change the z-sequence. Conversely, if 
.//(Fl) and ./[(F2) and have the same :-sequence, then FI and F2 are each be 
Y-A equivalent to the same standard graph F(-). I-1 

When the sequence : is I , . . . ,  n, 1 , . . . ,  n, the standard arrangement ~¢/(..-) is 
denoted .~/,, and the standard graph F(:) is denoted Z,,. In .~t,,, every pseudo- 
line g~ intersects every other pseudoline, and there are ~ n(n - l)points of inter- 
section x(i, j). For each 1 <~ i <~ n. the points 

x,,x(i, l ) , x ( i , 2 ) , . . . , x ( i , i -  l) ,x(i , i  + l), . . . ,x(i ,n),y, .  

occur in order along gi. 
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0 

vs v4 v3 I Vs 
2.  

l~s E7 

Fig. 3. Graphs .r6 and ZT. 

The standard graph Z, has i n(n - 1 ) edges. The graphs ~'6 and ~T' 7 a r e  shown 
in Fig. 3. 

As in Ref. [l], a circular planar graph is called well-connected if every circu- 
lar pair (P;Q) is connected through F. 

Proposition 7.3. For each integer n >t 3, the graph Z,, & critical and well- 
connected. 

Proof. The proof is left to the reader. UI 

Corollary 7.4. Let n = 4m + 3, and let C(m, 4m + 3) be the circular graph of  
[7]. Suppose that F is a circular planar graph with n boundary nodes, Assume that 
.tl  ( F) is lensless" and has z-sequence. 1, . . .  , n, 1 , . . .  , n. Then F is Y-A equivalent 
to C(m, 4m + 3). In particular, Z,  and C(m, 4m + 3) are Y-A equivalent. 

Proof. The medial graph .#(C(m,4m + 3)) is lensless. The z-sequence is 
I , . . . , n , l , . . . , n .  By Lemma 7.2, F and C(m,4m + 3)are Y-a equivalent. El 

8. Adjoining edges 

Let (F, ~},) be a circular planar resistor network with n boundary nodes 
vl , . . . ,  v,. We will describe three ways to adjoin an edge to F, and the effect 
of each on the matrix A(F,v). In this section A(F) stands for A(F,v),  with 
the conductivity V implicit from the context. 

(1) Let p and q be two adjacent boundary nodes. For convenience of nota- 
tion, we make a cyclic re-labelling of the boundary nodes, so that p = vl and 
q = v2. We add an edge pq so that the new graph is still be a circular planar 
graph with n boundary nodes. We call this process adjoining a boundary edge. 
If a boundary edge pq is adjoined to F, with v(pq) = ~, the resulting resistor net- 
work is denoted .~(F) .  
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Suppose M = {m~.j}is an n x n matri: ,  and ~. is a real number. We define a 
new matrix :~'-~(M) as follows. 

r¢(M)l .  ! = m l j  + ~, 

T¢(M)2., " = m2.', + ~, 

T~(M)I , - = mr.2 - ~, 

T~(M),...! = m,.i - ~, 

T~ (g ) i  J = mi. i otherwise. 

Clearly, T_¢ T~ = identity. From the definition of Kirchhoff matrix, we have 

K(.~-~(F)) = T~(K(F)). 

From Theorem 3.2, it follows that 

A ( r ~ ( r ) )  = r ~ ( A ( r ) ) ,  

A(r)  = r < ( A ( . ~ - ~ ( r ) ) .  

Suppose given (F,7) and ~. Then A ( F )  uniquely determines A ( , ~ , ( F ) ) . .  Also 
A(~/-~(F)) u n i q u e l y  d e t e r m i n e s  A(F). 

(2) Let p be a boundary node. By a cyclic re-labelling of the boundary nodes, 
assume that p = vt. We place a new vertex vo on the boundary circle C, between 
v,, and v~, and adjoin a new edge VoV~ to F. The new graph is a circular planar 
graph with n + 1 boundary nodes. We call this process adjoin#~g a b o u n d a r y  
sp ike  wi thout  hl teriori:#~;.  If a boundary spike v0v~ is adjoined to F, without 
interiorizing the vertex v~, and with 7(t'0v~) = ~, the resulting resistor network 
is denoted .¢~(F). 

Suppose M = {m,,, } is an n x n matrix, written in block form 

g I~|l.I a c] 
If ¢ a real number, let P~(M) be the (n + 1)x (n + i) matrix, with indices 
0 ~ i ~< n and 0 <~ j <~ n, 

P:.(M) = i : : 0 1 - ,~ m l . i + , ~  a . 

0 b C 

Then by Theorem 3.2, 

A(.¢~(r) = P~(A(r)). 

Suppose given (F,  7) and ~. Then A ( F )  uniquely determines A ( . ~ ( F ) ) .  Also, 
A( .#~(F) )  uniquely determines A ( F )  



E.B. Curtis et al. I Linear Algebra and its Applications 283 (1098) 115-150 135 

(3) Let p be a boundary node. By cyclic re-labelling of the boundary nodes, 
assume that p = v~. We adjoin a boundary spike rvn to F, then declare vn to be 
an interior node, and renumber so that r is the first boundary node. The new 
graph is a circular planar graph with n boundary nodes. We call this process 
adjoining a boundary spike. If a boundary spike rvn is adjoined to F, with 
7(rvn)= ~, the resulting resistor network is denoted S¢(F). 

Suppose M = {m~4} is an n x n matrix, written in block form 

M= [ m'''b a].c 

For any real number ¢, the (n + 1 ) x (n + 1 ) matrix Pc(M) has been defined in 
part (2). The indexing is 0 ~< i ~< n and O.<,j<~n. If the (1,1) entry 6 = ml,n + ~ is 
not 0, we take the Schur complement of Pc(M) with respect to this entry, to obtain 

[?,-C-/6 a~,/6 ] 
S¢(M) = P:/[m,., + ?.] = [ b ¢ / 6  C -  ba /~  " 

A calculation shows that S_¢ o S~ = identity. From the definition of the Kirchh- 
off matrix in Section 3, 

K(.~/'~(F)) = K(P~(F)). 

Thus A(,~¢(F)) is the Schur complement of P¢(K(F)) with respect to the block 
corresponding to I t.J {z,n }. From Theorem 3.2 and Lemma 3.4, it follows that 

A(.,/~¢(r)) = & ( A ( r ) ) ,  

A(F)  = S_~(A(.,/'~(F)). 

Suppose given (F, 7) and the positive real number ¢. Then A(F) uniquely de- 
termines A(.~'¢(F)). Also A(,f/'~(F)) uniquely determines A(F). 

Remark 8,1. We have adjoined the boundary edge at vl v2 for convenience of 
notation. The construction .Y"c (F) may be made at any pair of boundary nodes p 
and q which are adjacent in the circular order. The construction T~(M) may be 
made at any pair of indices of which are adjacent in the circular order. Similarly 
the constructions .~¢(F) or ,~¢'~(F) may be made at any boundary node, and 
Pc(M) or S¢(M) may be made at any index. In each case, the location ofthe nodes 
(or indices) where the construction is to be made will be clear from the context. 

9. Recovering conductivities 

Lemma 9.1. Suppose F is a ch'cular phmar graph with n boundary nodes for which 
the medial graph .//(F) is lenslesa'. Assume that the z-sequence for the medial 
graph .t/( F) is not the sequence 1,2,..., n, 1,2,..., n. Then either 
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(1) there is a boundary node where a boundary spike may be adjoined to F, so 
that after the adjunction, the resulting graph F' is lensless, 

or (2) there is a pair of  consecutive boundary nodes where a boundary edge 
may be adjoined, so that after the adjunction, the resulting graph F' is lensless. 

Proof. Let t be a number in the sequence such that two repetitions of t are 
closest in the circular order around C. By a cyclic relabelling, we may assume 
that t = l, so that the z-sequence for ~//(F) is 

/ 

z = 1,2, . . .  ,m, l,Zm+2,... ,Z2, 

with m < n. Let h be the first index for which zh is not in the set { l, 2 , . . . ,  m}. 
Then Zh-~ and zh are a pair of numbers which do not interlace in : (see Sec- 
tion 7). The corresponding geodesics in ~//(F) do not cross. We now make 
the single alteration in .//(F) so that these two geodesics do cross, and the 
new z-sequence is 

1 ,2 . . .  ,m, l ,Zm+2,. . .  ,Zh ,Z / , - I , . . . ,  Z2,,. 

The new medial graph is lensless. This change in the medial graph corresponds 
to adjoining either a boundary edge or a boundary spike to F. I--i 

Lemma 9.2. Suppose F is a cfl'cular planar graph with n boundary nodes Jbr which 
the medial graph .//(F) is/ens/ess. There is a sequence of  circular planar graphs 
F = Fo, Ft ,F2, . . . ,Fk ,  where each Fi+l is obtained from Fi hA, adjoinh~g a 
boundary edge or a boundao' spike, and where Fk is Y-A equivalent to the 
standard graph L',,. 

Proof. We adjoin boundary edges or boundary spikes until the --sequence for 
the medial graph .//(Fk) is I, 2 , . . . ,  n, I, 2 , . . . ,  n. By Corollary 7.4, Fk is Y-A 
equivalent to L',. 173 

Proof of Theorem 2. By taking connected components, we need only consider 
the case when F is connected. First let (F, 7) be a resistor network whose 
underlying graph is the graph C(m, 4m + 3) of Ref. [7]. In Theorem 5.2 of Ref. 
[7] we showed that for this graph, the conductivity 3, may be recovered from A:.. 
By Corollary 5.4, any resistor network whose underlying graph is Y-A 
equivalent to C(m, 4m + 3) is also recoverable. In particular, any conductivity 
on ~v4,,,~3 is recoverable. 

Next suppose (F, 7) is any connected critical circular planar resistor network 
with n boundary nodes. If n is not of the form 4m + 3, first adjoin l, 2, or 3 
boundary spikes without interiorizing as in Section 8, to obtain a resistor net- 
work which does have 4m + 3 boundary nodes. Combining this with Lemma 
9.2, we obtain a sequence of circular planar resistor networks F = F0, 
Ft, F2 . . . . .  Fk, where Fk is a graph with 4m + 3 boundary nodes, which is Y-A 
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equivalent to ,~V'4m+3. Each F~+~ is obtained from F~ by adjoining a boundary 
edge, or adjoining a boundary spike (with or without interiorizing). The resis- 
tor network Fk is recoverable, and hence each of the resistor networks F~ for 
k >i i >~ 0 is also recoverable. In particular, the resistor network F = F0 is recov- 
erable. !--1 

10. Totally non-negative matrices 

We continue the notations of Sections 1 and 2. Specifically, let A = {a~j} be 
a matrix. If P =  (P~,...,pk) is an ordered subset of the rows, and 
Q = (ql , . . . ,q , , , )  is an ordered subset of the columns, then A(P;Q) is the 
k x m submatrix of A with 

A(P; Q)cj = ap,.q,. 

A[P; Q] is the matrix obtained by deleting the rows for which the index is in P, 
and deleting the columns for which the index is in Q. The empty set is ~b. Thus 
A[tk;l] refers to the matrix A with the first column deleted. 

Following Ref. [9], a rectangular matrix A is called totally non-negative 
(TNN) if every square minor has determinant >t 0. The following facts about 
TNN matrices will be needed in Sections 11 and 12. 

Lemma 10.1. Suppose A = {aci} is an m x m matrix which is T N N  and non- 
s#zgular Then any principal mh~or is non-singuhtr. 

Proof. huhwtion on m. For m = !, there is nothing to prove. Let m > 1. The 
entry a~.~ must be > 0, else either the first row or the first columa of A would be 
entirely 0, contradicting the assumption that A is non-singular. By the 
determinantal formula for Schur complements, the Schur complement A/[al,i] 
is non-singular and TNN. Similarly a,,.,,, > 0, A/[a,,,.,,,] is non-singular and 
TNN. By the inductive assumption, every principal minor of A/[al.I] is non- 
singular. Let A(P;P) be a principal minor of A, where P = (pl , . . .  ,pk) is an 
ordered subset of the index set ( l , 2 , . . . , m ) .  If I EP,  A(P;P)/[at,I] is a 
principal minor of A/[al,i] and hence is non-singular. Thus det A(P;P) ¢ O, so 
A(P; P) is non-singular. Similarly if m E P, A(P: P) is non-singular. Otherwise, 
P contains neither I nor m, and k ~< m-2.  Let Q = ( l , p t ,  . . . .  p,,,). The 
k + 1 × k + 1 matrix A(Q; Q) is TNN and non-singular. A(P; P) is a principal 
minor of A(Q,Q),  so is non-singular by induction. I--1 

Lemma 10.2. Suppose that A = {ai,/} /s an m × m matt&, and suppose that 
a.,.,t < O.[br some #~dex s with I <~ s <~ m. Assume also that 

(i) A[t/~; 1] is TUN. 
(ii) A(s + 1, . . . .  m: 1, . . .  ,m) is TNN. 
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(iii) A(I, . . . .  s -  l : 2 , . . . , m ,  1) is TNN. 
Then 
(1) ( -1 ) '  det A i> 0. 
(2) g i t  is further assumed that det A[s; 1] > 0, then ( -1 )  s det A > 0. 

Proof. hlduction on m. The assertion of (1) for m = 2 is immediate. For  m > 2, 
first consider the case s = 1, with al.! < 0. If all the cofactors of the entries in 
the first column are 0, then det A = 0. If the only non-zero cofactor of  an entry 
in the first column is A[I; 1], then 

det A = al.i .det  All; 1] < 0. 

Otherwise, suppose det Air; 1] > 0 with t > 1. A[l,t; 1,2] is a principal minor of 
A[t; !] which is assumed to be TNN,  so detAil , t :  1,2] > 0 by Lemma 10.1. 
Dodgson's identity (Lemma 2.1) gives 

de tA.  det A[l,t;  1,2] = det A[I; 1]. detA[t;2] - d e t A [ l ; 2 ] .  detA[t; 1]. (1) 

det A[I: 2] and det Air; 1] are non-negative by assumption (ii). By the inductive 
assumption det Air; 2] <~ 0. Hence det A <~ 0. 

The case s = m is similar, by considering the matrix A ( I , . . . ,  m; 2 , . . . ,  m, 1). 
The only negative entry is in the last column. Assumption Off) is used in place 
of (ii). 

This leaves the case when I < s < m. If the only non-zero cofactor of an en- 
try in the first column in A[s; I], then 

det A = ( - l ) " l  .a,.t • det A[s: 1]. 

if another cofactor is non-zero, w.l.o.g., assume det Air; 1] > 0 w i t h l  < 
s < t<~m. Then A[l,t; 1,2] is a principal minor of A[t; 1], so det A[l,t; 1,2] 
> 0 by Lemma 10.1. Dodgson's  identity (Lemma 2.1) gives 

det A .det  All.t;  1,2] = d e t  A[I; 1] .det  A [ t : 2 ] - d e t  A[I: 2] .det  A[t; I]. 

The factors det A[i:i]  and det A[/; I] are non-negative. By the inductive as- 
sumption, ( - l ) ' d e t  A[t:2] >10 and ( - I )  '-I det A[I:2] >10. In every case, 
( - I ) ' d e t  A >t0. 

The proof of (2) is also by induction on m. For m = 2, the assertion is im- 
mediate. Let m > 2. If the only non-zero cofactor of an entry in the first column 
is A[s: I], then 

( -  I)' det A = -a,.t • det A [s: 1] > 0. 

If more than one cofactor is non-zero, w.l.o.g., assume det A[s; 1] > 0 and 
det A[t: 1] > 0 with i < s < t<~ m. Then det A[l,s; 1,2] > 0 and det A[l,t~ !,2] 
> 0 by Lemma 10.1. By the inductive assumption, ( - I )  '-~ det A[I;2] > 0, 
and Eq. (1) shows that ( -1 )  ~ det A > 0. i-1 
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Lemma 10.3. Suppose A is a k + 1 x k matrix which is TNN. Suppose that for 
some pair o f  integers s and t with 1 <~ s < t <~ k + !, 

(i) det A[s; 4~] = 0, 
(ii) det A It; 4~] # O. 

Then the rank o fA  (s + 1, . . . ,  k + 1; 1 , . . . ,  k) is ~< k - s. 

Proof. For each i = 1, . . .  ,k + 1, let R~ be the ith row of A, considered as a 
vector in R ~. Assumption (ii) implies that {RI, . . .  ,/~t . . . .  ,Rk+l} form a basis 
for R k. Hence, 

Rt = Z x i R i .  
i¢ t  

In this sum, x.~ = 0, else {Ri , . . . ,  R , , . . . .  Rk+ I} would also be a basis for R k, 
contradicting assumption (i). Then 

det All:g}] = ~- l ) ' .X l  .det A[t;4~] >/0. 

Hence ( - l ) ' x l  >1 0, because det A[t;tk] > 0A[s,t:s] is a principal minor of 
A[t; t#], so det A[s,t;s] > 0 by Lemma 10.1. Then 

det A[l,s;s] = ( -1)  '-I .xt .det A[s,t;s] >10. 

Hence (--l)t-lxl >1 0, Thus xt = 0. Similarly, x_, = 0, . . . .  x,-! = 0. Thus 

R, = Z x i e i .  
i>s 
tct 

This implies rank A(s + I , . . . , k  + 1:1 . . . . .  k) ~ k - s. [] 

Notation. Let P = (Pl,P2,... ,P~) be a sequence of distinct indices. If p E P, 
then P - p denotes the sequence obtained by deleting the index p from P. Ifp 
P, then p +  P denotes the sequence (Pl,P2,...,Pk). Also It(P;Q) stands for 
det M(P; Q), and l{(P; Q) stands for det M'(P; Q). 

Recall the definition of the set t2,, from Section !. With our conventions, this 
means that if M ~ f2, and (P; Q) is a circular pair of indices, then the matrix 

-M(P; Q) is TNN. 

Lemma 10.4. Let M E f2,, and suppose that mh.h is a non-zero diagonal entry. 

Then the Schur complement M' = M/[mh.h] is #1 f2,,_1. 

Proof. If ( l , . . . , n )  is the indexing set for M, it is convenient to regard the 
deleted set (! . . . .  , /~, . . . ,n)  as the indexing set for m'. Let 
(P;Q) = (P l , . . . , Pk ;q i , . . . , qk )  be a circular pair of indices for M'. Then 
h ~ P u Q. By interchanging P and Q if necessary, and by a cyclic re-labelling 



140 E.R  Curtis et ai. I Linear Algebra and its Applications 283 (1998) 115-150 

of the indices, we may assume that 1 ~< h < qk in the circular order. Let 
B = (bl, .... , b~+l ), be the set P u h with the circular ordering, where bs = h with 
1 <~ s ~< k + 1. Thus 1 ~< bl < --. < bk+l < qk < "'"  < ql <<. n. The matrix 

A = - M ( B ;  b~ + Q) 

satisfies the conditions of  Lemma 10.2. Hence (-1)'~ det A >_. 0, so 

( -  l)'+l+k/t(B; b~ + Q) >_. 0. 

Taking the Schur complement with respect to the entry mh.h , which is in the 
(s,l) position o fM(B;b~  + Q ) ,  we find that (- l) iC/t ' (P;Q) >_. 0. i-1 

Remark 10.5. If ( - l )k l t (P;  Q) > 0, then part (2) of  Lemma 10.2 shows that 
( - l  )~+l+kla(B; b,. + Q) > 0. Therefore ( - l ) k l t ' (P ;Q)  > O. 

Lemma 10.6. Suppose M E g2n. Let B = (b l , . . . ,bk+l ) ,  and Q = (q l , . . . , qk )  be 
two sequences o f  indices, with 1 <<. bl < . . .  < bk < bk+! < qk < " " q l  <. n. Sup- 
pose for  some pail' o f  indices (s,t) with 1 <~ s < t <. k + 1, that la(B - bs; Q) = 0 
and l t ( B - b t ; Q )  ~ 0 .  Let B0 = (b.,.+l,...,bk+i), and let Qo = (qs+l , . . . ,qk) .  
Then lt(Bo - bt; Qo) ~ O, and 

It(B,b., + Q) = (-I) slt(B- b,;Q) . ll(Bo; b.~ + Qo) 
lt(Bo - I,,; Qo) 

Proof. For 0 ~ r ~  s, let 

B, = ( b t , . . . , b , . , h , . , I , . . . , b k , I )  
Q,. = ( q t , . . . , q , , q ~ , l , . . . , q k )  " 

Then I t ( B , - b t ; Q , ) ~ 0  because M ( B , . - b , ; Q r )  is a princip~.l minor of 
M ( B -  b,; Q). Dodgson's  identity (Lemma 2.1) gives 

ll(B,~ l; b, + Q,.+l) " I~(B - b,; Q, ) - It(B,; Q~+, ) . I~(B - b,; b.~ + Q,.) 

- It(B,.+, - b,; Q , ) .  It(B,; b~ + Q,.). 

/~(B,.; Q,+~) = 0 by Lemma 10.3, so the first term on the RHS is 0, and 

IL( B,.., , ; b,. + Q,.~,) l~( B,.; b~ + Q,. ) 

lt(B,.,i - b , ' Q , . , I )  l t (B, . -bt :Q, . )"  

Repeated use of this identity gives the result. D 

Lemma 10.7. Suppose M E Q,,, p and q are adjacent #~dices, and ~. > O. Let 
T¢(M) be the matrix  constructed in Section 8 (see also Remark 8.1). Then 
rcfM) 
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Proof. The circular determinants in M ' =  T~(M) are equal to the circular 
determinants in M except for the ones which correspond to circular pairs 
(P; Q) = (pl, . . . .  ,p~; q i , . . . ,  qk) where p =p~ and q = qk, or p =pl  and q :- ql. 
Each of these determinants has the form 

a] [c a] 
b d - ~  = d e t  b d - ~det(C) 

=/z '(e;  Q) - ~/t(P - p; Q - q). 

Hence 

(-l)k/z'(P; Q) = (-l)k/t(P; Q) - ~ ( - I ) ~ - i u ( P - p ; Q  - q )  >i O. (2) 

Remark 10.8. If either (-l)klt(P;Q) > 0 or ( - - l ) k - t l t ( P - p ; Q - q )  > 0, then 
( -  l )k lt' (P; Q) >0;  otherwise I~'(P;Q)::O. Thus the signs of the circular 
determinants in M' are determined by the signs of the circular determinants in 
M. 

Lemma 10.9. Suppose M E 12,,, and ~ > O. Let P¢(M) be the matrix constructed 
in Section 8. Then Pc(M) E 12,,+!. 

Proof. Let M ' =  Pc(M), and let (P ;Q)=  (Pl , . . . ,Pk;qi , . . . ,qk)  be a circular 
pair of indices from the set (0, 1 , . . . ,  n). 
I. If 0 ¢~ P U Q, then if(P; Q) = p(P; Q). 
2. If 0 E P and 1 ~ Q, then if(P; Q) = 0. 
3. If0 E P and I E Q, then O=pk, 1 =qk. and if(P: Q) = -~lt(P - p~; Q - q~). 
4. The situation is similar if 0 E Q. D 

Lemma 10.10. Supposc M E I2n, and ~ > O. Let S¢(M) be the matrix constructed 
in Section 8. Then S¢(M) E t2,,. 

Proof. Let (P; Q) = (p l , . . . ,p , ;  q l , . . . ,  qk) be a circular pair of indices. Let p 
be the index where the adjunction is made (see Remark 8.1). By interchanging 
P and Q if necessary, and by a circular re-labelling of the indices, we may 
assume that 1 ~< p < qk in the circular order. Let M' = S~(M). 
1. If p E P, then the formula for S~(M), shows that 

( ~ )/z(P; Q). /~'(P; O ) =  ¢+mp,p 

2. Suppose that p ~ P and (-1)kp(e; Q) > 0. Then (--I)kSc(M)(P; Q) > 0, by 
Remark 10.5. 

3. Suppose that p e P ,  /~(P; Q ) = 0 ,  and / ~ ( P - p i + p ;  Q ) = 0 ,  for all 
1 ~<j <~ k. Then the proof of Lemma 10.2 shows that if(P; Q) = 0. 



142 E.B. Curtis et al. i Linear Algebra am/its Apldications 283 (1998) 115 150 

4. Finally, suppose that p ¢~ P, #(P; Q) = 0, and that IL(P - pj + p; Q) ¢ 0 for 
somej  with 1 <~j<~k. Let B = (b~,...,bk+t) be the set P u p  with the circu- 
lar o~'dering. That is, p = b~ for some s, and pj = b, for some t, and w.l.o.g., 
may assume s < t. P¢(M)(B,b~ + Q) and M(B, bs + Q) differ only at the (s,l) 
position, and the cofactor of that entry is l~(P; Q), assumed to be 0. There- 
fore, 

det P¢(M)(B; b~ + Q) = l,(B; b.~ + Q). 

Recall that S~(M) is the Schur complement of Pc(M) with respect to the entry 
m m, + ~, which is in the (s,l) position of P~(M)(B; b~ + Q). Then 

( - I )  ~+' (mr,,, + ~) . I{(P: Q) = det P~(M)(B; b~ + Q) 

= It(B; b, + Q) 

(_1) ,  lt(B - bt; Q ) .  p(B0; b~ + Q0) 
ll(Bo - bt; Qo) 

The last equality uses Lemma 10.6. Thus 
/t(Bo: b, + Qo) =/: o, then (-I)kM'(P;  Q) > 0. I-1 

(-I)kM'(P; Q)~>0 and if 

Remark 10.11. Parts (I) and (2) show that if (-i)klt(P; Q) > O, then 
(-I)~lg(P; Q) > 0. Together with parts (3) and (4), this shows that the signs 
of the circular determinants in M' are determined by the signs of the circular 
determinants in M. 

Lemma 10.12. Let !" be a circular phmar graph with n bomuho:v nodes. 
I. Stq~pose a boundarl' edge pq is adjoOwd to F, as #~ Section 8. Let F' = . ~ ( F )  

and n'= n(F'). I f  g E ~(n). then T~(M) E fl(n'). 
2. Suppose a boundary spike rp is adjobwd to F at node p. without #lteriori:ing 

as in Section 8. Let F ' = , ~ ( F )  and n'= n(F'). I f  M Ef t (n) .  then 
P~(M) E fl(rd). 

3. Suppose p is a boundary node o f  F, and a boundary ,spike ,p is adjobwd with p 
then ~h, clared #tterior, as in Section 8. Let F ' =  .~ (F)  and n'= rr(F'). I f  
M E ~(rr), then S:(M) E F(r(). 

Proof. The three processes are similar, so for definiteness, suppose that the 
operation is .'z';. Let ;, be an arbitrary conductivity on F. By Section 8, 
statement (I) is true if M = A(F, ,,). Next, suppose M is any matrix in fl(n), and 
let M ' :  S~(M). By Remark 10.11, the signs of the circular determinants in M' 
are determined by the signs of the circular determinants in M. Hence they 
have the same signs as the circular determinants in S~(A([',7)). Since 
S~(A{F,',,))E •(n') we have M' E l](n') also. I-1 
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11. Removing edge~ 

Suppose that F is a circular planar graph with n boundary nodes. Recall 
from Section 1, that there are two ways to remove an edge from F called dele- 
tion and contraction. In either case the new graph will be a circular planar 
graph with n boundary nodes. 

Lemma 11.1. Suppose F & a critical ch'cular planar graph and pq is a boundmT 
edge. Let Fl be the graph obtained qfter deletion of  pq. Then Fi is also critical. 

Proof. Let e :/: pq be an edge in F. Since F is critical, removal of e will break 
some connection in F. If this connection also exists ~n/"l, then removal of e 
from F! breaks this connection in Fi. Suppose that ,emoval of e from F breaks 
a connection (P; Q) that is not present in Fi. This connection must use the edge 
pq, so (P; Q) has the form (P; Q) = (pl . . . . .  pk: ql . . . .  ,q~), where pk = p and 
qk = q. Thus removal of e breaks the connection of (P': Q') = (pt . . . .  ,p~-l: 
qt,....q.~:-l) in ['io D 

Lemma 1 ~.2. Suppose F is a critical circular planar graph with a boundary spike 
rp where r is a boundary node ofF. Let F! be the graph obtained after contracting 
rp to p. Then Fi is also critical. 

Proof. Let e be an edge in F with e ¢- pr. Let F' be the graph with e removed, 
either by deletion or contraction. Similarly, let F' I be tile graph FI with e 
removed. Let 7 be a conductivity on F, and by restriction 7 gives a conductivity 
on let, F' and F' I. Let (P; Q) be a pair of sequences of boundary nodes. Then 
2(P; Q), 2'(P; Q), 21(P; Q) and 2'l(P; Q) will denote the subdeterminants of 
A(r), A(r'), A(rl  ) and A(F' I ), respectively. 

Suppose that removal of e breaks a connection in F that persists in F~. Then 
removal of e from F! breaks the same connection in F~. 

Suppose removal of e from F breaks a connection ( P ; Q ) =  (pl . . . .  ,p~: 
ql, . . . .  q~;) in F which does not persist in F~. Then r ~ P t_J Q. w.l.o.g., assume 
that ql < p < q, in the circular order around F~. Let B = (b~,. . . ,b, ,~) be the 
set P t_Jp with the circular ordering around the boundary of F~, and suppose 
p=b~. The :~.ssumptions that 2(P: Q) ~ 0 and 21(P; Q ) =  0 imply that each 
connection from Q to P through F must use p = b~. Such a connection either 
connects q.~_~ to b,_~ through b~ or connects q, to b,~ through b,. w.l.o.g., as- 
sume the latter. Let Bo=(b, .~ l , . . . ,b , , I ) ,  and Q0=(q, ,~ . . . . .  qk). Hence 
;.i(B-b.~+l; Q) # O  and 21(Bo; b, +Qo) #O. Both (B -b ,~ l ;  Q) and 
(B0; b, + Qo) are circular pairs. Suppose removal of e from F~ does not break 
either connection. Then 2'l(B - b,,+l; Q) ~ 0 and 2'i(B0; b, + Q0) ~ 0. We have 
assumed 21(P; Q) = 0; that is 2t(B - b~; Q) = 0. Hence 2'l(B - b,; Q) = O. By 
Lemma 10.6, with t = s + 1, 
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,;.'! (j~ + P; p + Q ) = ( - I ) ~ - ' 2 ' I ( B ; b ~ + Q )  

_ _ _ } . ' I ( B -  b . , . , I ;O)} . ' l (Bo;bs  + Qo) ¢ O. 
. 1  

z l(Bo - b, + I: Q0) 

Let ¢ = 7(pr). Then A' is the Schur complement of P¢(A'I) with respect to the 
entry A'~(p,p)+~. Part (4) of the proof of Lemma 10.10 shows that 
2'(P: Q) -¢ 0. This would contradict the assumption that removal of e from 
/" breaks the connection (P; Q). 71 

Lemma 11.3. Suppose F is a non-trivial circular planar graph for which , / / (F)  is 
lensless. Then F has either a boundary edge or a boumlary .wike. 

Proof. Refer to Section 7 for the notation. Let t be a number in the --sequence 
for.  ,,7(F) such that there are no repetitions of any other number between two 
occurrences of t. w.l.o.g., assume that t = I, so tha~ a portion of the _--sequence is 

l ,  "~ m ,  ! Zm+2, ,W ,  q l . . ,J ~ . . .  

Let k be the portion of the outer circle C and F which lies between x~ and y~. 
Then h contains the points X,.,...,Xm. Consider h, gt and the family 
{g.,, . . . .  g,,}. The proof of Lemma 6.2 shows that there is a triangle T fbrmed 
by h and two of the geodesics from the set {g~ . . . .  ,g,,, }. The triangle T in .//(F) 
corresponds in F either to a boundary spike (if there is a vertex of F inside T), 
or to a boundary to boundary edge {if there is no vertex of F inside 7"). 173 

Lemmas 11.3, I I. 1 and I! .2, togcther with Corollaries 4.3 and 4.4 show that 
there is an algorithm for calculating the conductivity of any critical circular 
phmar graph. 

12. Surjectivity 

Theorem 12.1. Suppose F i;" a critical circular pkmar gr~q~h with n boumktry 
turtles aml rt = n( F). Let M he any matrix #l g2(n). Then there is a comluctivity ~, 
on F with A( F, 7) = M. 

Proof of Theorem 12.1. We first consider the case where n = 4m + 3 and the =- 
sequence for the medial graph. / /{  F} is 1 . . . .  , n. I . . . . .  n. Corollary 7.4 shows 
that I" ill YA equivalent to the graph C(m, n) of Ret: [7]. By Theorem 6.2 of 
Rcf. [7] there is a conductivity 7' on C(m, n) with A(('(In, n),7')= M. By Lexnma 
5.3, there is a conductivity 7 on F with A(F,7)= M. 

Next suppose (F,7) is any connected critical circular planar resistor network 
with n boundary nodes. If n is not of  the form 4m + 3, first adjoin I, 2, or 3 
boundary spikes without interiorising as in Section 8, to obtain a resistor net- 
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work which does have 4m + 3 boundary nodes. Combining this with Lemma 
9.2, we obtain a sequence of circular planar resistor networks F =/ '0 ,  
r~, r , , . . . ,  Fk, where Fk is a graph with 4m + 3 boundary nodes, and which 
is Y-A equivalent to Z4,,+3. Each F~.~ is obtained from r~ by one of the oper- 
ation ,Y", ~ or ~'. For each i = 0, 1, . . . ,  k. let n; = n(F~). Given a matrix M in 
t2(n), there is an analogous sequer:ce of matrices M = Mo,M~, . . .  ,Mk, where 
each matrix M~+~ is obtained from M~ by one of the operation 
Mi+i = T¢(Mi), Mi+i = e¢(Mi) or Mi+, = &(Mi).  

Let tr, denote the set of  connections in a well-connected circular planar 
graph with n boundary nodes. By Lemma 5.1 and Proposition 7.3, rc(S,,)=a,.  
By Lemma 10.12, Mt. ~ f2(a,,). Using the first part of the proof, there is a con- 
ductivity 7k on Fk so that A(Fk,Tk) = Mk. The graph Fk is obtained from Fk_j by 
one of the operations .¢, ,~ or .~. The processes are similar, so for definiteness, 
suppose that the operation is S;- and Mk = S~(Mk_~ ). 

In going from Fk to F~_ ~. removal of the spike breaks a connection in Fk. By 
Lemma 4.4, the value of this spike can be calculated as the ratio of two non- 
zero subdeterminants of A(F~)= Mk. Moreover, the computed value is the 
same as the value ~ that was used to construct ~',,lk from Mk_~. By Section I1, 
removal of the spike with conductivity ¢ from Fk results in a critical graph Fk_~, 
with A(Fk_~). Continuing the argument on Ft._~, . . . ,Fo = F. we find that 
A ( F ) = M .  i-1 

Proof of Theorem 4. As in the proof of Theorem 12.1, there is a sequence of the 
operations ,~-, .3, and ,'/' which, when applied to the graph/", give a graph F~. 
which is Y-A equivalent to the graph C(m, 4m + 3) of Ref. [7]. Le, :'//be the 
composite of these operations, and let U be the composite ot" the corresponding 
operations T, P and S applied to the matrix A(F, 7). With an ordering of the N 
edges in F, the conductivity 7 is represented by a point in (R +)N. Similarly, with 
an ordering of the Ark edges in F~, the conductivity 7~ is represented by a point 
in (R+) N~. Let r t=n(F) and rtk =n(F~). With these conventions, there is a 
communicative diagram shown in Fig. 4. By Theorem 12.1, the map A is 
surjective. By Theorems 4.2 and 5.2 of Ref. [7], the map A~. is a diffeomor- 
phism. For the differentials, we have 

U 
( n + )  : 

Fig. 4. Commutative diagram. 
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dAk o d q / =  d U o  dA. 

Since d2k and d~V are I-1, dA is 1-1. By Theorem 2, A is 1-1. #-~ is the inverse 
of '11 which is well-defined and continuous on its image in (R ÷)N'. Then 

A -! = 41 -I o A-~ i o U. 

Thus A -! is continuous. It follows that A is a diffeomorphism of (R ÷)'~ onto 
fl(n). I-1 

Lemma 12.2. Suppose M E f2,, with at least one circular determinant equal to O. 
Let ~ > 0 be given. Then there is a matrix M' E fin, with IIM' -- M I I ~  < e, and 

(1) It'(P; Q) ¢ 0 whenever le(P; Q) ¢ 0 
(2) For at least one circular pair (P; Q),I t(P;Q) = 0 and if(P; Q) ~ O. 

Proof.  As in Section 10, lt(P; Q) stands for det M(P; Q) and/t '(P; Q) stands for 
det M'(P; Q). Let (P; Q) = (p l , . . .  ,Pk; q l , . . .  ,qk) be a circular pair of indices 
for which the minor M(P; Q) has determinant 0, has minimum order k, and for 
which qk - pk is a minimum. 

(1) If qk - pk = 1, let M' = T¢(M), where the chosen indices are pk and qk. By 
Remark 10.8, if(P; Q)¢= 0. Also by Remark 10.8, if(R; S ) ¢  0 whenever 
(R; S) is a circular pair for which #(R; S) =/= 0. If ~ is sufficiently small, then 

IIM'-  MII~ < e. 
(2) If qk - Pk > I, let p = Pk + I and M' = &(M) where the chosen index is p. 

By Remark 10.1 I, if(R; S) ¢ 0 whenever (R;S) is a circular pair for which 
I~(R;S) * 0. Dodgson's identity (Lemma 2.1) gives 

It(P + p; Q + p) ' It(P - pt; O - qk) = It(P - pk + p: Q - qt + p) " It(P; Q) 

- l t (P  - pk + p; Q)" It(P; O - qk + p) .  

Using the assumption It(P: Q) = O, we have 

lt(P + p; Q + p) = - 
lt(P - pk + p; Q) . it(P; Q - qk + P) 

lt(P - Pk; Q - q~) 
(3) 

Each of the factors on the RHS of Eq. (3) is non-zero because of the assump- 
tion of the minimality of (P; Q). Therefore i f(P: Q) ¢ O. If ~ is taken sufficient- 
ly large, then I IM'-  MII~ < ~. El 

Proof  o f  Theorem 3. Recall from Section 7 the graph Z,, = (V, VB, E), with n 
boundary nodes, and let a=n(Z , , ) .  Since _r,, is well-connected, fl(a) is the 
subset of 12,,, consisting of those M which satisfy ( - I )  ~ det M(P: Q) > 0 for 
each k x k circular subdeterminant of M. 

Lemma 12.2 implies that fl, is the closure of t2(tr) in the space of n x n ma- 
trices. Thus for any M E t2,,, there is a sequence of matrices M, ~ t2(tr) which 
converge to M. Theorem 4 shows that for each integer i, there is a conductivity 
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i,, on Z, with M, = A(S,,, 7~). By taking a subsequence if necessary, we may as- 
sume for each edge e E E that lim;_.., 7~(e) is either 0, a finite non-zero value or 
O~. 

Let E0 be the subset of E for which lim;__.~ ),~(e) = 0. 
Let El be the subset of E for which lim;_.~: ~,~(e) = 7(e) is a finite non-zero 

value. 
Let E~ be the subset of E for which lim~__.~: )'~(e) = ~ .  
Let F = (W, VB, Et) be the graph obtained from Z,, = (V, Vs, E) by deleting 

the edges of E0 and contracting each edge of E~ to a point. The vertex set 
W for F is the set of equivalence classes of vertices in V, where 

p ,-~ q if pq E E~. Note that distinct boundary nodes of Vs cannot belong to 
the same equivalence class, because the M~ are bounded. Thus we may consider 
Vs as a subject of W. Each edge e E Et joins a pair of points of IV, so the edge- 
set of F is Et. The restrictions of ~,~ and ~, to Et give conductivities on F. We 
shall show that M = A(F, 7). 

Suppose f is a function defined on the set of boundary nodes Vs of F. 
Let 

Q ( f )  : i n f Z T ( e ) ( A w ( e ) ) "  , 
eEEt 

where Aw(pq)= w(p) - w ( q ) .  and the infimum is taken over all functions w de- 
fined on the nodes of F which agree with f on Vs. Thus infimum is attained 
when w= u is the potential function on the resistor network (f',~,), with boun- 
dary values./'. Similarly, for each integer i, let 

Q,(.I') = i n f Z ; ' , ( e ) ( A w ( e ) ) 2 .  
e~-EI 

This infimum is attained when w=u;  is the potential function on (F,7,) with 
boundary values f Then lim;_.~ u, = u, because the ~,~ and I' are conductivities 
(non-zero, and finite) on F, with lim,_.~ 7~=7. Therefore Q ( f ) =  
lim;_.~ Q;(f) 

For each integer i, let 

S,.(f) = infZTi(e)(Aw(e)) 2, 
eEE 

where the infimum is taken over all functions w defined on the nodes of L',, 
which agree with f o n  Vs. This infimum is attained when w = w~ is the potential 
function on the resistor network (_r,,. 7;), with boundary values f. The maxi- 
mum principle implies that Iw;(p)l-< max If(p)l. By taking a subsequence if 
necessary, we may assume that for each node p, w~(p) converges to a finite v~iue 
w(p). The assumption that the M~ converge to M guarantees that for each ffmc- 
tion J~ the SAD are bounded. Thus for each edge e = pq E E~, we have 
w(p) = w(q). Let 
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R,(f) = E7i(e)(Awi(e))  2, 
eEEt 

R(f) = lim Ri(f) = E) ' (e ) (Aw(e) )  2. 
eEEi 

Let ,~ be the set of functions v = {v(p)} defined for all nodes of Z,,, which 
agree with f on VB, and for which v(p) = v(q) whenever pq E E~. Let 

P~(f) = inf ~'~i,,(e)(Av(e))". 
vE,~ " - -"  

eEE 

We have 

e,(f) >i s,(f) t> R,(f), 

Qi(f) + ZTi(e)(Au,(e))" >t Pill) >i Q~(f). 
eEEo 

The maximum principle implies that the lu,@l are bounded by max If(P)l- For 
each edge e E E0, we have iim;_~ ~,~(e) = 0, so 

Q(f) = lim Q, ( f )  = lim P, ( f )  >I lim R,( f )  = R( f ) .  
i - - . ~  i - o ~  i . . . .  x :  

But R(f)  >I Q(f) ,  so R(f)  = Q(f) .  Thus 

lim S, ( f )  = Q ( f )  = lim (/', M, (1')) = (/', M ( f ) ) .  

13. Equivalence 

Lemma 13.1. Suppose that F is a circular phmar graph. Then F is critical (f and 
only ~f the medial graph ./I(F) is lensless. 

Proof. Lemma 6.4, shows that if/" is critical, then ./[(F) is lensless. Conversely, 
suppose .//(F) is lensless. Let z = ztz2...z,.,, be the --sequence for .¢/(F) as in 
Section 8. Ifz  = 1, . . .  ,n, 1 , . . . ,  n, then F is Y-A equivalent to the graph Z,, of 
Section 8, which is critical and well-connected. Suppose that = is not the 
sequence I . . . .  ,n, l , . . . , n .  By Lemma 9.2, there is a sequence of graphs 
Fo, FI,...Fk, where Fo= F, each F~+l is obtained from F~ by adjoining a 
boundary edge or a boundary spike, and/ 'k  is Y-A equivalent to the standard 
graph Z',. By 1,emmas 5.2 and 7.3, Fk is critical. By Lemmas l l .l  and 11.2, 
each of the graphs Fk-l ,Fk-2 , . . . ,Fo is critical; in particular, F=Fo is 
critical, r-I 
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Lemma 13.2. A circular planar graph F is recoverable if  and only ~'it is critical. 

Proof. By Theorem 2, if F is critical, then F is recoverable. Suppose that F is 
not critical. By Lemma 13.1, .~//(F) has a lens. By Lemma 6.3, F is Y-A 
equivalent to a :graph F' with two edges in parallel or two edges in series. F' 
cannot be reco'~erable, so by Lemma 5.4, F is not recoverable either. CI 

Proof of Theorem 1. Suppose that F! and F2 a r e  two critical circular planar 
graphs with n(F~) = x (F2) .  Let conductivities be put on both F! and F2. By 
Lemma 9.2, and Lemma 13.1, there is a sequence of critical graphs 
Fi = Fo, Fl , . . . ,Fk,  each F~+l is obtained from F~ by adjoining a boundary 
edge or a boundary spike, and Fk is Y-A equivalent to _r,. We perform the 
same operations o n  F2 to  produce a sequence F2 = Ho, H I , . . . ,  Hk. For each ,', 
let rri = 7r(F,.). We apply the results of Sections 8 and 12 to conclude that 
A(nl )  E t2(rrl). Hence rr(Hl) = rr(Fi). Continuing, we see that rr(Hi) = rr(Fi) 
for i = 1 ,2 , . . .  ,k. Each F~+! has more connections than Fi, so each Hi+l has 
more connections than Hi. By Corollaries 4.3 and 4.4, the edge adjoined to Hi 
is recoverable. Working back from Ilk to H0 which is critical and hence 
recoverable, we find that each Ilk is recoverable, and hence critical. 

Suppose the z-sequence for Ilk were not 1 , . . . ,  n, 1 , . . . ,  n. Then a boundary 
edge or boundary spike could be adjoined to Ilk to give another graph Hk+l 
with more connections than Ilk. But rc(Hk) = n(Fk) which is the maximal set 
of connections for circular planar graphs with n boundary nodes, so the z-se- 
quence for M(H~.) is 1 , . . . ,  n, I , . . . ,  n. 

The process of going from Fk to ,% = / ' t  by removing edges is the same as 
going from tt~ to H0 = F,,. Each :'~ep of this process preserves equality of the 
--sequences of the medial graphs .//(F,) and . / /(H3. Thus ,J//(Fi) and .//(F,.) 
have the same c-sequence, and by Lemma 7.2 are Y-A equivalent. Iq 
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