ELSEVIER

Circular planar graphs and resistor networks

E.B. Curtis, D. Ingerman, J.A. Morrow *
Department of Mathematics, University of Washington. C138 Padelford of Hall, Scattle. WA 98195, USA

Received 22 November 1995; accepted I May 1998
Submitted by R.A. Brualdi

Abstract

We consider circular planar graphs and circular planar resistor networks. Associated with each circular planar graph Γ there is a set $\pi(\Gamma)=\{(P ; Q)\}$ of pairs of sequences of boundary nodes which are connected through Γ. A graph Γ is called critical if removing any edge breaks at least one of the connections ($P ; Q$) in $\pi(\Gamma)$. We prove that two critical circular planar graphs are $Y-\Delta$ equivalent if and only if they have the same connections. If a conductivity γ is assigned to each edge in Γ, there is a linear from boundary voltages io boundary currents, called the network response. This linear map is represented by a matrix Λ_{i}. We show that if $\left(\Gamma, \gamma^{\prime}\right)$ is any circular planar resistor network whose underlying graph Γ is critical, then the values of all the conductors in Γ may be calculated from Λ_{i}. Finally, we give an algebraic description of the set of network response matrices that can occur for circular planar resistor networks. © 1998 Published by Elsevier Science Inc. All rights reserved.

AMS classification: 05C40; 05C50; 90B10; 94Cl5
Ke?words: Graph: Connections; Conductivity: Resistor network; Network response

1. Introduction

This article is a continuation of Refs. [5-7], and was inspired by Refs. [1,2]. Some related results have been announced in Ref. [3].

[^0]A graph with boundary is a triple $\Gamma=\left(V, V_{B}, E\right)$, where (V, E) is a finite graph with $V=$ the set of nodes, $E=$ the set of edges, and V_{B} is a non-empty subset of V called the set of boundary nodes. Γ is allowed to have multiple edges (i.e., more than one edge between two nodes) or loops (i.e., an edge joinng a node to itself).

A circular planar graph is a graph with boundary which is embedded in a disc D in the plane so that the boundary nodes lie on the circle C which bounds D, and the rest of Γ is in the interior of D. The boundary nodes can be labelled v_{1}, \ldots, v_{n} in the (clockwise) circular order around C. A pair of sequences of boundary nodes $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$ such that the sequence ($p_{1}, \ldots, p_{k}, q_{k}, \ldots, q_{1}$) is in circular order is called a circular pair.

A circular pair $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$ of boundary nodes is said to be connected through Γ if there are k disjoint paths $\alpha_{1}, \ldots, \alpha_{k}$ in Γ, such that α_{i} starts at p_{i}, ends at q_{i} and passes through no other boundary nodes. We say that α is a connection from P to Q. The notion of a connection between a pair of sequences of boundary nodes appears in Refs. [1,2]. The definition of a wellconnected critical graph was given in Ref. [1]. In this paper, we consider graphs which are not necessarily well-connected.

For each circular planar graph Γ, let $\pi(\Gamma)$ be the set of all circular pairs ($P ; Q$) of boundary nodes which are connected through Γ.

There are two ways to remove an edge from a graph.

1. By deleting an edge.
2. By contracting an edge to a single node. (An edge joining two boundary nodes is not allowed to be contracted to a single node.)
We say that removing an edge breaks the connection from P to Q if there is a connection from P to Q through Γ, but there is not a connection from P to Q after the edge is removed. A graph Γ is called critical if the removal of any edge breaks some connection in $\pi(\Gamma)$.

Theorem 1. Suppose Γ_{1} and Γ_{2} are two critical circular planar graphs. Then $\pi\left(\Gamma_{1}\right)=\pi\left(\Gamma_{2}\right)$ if and only if Γ_{1} and Γ_{2} are $Y-\Delta$ equivelent.

A conductivity on a graph Γ is a function γ which assigns to each edge e in E a positive rea! number $\gamma(e)$. A resistor network (Γ, γ) consists of a graph with boundary together with a conductivity function γ.

Suppose (Γ, γ) is a resistor network with n boundary nodes. There is a linear map from boundary functions to boundary functions, constructed as follows. To each function $f=\left\{f\left(v_{i}\right)\right\}$ defined at the boundary nodes, there is a unique extension of f to all the nodes of Γ which satisfies Kirchhoff's current law at each interior node. This function then givas a current I where $I\left(v_{i}\right)$ is the current into the network at boundary node v_{i}. The linear map which sends f to I is called the Dirichlet-to-Neumann map in Refs. [5-7]. This map is represented by an $n \times n$ matrix, $\Lambda_{i}(=\Lambda(\Gamma, \gamma))$, called the network response.

Theorem 2. Suppose (Γ, γ) is a circular planar resistor network which is critical as a graph. Then the values of the conductors are uniquely determined by, and can be calculated fiom Λ_{3}

In this situation we say γ is recoverable from Λ_{γ}.

Notation. Suppose $A=\left\{a_{s, t}\right\}$ is a matrix, $P=\left(p_{1}, \ldots, p_{k}\right)$ is an ordered subset of the rows, and $Q=\left(q_{1}, \ldots, q_{m}\right)$ is an ordered subset of the columns. Then $A(P ; Q)$ denotes the $k \times m$ matrix obtained by taking the entries of A which are in rows p_{1}, \ldots, p_{k} and columns q_{1}, \ldots, q_{m}. Specifically, for each $1 \leqslant i \leqslant k$ and $1 \leqslant j \leqslant m$,

$$
A(P ; Q)_{i, j}=a_{p_{i}, q_{j}}
$$

A pair of sequences of indices $(F ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$ is called a circular pair if a cyclic permutation of $\left(p_{1}, \ldots, p_{k} ; q_{k}, \ldots, q_{1}\right)$ is in order. If $(P ; Q)$ is a circular pair of indices, $A(P ; Q)$ is called a circular minor of A.

Definition 1.1. For each integer $n \geqslant 2$, let Ω_{n} be the set of $n \times n$ symmetric matrices M for which the sum of the entries in each row is 0 , and which satisfy the following condition.

If $M(P ; Q)$ is a $k \times k$ circular minor of M, then $(-1)^{k} \operatorname{det} M(P ; Q) \geqslant 0$.
This condition says that if $M \in \Omega_{n}$ and $(P ; Q)$ is a circular pair of indices, then the matrix $-M(P ; Q)$ is totally non-negative as in Ref. [9]. This condition implies that if $M \in \Omega_{n}$, each off-diagonal entry is non-positive and each diagonal entry is non-negative.

Theorem 3. Suppose M is in Ω_{n}. Then there is a circular planar graph with a conductivity γ so that $M=\Lambda(\Gamma, \gamma)$.

Definition 1.2. Suppose Γ is a circular planar graph with n boundary nodes, and $\pi=\pi(\Gamma)$ is the set of circular pairs $(P ; Q)$ which are connected through Γ. A subset $\Omega(\pi)$ of Ω_{n} is defined by the following condition. For each circular pair of indices $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, p_{k}\right)$,
(a) If $(P ; Q) \in \pi$, then $(-1)^{k} \operatorname{det} M(P ; Q)>0$.
(b) If $(P ; \cap) \nsubseteq \pi$, then $\operatorname{det} M(P ; Q)=0$.

Let (Γ, γ) be a critical circular planar resistor network and $\pi(\Gamma)=\pi$. In Section 4, we show that the network response matrix Λ_{γ} is in $\Omega(\pi)$. In Section 12, we show that if $M \in \Omega(\pi)$, then there is a conductivity γ on Γ so that $M=\Lambda_{\gamma}$. More generally, we have the following.

Theorem 4. Suppose Γ is a critical circular planar graph with N edges and $\pi=\pi(\Gamma)$. Then the map which sends γ to Λ_{γ} is a diffeomorphism of $\left(R^{+}\right)^{N}$ onto $\Omega(\pi)$.

Remark 1. Theorems 1-4 show that there is a close relationship between circular planar resistor networks and matrices. The set of network response matrices for all circular planar graphs with n boundary nodes is Ω_{n}, which is the disjoint union of the sets $\Omega(\pi)$. For each $M \in \Omega_{n}$, let $\pi=\{(P ; Q)\}$ be the set of circular pairs $(P ; Q)$ of indices for which det $M(P ; Q) \neq 0$. Associated with this π, there is a circular planar graph Γ with $\pi(\Gamma)=\pi$, and there is a conductivity γ on Γ with $\Lambda(\Gamma, \gamma)=M$. The graph Γ may be chosen to be critical, and then Γ is unique to within $Y-\Delta$ equivalence. If a graph Γ is chosen in this $Y-\Delta$ equivalence class, then the conductivity γ on Γ which gives $M=\Lambda(\Gamma, \gamma)$ is unique.

Remark 2. For each of the sets π, let $N(\pi)$ be the number oi edges in a critical graph with $\pi(\Gamma)=\pi$. Suppose Γ be a circular planar graph with N edges. Then Γ is critical if and only if $N=N(\pi(\Gamma))$. If Γ is not critical, then there is a critical graph Γ^{\prime}, with $\pi\left(\Gamma^{\prime}\right)=\pi(\Gamma)$. The graph Γ^{\prime} may be obtained from Γ by removal (by deletion and/or contraction) of $N-N(\pi(\Gamma))$ edges. If γ is a conductivity on Γ, there is a conductivity γ^{\prime} on Γ^{\prime} so that $\Lambda\left(\Gamma^{\prime}, \gamma^{\prime}\right)=$ $\Lambda(\Gamma, \gamma)$.

This paper is almost entirely self-contained. In addition to matrix algebra, the proots make use of the medial graphs of Steinitz and Theorem 5.2 of Ref. [7]. In Section 2, Schur complements are used to prove a determinant identity, originally due to Dodgson, that is used extensively in Section 10. For (Λ, γ) a resistor network, the response matrix Λ_{i} is constructed in Section 3. The important properties of Λ_{i} are established in Section 4. Section 5 describes $Y-\Delta$ and $\Delta-Y$ transformations of planar graphs. The medial graph of a circular planar graph, is defined in Section 6. In Section 7, the methods of Steinitz are used to show that in each $Y-\Delta$ equivalence class of critical circular planar graphs there is a standard representative. In Section 8, we define three ways to adjoin an edge to a graph and we describe the effects of each of these adjunctions on the response matrices. Theorem 2 was proven in Ref. [7] for the standard representative of a well-connected critical circular planar graph. Section 9 of the present paper makes use of Ref. [7] to prove Theorem 2 for an arbitrary critical graph. Section 10 uses Dodgson's identity to prove some facts about the matrices M in Ω_{n}. In Section 11, we show that removing a boundary edge or boundary spike from a critical graph results in another critical graph. In Section 12, we prove Theorems 3 and 4. In Section 13, we prove Theorem 1.

2. The Schur complement

Suppose M is a square matrix and D be a non-singular square submatrix of M. For convenience, assume that D is the lower right-hand corner oi̊ M, so that M has the block structure.

$$
M=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] .
$$

The Schur complement of D in M is the matrix $M / D=A-B D^{-1} C$. The Schur complement satisfies the following determinantal identity.

$$
\operatorname{det} M=\operatorname{det}(M / D) \cdot \operatorname{det} D .
$$

If E is a non-singular square submatrix of D, then

$$
\operatorname{det} M=\operatorname{det}(M / D) \cdot \operatorname{det}(D / E) \cdot \operatorname{det} E .
$$

In this situation, the following quotient formula is due to Haynsworth [4].

$$
M / D=(M / E) /(D / E) .
$$

Let $A=\left\{a_{i, j}\right\}$ be an $n \times n$ matrix, and $a_{h, k}$ is a non-zero entry. The 1×1 matrix with entry $a_{h . k}$ is denoted by $\left[a_{h . k}\right]$. For the Schur complement, $A /\left[a_{h . k}\right]$, we have

$$
\operatorname{det} A=(-1)^{h+k} a_{h, k} \cdot \operatorname{det}\left(A /\left[a_{h, k}\right]\right) .
$$

Suppose A is an $n \times n$ matrix, with $n \geqslant 2$. If i and j are any two indices, $A[i ; j]$ will denote the $(n-1) \times(n-1)$ matrix obtained by deleting row i and column j. Similarly, if (h, i) and (j, k) are indices, then $A[h, i ; j, k]$ will denote the $(n-2) \times(n-2)$ matrix obtained by deleting rows h and i and columns j and k. We shall make extensive use of the following identity, due to Dodgson [8].

Lemma 2.1. For any indices $[h, i ; j, k]$ with $1 \leqslant h<i \leqslant n$ and $1 \leqslant j<k \leqslant n$,

$$
\operatorname{det} A \cdot \operatorname{det} A[h, i ; j, k]=\operatorname{det} A[h ; j] \cdot \operatorname{det} A[i ; k]-\operatorname{det} A[h ; k] \cdot \operatorname{det} A[i ; j] .
$$

Proof. By re-ordering the rows and columns, we may assume that the indices are $(h, i)=(1,2)$ and $(j, k)=(1,2)$. Let $B=A[1,2 ; 1,2]$. Then A has the form:

$$
A=\left[\begin{array}{lll}
a & b & x \\
c & d & y \\
w & z & B
\end{array}\right]
$$

where x and y are $1 \times(n-2)$ row vectors, w and z are $(n-2) \times 1$ column vectors. Temporarily assume that B is non-singular. For the Schur complement A / B we have:

$$
\begin{aligned}
& A / B=\left[\begin{array}{ll}
a-x B^{-1} w & b-x B^{-1} z \\
c-y B^{-1} w & d-y B^{-1} z
\end{array}\right] \\
& \begin{aligned}
\operatorname{det}(A / B) & =\left(a-x B^{-1} y\right)\left(d-y B^{-1} z\right)-\left(b-x B^{-1} z\right)\left(c-y B^{-1} w\right) \\
& =\operatorname{det}(A[2 ; 2] / B) \cdot \operatorname{det}(A[1 ; 1] / B)-\operatorname{det}(A[1 ; 2] / B) \cdot \operatorname{det}(A[2 ; 1] / B)
\end{aligned}
\end{aligned}
$$

Using the determinantal identity for Schur complements, we have

$$
\operatorname{det} A \cdot \operatorname{det} B=\operatorname{det} A[2 ; 2] \cdot \operatorname{det} A[1 ; 1]-\operatorname{det} A[1 ; 2] \cdot \operatorname{det} A[2 ; 1] .
$$

This is a polynomial relation which holds for the n^{2} values of the entries of A whenever $\operatorname{det} B \neq 0$. Therefore it is an identity in the coefficients of A.

3. Resistor networks

In this section we construct the response matrix $\Lambda(\Gamma, \gamma)$ for a resistor network (Γ, γ). This is done first when Γ is connected as a graph; the response matrix for a general network is obtained by taking the direct sum of the response matrices of the connected components.

Suppose $\left(\Gamma^{\prime}, \gamma\right)=\left(V, V_{B}, E, \gamma\right)$ is a connected resistor network, with d vertices numbered v_{1}, \ldots, v_{d}. The Kirchhoff matrix $K=K(\Gamma, \gamma)$ is the $d \times d$ matrix K constructed as follows.

1. If $i \neq j$ then $K_{i, j}=-\sum \gamma(e)$, where the sum is taken over all edges e joining v_{i} to v_{j}. (If there is no edge joining v_{i} to v_{j}, then $K_{i, j}=0$.)
2. $K_{i, i}=\sum \gamma(e)$, where the sum is taken over all edges e with one endpoint at v_{i} and the other endpoint not v_{i}.
The Kirchhoff matrix has the following interpretation. If u is a voltage defined at the nodes of Γ, then $c=K u$ is the resulting current flow. In coordinates, if $u=\left\{u\left(v_{i}\right)\right\}$, then $c_{j}=\sum_{i} K_{i, j} u\left(v_{i}\right)$ is the current flowing into the network at node v_{j}.

If a function f is imposed at the boundary nodes, the function u which satisfies Kirchhoff's current law $c_{j}=0$ at each interior node v_{j}, and which agrees with f at the boundary nodes, is called the potential due to f.

Suppose there are N edges numbered e_{1}, \ldots, e_{N}. A $d \times N$ matrix Q is constructed as follows. If e is an edge joining v_{i} to v_{j} with $i<j$, then

$$
\begin{aligned}
& Q_{i . k}=+\sqrt{\gamma(e)}, \\
& Q_{j . k}=-\sqrt{\gamma(e k)} \\
& Q_{h, k}=0, \quad \text { otherwise. }
\end{aligned}
$$

A calculation shows that $K=Q \cdot Q^{T}$. Thus K is positive semi-definite. Suppose $x=\left(x_{1}, \ldots, x_{d}\right)$. Then $x K x^{\mathrm{T}}=0$ if and only if $x Q=0$. Let $e=v_{i} v_{j}$ be an edge in Γ. Then $x Q=0$ implies that

$$
x_{i} \sqrt{\gamma(e)}-x_{j} \sqrt{\gamma(e)}=0 .
$$

Thus $x_{i}=x_{j}$. Since Γ is connected as a graph, $x K^{\top} x=0$ if and only if $x_{i}=x_{j}$ for all vertices v_{i} and v_{j}.

Lemma 3.1. Suppose (Γ, γ) is a connected resistor network. Let $P=\left(p_{1}, \ldots, p_{k}\right)$ be a non-empty proper subset of the vertices. Then the matrix $K(P ; P)$ is positive definite.

Proof. Let $A=K(P ; P)$, and suppose $y=\left(y_{1}, \ldots, y_{k}\right)$ is a vector with $y A y^{\mathbf{T}}=0$. Let $x=\left(x_{1}, \ldots, x_{d}\right)$ be the vector with $x_{p_{1}}=y_{i}$ for $1 \leqslant i \leqslant k$, and $x_{j}=0$ if j is not in P. Then $x K x^{\mathbf{T}}=y A y^{\mathbf{T}}=0$. Since P is a proper subset of V, at least one of the x_{i} is 0 . Since Γ is connected, all the x_{i} must be 0 . Hence the y_{i} are 0 also.

Suppose $(\Gamma, \gamma)=\left(V, V_{B}, E, \gamma\right)$ is a connected resistor network. Let $I=V-V_{B}$ be the set of interior nodes. By Lemma 3.1, if I is not empty, the matrix $K(I, I)$ is nonsingular.

Theorem 3.2. Suppose (Γ, γ) is a connected resistor network. Then the network response matrix Λ_{i} is the Schur somplement

$$
\Lambda_{i}=K / K(I ; I) .
$$

Proof. If I is the empty set, $K / K(I ; I)$ is defined to be K, and $\Lambda_{7}=K$. Otherwise, I is non-empty. For convenience, assume the nodes are numbered so that $V_{B}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, and $I=\left\{v_{n+1}, v_{n+2}, \ldots, v_{d}\right\}$. Let $D=K(I ; I)$. The K has a block structure.

$$
K=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

Suppose that $f=\left\{f\left(v_{i}\right) ; i=1, \ldots, n\right\}$ is a function imposed at the boundary nodes. Let $g=\left\{g\left(v_{i}\right) ; i=n+1, \ldots, d\right\}$ be the resulting potential at the interior nodes. Kirchhoff's current law says that the sum of the currents into each interior node is 0 . Thus

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
f \\
g
\end{array}\right]=\left[\begin{array}{l}
c \\
0
\end{array}\right]
$$

This implies that $\left(A-B D^{-1} C\right) f=c$. Therefore the response matrix representing the Dirichlet-to-Neumann map is $\Lambda_{i}=A-B D^{-1} C$.

If $A=\left(a_{1}, \ldots, a_{s}\right)$ and $B=\left(b_{1}, \ldots, b_{t}\right)$ are two sequences of nodes, $A+B$ stands for the sequence $\left(a_{1}, \ldots, a_{s}, b_{1}, \ldots, b_{t}\right)$.

Lemma 3.3. Suppose (Γ, γ) is a connected resistor network, and let Λ_{7} be its response matrix. Let P and Q be two sequences of boundary nodes of Γ. Then the submatrix $\Lambda_{7}(P ; Q)$ is obtained as the Schur complement

$$
\Lambda_{i}(P ; Q)=K(P+I ; Q+I) / K(I ; I) .
$$

Proof. This follows from Theorem 3.2 and the definition of Schur complement.

Suppose $\Gamma=\left(V, V_{B}, E\right)$ is a connected graph with n boundary nodes. Let p be one of the boundary nodes. Let $\Gamma^{\prime}=\left(V^{\prime}, V_{B}^{\prime}, E^{\prime}\right)$ be the graph with $V^{\prime}=V, V_{B}^{\prime}=V_{B}-p$ and $E^{\prime}=E$. That is Γ^{\prime} is the same as Γ, except that p is declared to be an interior node. If γ is a conductivity on Γ, we assign the same values to the conductors in Γ^{\prime}. Let $\Lambda_{\gamma}^{\prime}$ denote the response matrix for Γ^{\prime}. By Theorem 3.2,

$$
\Lambda_{z}^{\prime}=K / K(I+p ; I+p) .
$$

Suppose $P=\left(p_{1}, \ldots, p_{k}\right)$ and $Q=\left(q_{1}, \ldots, q_{k}\right)$ are two sequences of boundary nodes, and p is a boundary node not in $P \cup Q$.

Lemma 3.4. In this situation,

1. $\Lambda_{i j}^{\prime}(P ; Q)=\Lambda_{i}(P+p ; Q+p) / \Lambda_{i}(p ; p)$
2. $\operatorname{det} \Lambda_{i}^{\prime}(P ; Q)=\operatorname{det} \Lambda_{i}(P+p ; Q+p) / \operatorname{det} \Lambda_{i}(p ; p)$

Proof. The first follows from the Haynsworth quotient formula. The second follows from the determinantal identity for Schur complements.

4. Connections and determinants

Suppose $\Gamma=\left(V, V_{B}, E\right)$ is a connected graph with boundary. Γ is not assumed to be planar. Let $I=V-V_{B}$ denote the set of interior nodes. If p and q are two boundary nodes, a path from p to q through Γ is a sequence of edges $p, r_{1}, r_{1}, r_{2}, \ldots, r_{m}, q$ in Γ where the r_{j} are distinct interior nodes. Suppose $P=\left(p_{1}, \ldots, p_{k}\right)$ and $Q=\left(q_{1}, \ldots, q_{k}\right)$ are two disjoint sets of boundary nodes. A connection from \mathbf{P} to Q through Γ is a set $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of disjoint paths through Γ, where for each $1 \leqslant i \leqslant k, \alpha_{i}$ is a path from P_{i} to $Q_{\tau(i)}$, and τ is an element of the permutation group S_{k}. Let $\mathscr{C}(P ; Q)$ be the set of connections from P to Q. For each $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ in $\mathscr{\mathscr { C }}(P ; Q)$, let
τ_{x} be the permutation of $\left(q_{1}, q_{2}, \ldots, q_{k}\right)$ which results at the endpoints of the paths ($\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$);
E_{x} be the set of edges in α;
J_{x} be the set of interior nodes which are not the ends of any edge in α.
Lemma 4.1. Let (Γ, γ) be a connected resistor network. Let $P=\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ and $Q=\left(q_{1}, q_{2}, \ldots, q_{k}\right)$ be two disjoint sequences of boundary nodes. Then

$$
\operatorname{det} \Lambda(P ; Q) \cdot \operatorname{det} K(I, I)=(-1)^{k} \sum_{\tau \in S_{h}} \operatorname{sgn}(\tau)\left\{\sum_{\substack{x \in \neq\left\{(P, Q) \in \in E_{x} \\ \tau_{x}=\tau\right.}} \prod_{\substack{ }} \gamma(e) \cdot \operatorname{det} K\left(J_{x} ; J_{\alpha}\right)\right\} .
$$

Proof. Let $v=k+k^{\prime}$, where k^{\prime} is the number of interior nodes in Γ. Let the interior nodes be numbered r_{i} for $i=k+1, \ldots, k+k^{\prime}$. By taking the Schur complement with respect to $K(I, I)$, we have

$$
\operatorname{det} \Lambda(P ; Q) \cdot \operatorname{det} K(I, I)=\operatorname{det} K(P+I ; Q+I) .
$$

The $v \times v$ matrix $K(P+I ; Q+I)$ is denoted $M=\left\{m_{i, j}\right\}$. Then

$$
\operatorname{det} M=\sum_{\sigma \in S_{\mathrm{i}}} \operatorname{sgn}(\sigma) \prod_{i=1}^{r} m_{i . \sigma(i)} .
$$

Here S_{v} denotes the symmetric group on v symbols. For each $1 \leqslant i \leqslant k$, let n_{i} be the first index j for which $\sigma^{i}(i) \leqslant k$. For each $1 \leqslant i \leqslant k$, and $0 \leqslant j \leqslant n_{i}$, let $a(i, j)=\sigma^{j}(i)$. Let τ be the permutation of $1,2, \ldots, k$ where $\tau(i)=a\left(i, n_{i}\right)$. Thus each $\sigma \in S_{v}$ gives a diagram of the following form:

$$
\begin{aligned}
& 1=a(1,0) \stackrel{\pi}{\mapsto} a(1,1) \stackrel{\pi}{\mapsto} a(1,2) \stackrel{\pi}{\mapsto} \cdots \stackrel{\pi}{\mapsto} a\left(1, n_{1}\right)=\tau(1), \\
& 2=a(2,0) \stackrel{\sigma}{\mapsto} a(2,1) \stackrel{\curvearrowleft}{\mapsto} a(2,2) \stackrel{\curvearrowleft}{\mapsto} \cdots \stackrel{\curvearrowleft}{\mapsto} a\left(2, n_{2}\right)=\tau(2), \\
& k=a(k, 0) \stackrel{\curvearrowleft}{\mapsto} a(k, 1) \stackrel{\curvearrowleft}{\mapsto} a(k, 2) \stackrel{\curvearrowleft}{\mapsto} \cdots \stackrel{\curvearrowleft}{\mapsto} a\left(k, n_{k}\right)=\tau(k) .
\end{aligned}
$$

Let A be the subset of $\{1,2, \ldots, v\}$ consisting of the $a(i, j)$ for $1 \leqslant i \leqslant k, 0 \leqslant j<n_{i}$. Let $t=\sum n_{i}$, which is the cardinality of A. Let B be the set $\{1,2, ., \nu\}-A$. Then σ may be expressed as a product $\sigma=\phi \cdot \mu$, where ϕ is a permutation of A, and μ is a permutation of B. Let ϕ be expressed as a product of disjoint cycles $\phi=\phi_{1} \cdot \phi_{2} \ldots \phi_{s}$. Then $\operatorname{sgn}(\sigma)=(-1)^{1-s} \operatorname{sgn}(\mu)$. Then τ will also be expressed as a product of s cycles. $\tau=\psi_{1} \cdot \psi_{2} \cdots \psi_{s}$ and $\operatorname{sgn}(\tau)=(-1)^{k-s}$. Thus $\operatorname{sgn}(\sigma)=(-1)^{k+1} \operatorname{sgn}(\tau) \operatorname{sgn}(\mu)$.

The diagram above determines a set $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)$ of sequences of nodes in Γ, where α_{i} is the sequence $a(i, 0), a(i, 1), \ldots a\left(i, n_{i}\right)$. For each $1 \leqslant i \leqslant k$, $a(i, 0)=p_{i}$ and $a\left(i, n_{i}\right)=q_{\tau(i)}$. For each $1 \leqslant i \leqslant k$, and $0<j<n_{i}, a(i, j)$ is the interior node $\tau_{a(i, j)}$. The product $\prod_{i=1}^{r} m_{i, \sigma(i)}$ can be non-zero only if $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ forms a connection thrsugh Γ from P to Q. For each
$\alpha \in \mathscr{C}(P ; Q)$, let $S(\alpha)$ be the set of $\sigma \in S_{v}$ for which the connection is α. As σ varies over $S(\alpha), \mu$ varies over the permutations of J_{x}. Then

$$
\begin{aligned}
\sum_{\sigma \in S(x)} \operatorname{sgn}(\sigma) \prod_{i=1}^{v} m_{i, \sigma(i)} & =\sum_{\sigma \in s(x)}(-1)^{k+\ell} \operatorname{sgn}(\tau) \prod_{e \in E_{x}}(-\gamma(e)) \cdot \operatorname{sgn}(\mu) \cdot \prod_{i \in J_{x}} m_{i, \mu(i)} \\
& =(-1)^{k} \operatorname{sgn}(\tau) \cdot \prod_{e \in E_{x}} \gamma(e) \cdot \operatorname{det} K\left(J_{x} ; J_{x}\right)
\end{aligned}
$$

For each $\tau \in S_{k}$, take the sum over all α which induce this τ. Then take the sum over all $\tau \in S_{k}$, and the proof is complete.

This answers a question raised by Ref. [2]. In particular, it follows from Lemma 4.1 that if $\operatorname{det} \Lambda(P ; Q)=0$, then either

1. There is no connection from P to Q; or
2. There are (at least) two connections α and β from P to Q, with permutations τ_{α} and τ_{β} of opposite sign.
The following theorem is very important for our purposes. It was first proved for well-connected circular planar networks in Ref. [7], and for general circular planar networks in Ref. [1]. The proof we give here is based on Lemma 4.1.

Theorem 4.2. Suppose Γ is a circular planar resistor network and $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$ is a circular pair of sequences of boundary nodes.
(a)If $(P ; Q)$ are not connected through Γ, then $\operatorname{det} \Lambda(P ; Q)=0$.
(b) If $(P ; Q)$ are connected through Γ, then $(-1)^{k} \operatorname{det} \Lambda(P ; Q)>0$.

Proof. We first consider the case when Γ is connected as a graph. By Lemma 3.1, $K(I, I)$ is positive definite, so det $K(J, J)>0$ for all $J \subseteq I$. The sequence $\left(p_{1}, \ldots, p_{k}, q_{k}, \ldots, q_{1}\right)$ is in circular order around the boundary of Γ. If there is a connection from P to Q, it must connect p_{i} to q_{i} for $1 \leqslant i \leqslant k$. Thus each τ which appears in Lemma 4.1 is the identity permutation, so all the terms in the sum have the same sign. In the general case, Γ is a disjoint union of connected components Γ_{i}, and $\Lambda(\Gamma, \gamma)$ is a direct sum of the $\Lambda\left(\Gamma_{i}, \gamma_{i}\right)$.

When we say that removal of an edge e from Γ breaks the connection from P to Q, we mean that P and Q are connected through Γ (possibly in many ways), and that P and Q are not connected through the graph Γ^{\prime} which is the graph Γ with e removed. By Theorem 4.2, this is equivalent to the two assertions that $\operatorname{det} \Lambda(P ; Q) \neq 0$, and $\operatorname{det} \Lambda^{\prime}(P ; Q)=0$.

An edge e between a pair of adjacent boundary nodes is called a boundary edge. If r is a boundary node which is joined by an edge to only one other node p which is an interior node, the edge rp is called a boundary spike.

Corollary 4.3. Suppose Γ is a connected circular planar resistor network and $e=p q$ is a boundary edge, such that deleting e breaks the connection between a circular pair $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$. Then $p q$ is either $p_{1} q_{1}$ or $p_{k} q_{k}$, and

$$
\operatorname{det} \Lambda(P ; Q)=-\gamma(e) \cdot \operatorname{det} \Lambda(P-p ; Q-q)
$$

Proof. The edge $p q$ must be either $p_{1} q_{1}$ or $p_{k} q_{k}$. As the two cases are similar, WLOG assume the formei. We consider $\operatorname{det} K(P+I ; Q+I)$ as a linear function $F(z)$ of the first column z of $K(P+I ; Q+I)$. Let $\xi=\gamma(e)$. Then $z=x+y$, where

$$
x=\left[\begin{array}{c}
-\xi \\
0
\end{array}\right] \quad \text { and } \quad y=\left[\begin{array}{l}
0 \\
a
\end{array}\right]
$$

Then $F(z)=F(x)+F(y)$. But $F(y)=0$, since P and Q are not connected through Γ after $p_{1} q_{1}$ is deleted. Thus

$$
\operatorname{det} K(P+I ; Q+I)=-\xi \operatorname{det} K\left(P-p_{1}+I ; Q-q_{1}+I\right)
$$

The result follows by taking the Schur complement with respect to $K(I ; I)$, and using Lemma 3.3.

Corollary 4.4. Suppose Γ is a connected circular planar resistor network and $r p$ is boundary spike joining a boundary node r to an interior node p. Suppose that contracting $r p$ breaks the connection between a circular pair $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$. Then $r \notin P \cup Q$, and

$$
\operatorname{det} \Lambda(P+r ; Q+r)=\gamma(p r) \cdot \operatorname{det} \Lambda(P ; Q)
$$

Proof. It is clear that $r \notin P \cup Q$. Let $\xi=\gamma(\mathrm{pr})$. Then $K(P+r+I ; Q+r+I)$ has a submatrix $K(r, p ; r, p)$ which has the form:

$$
K(r, p ; r, p)=\left[\begin{array}{cc}
\xi & -\xi \\
-\xi & w
\end{array}\right]
$$

The remaining entries of $K(P+r+I ; Q+r+I)$ in the column corresponding to r are 0 , and the remaining entries of $K(P+r+I ; Q+r+I)$ in the row corresponding to r are 0 . Thus

$$
\begin{aligned}
\operatorname{det} K(P+r+I ; Q+r+I)= & \xi \operatorname{det} K(P+I ; Q+I) \\
& -\xi^{2} \operatorname{det} K(P+I-p ; Q+I-p)
\end{aligned}
$$

The assertion of the corollary follows upon dividing by $K(I ; I)$, interpreting each of the terms as the determinant of a Schur complement, and using Lemma 3.3.

5. $\boldsymbol{Y}-\boldsymbol{\Delta}$ transformations

Suppose $\Gamma=\left(V, V_{B}, E\right)$ is a circular planar graph, and s is a trivalent interior node with incident edges $s p, s q$ and $s r$, as in Fig. 1(A). A Y - Δ transformation removes the vertex s, the edges $s p, s q, s r$ and adds three new edges $p q, q r$, and $r p$ as in Fig. 1(B). Similarly, if $p q r$ is a triangle in Γ as in Fig. 1(B), then a $\Delta-Y$ transformation removes the edges $p q, q r$, and $r p$, inserts a new vertex s, and adds three new edges $p s, q s$, and $r s$, to arrive at Fig. 1(A). All other nodes are fixed during the transformation.

We say that two circular planar graphs Γ_{1} and Γ_{2} are $Y-\Delta$ equivalent if Γ_{1} can be transformed to Γ_{2} by a sequence of $Y-\Delta$ or $\Delta-Y$ transformations.

Lemma 5.1. If Γ_{1} and Γ_{2} are wo circular planar graphs which are $Y-\Delta$ equivalent, then $\pi\left(\Gamma_{1}\right)=\pi\left(\Gamma_{2}\right)$.

Proof. Suppose Γ_{1} is transformed into Γ_{2} where the Y of Fig. $1(\mathrm{~A})$ is replaced by the triangle of Fig. 1(B). Let α and β be disjoint paths in Γ_{1} where α passes through p and β passes through edges $r s$ and $s q$. The corresponding paths in Γ_{2} are α and β^{\prime}, where β^{\prime} is the same as β except that the two edges $r s$ and $s q$ are replaced by the single edge $r q$.

Lemma 5.2. Suppose Γ_{1} and Γ_{2} are two circular planar graphs which are Y - equivalent. Then Γ_{1} is critical if and only if Γ_{2} is critical.

Proof. Suppose Γ_{1} is transformed into Γ_{2} where the Y of Fig. 1(A) is replaced by the triangle of Fig. 1(B). Assume that Γ_{1} is not critical. We need to consider three cases.
(1) Suppose e is an edge in Γ_{1} which is not $p s, q s$, or $r s$ and e can be removed without breaking a connection in $\pi\left(\Gamma_{1}\right)$. Then removal of the same edge in Γ_{2} breaks no connection in $\pi\left(\Gamma_{2}\right)$.

Fig. 1. (A) Y with incident edges $s p, s q, s r$ changed to (B) Δ with edges $p q, q r, r p$.
(2) Suppose deletion . is no connection in $\pi\left(\Gamma_{1}\right)$. Then deletion of jir breaks no connection in $\pi\left(\Gamma_{2}\right)$.
(3) Suppose contraction of $p s$ breaks no connection in $\pi\left(\Gamma_{1}\right)$. Then deletion of $r q$ breaks no connection in $\pi\left(\Gamma_{2}\right)$.

Assume that Γ_{2} is not critical. Again there are three cases.
(4) Suppose e is an edge in Γ_{2} which is not $p q$, $q r$, or $r p$ and e can be removed without breaking a connection in $\pi\left(\Gamma_{2}\right)$. Then removal of the same edge in Γ_{1} breaks no connection in $\pi\left(\Gamma_{1}\right)$.
(5) Suppose deletion of $r q$ breaks no connection in $\pi\left(\Gamma_{2}\right)$. Then contraction of $p s$ breaks no connection in $\pi\left(\Gamma_{1}\right)$.
(6) Suppose contraction of $r q$ breaks no connection in $\pi\left(\Gamma_{2}\right)$. Then contraction of $r s$ breaks no connection in $\pi\left(\Gamma_{1}\right)$.

Lemma 5.3. Suppere Γ_{1} and Γ_{2} are two circular planar graphs which $Y-\Delta$ equivalent. If γ_{1} is a conductivity on Γ_{1} then there is a conductivity γ_{2} on Γ_{2}, with $\Lambda\left(\Gamma_{1}, \gamma_{1}\right)=\Lambda\left(\Gamma_{2}, \gamma_{2}\right)$.

Proof. Suppose Γ_{1} is transformed into Γ_{2} where the Y of Fig. 1(A) is replaced by the triangle of Fig. 1(B). Suppose $\gamma_{1}(p s)=a, \gamma_{1}(q s)=b, \gamma_{1}(r s)=c$. The corresponding conductivity γ_{2} on Γ_{2} is

$$
\begin{aligned}
& \gamma_{2}(p q)=\frac{a b}{a+b+c}, \\
& \gamma_{2}(q r)=\frac{b c}{a+b+c}, \\
& \gamma_{2}(r p)=\frac{a c}{a+b+c},
\end{aligned}
$$

and $\gamma_{2}(e)=\gamma_{1}(e)$ for all other edges.
Suppose Γ_{1} is transformed into Γ_{2} where the triangle of Fig. 1(B) is replaced by the Y of Fig. $1(\mathrm{~A})$. Suppose $\gamma_{1}(p q)=a, \gamma_{1}(q r)=b, \gamma_{1}(r p)=c$. The corresponding conductivity γ_{2} on Γ_{2} is

$$
\begin{aligned}
& \gamma_{2}(p s)=\frac{a b+a c+b c}{b}, \\
& \gamma_{2}(q s)=\frac{a b+a c+b c}{c}, \\
& \gamma_{2}(r s)=\frac{a b+a c+b c}{a},
\end{aligned}
$$

and $\gamma_{2}(e)=\gamma_{1}(e)$ for all other edges. If u is a function defined at the nodes of Γ_{1} which satisfies Kirchhoff's current law, the same function (omitting the point s) satisfies Kirchhoff's current law on Γ_{2}. Hence $\Lambda\left(\Gamma_{1}, \gamma_{1}\right)=\Lambda\left(\Gamma_{2}, \gamma_{2}\right)$.

Lemma 5.2. Suppose Γ_{1} and Γ_{2} are two circular planar graphs which are $Y-\Delta$ equivalent. If γ_{1} is recoverable from $\Lambda\left(\Gamma_{1}, \gamma_{1}\right)$, then γ_{2} is recoverable from $\Lambda\left(\Gamma_{2}, \gamma_{2}\right)$.

Proof. This follows from Lemma 5.3.

6. Medial graphs

Suppose $\Gamma=\left(V, V_{B}, E\right)$ is a circular planar graph with n boundary nodes. Γ is assumed to be embedded in the plane so that the boundary nodes $v_{1}, v_{2}, \ldots, v_{n}$ occur in clockwise order around a circle C and the rest of Γ is in the interior of C. The construction of the medial graph $\mathscr{H}(\Gamma)$ is similar to that in (Ref. [10], p. 239). The medial graph $\mathscr{\mu}(\Gamma)$ depends on the embedding. First, for each edge e of Γ, let m_{c} be its midpoint. Next, place $2 n$ points t_{1}, t_{2}, \ldots , $t_{2 n}$ on C so that

$$
t_{1}<v_{1}<t_{2}<t_{3}<v_{2}<\cdots<t_{2 n-1}<v_{n}<t_{2 n}<t_{1}
$$

in the clock vise circular order around C.
(1) The vertices of $\mathscr{H}(\Gamma)$ consist of the points m_{e} for $e \in E$, and the points t_{i} for $i=1,2, \ldots, 2 n$.
(2) The edges in $\mathscr{\mu (\Gamma)}$ are as follows. Two vertices m_{e} and m_{f} are joined by an edge whenever e and f have a common vertex and e and f are incident to the same face in Γ. There is also one edge for each point t_{j} as follows. The point $t_{2 i}$ is joined by an edge to m_{e} where e is the edge of the form $e=v_{i} r$ which comes first after arc $v_{i} t_{2 i}$ in clockwise order around v_{i}. The point $t_{2 i-1}$ is joined by an edge to m_{f} where f is the edge of the form $f=v_{i} s$ which comes first after arc $v_{i} t_{2 i-1}$ in counter-clockwise order around v_{i}.

The vertices of the form m_{c} of.$/ /(\Gamma)$ are 4-valent; the vertices of the form t_{i} are !-valent. An edge $u v$ of.$~ h(\Gamma)$ has a direct extension $v w$ if the edges $u v$ and νw separate the other two edges incident to the vertex v. if path $u_{0} u_{1} \ldots u_{k}$ in .$/ /(\Gamma)$ is called a geodesic arc if each edge $u_{i-1} u_{i}$ has edge $u_{i} u_{i+1}$ as a direct extension. A geodesic arc $u_{0} u_{1} \ldots u_{k}$ is called a geodesic if either
(1) u_{0} and u_{k} are points on the circle C,
or (2) $u_{k}=u_{0}$ and $u_{k-1} u_{k}$ has $u_{0} u_{1}$ as direct extension.
A subgraph \mathscr{L} of. $\mathscr{U}(\Gamma)$ is called a lens provided that:
(1) \mathscr{P} consists of a simple closed path $u_{0} u_{1} \ldots u_{k} v_{0} v_{1} \ldots v_{m} u_{0}$ and all the nodes and edges of.$/ /(\Gamma)$ in the bounded connected component of the complement of \mathscr{L} in the plane.
(2) $u_{0} u_{1} \ldots u_{k} v_{0}$ and $v_{0} v_{1} \ldots v_{m} u_{11}$ are two geodesic arcs such that no inner edge of \mathscr{L} is incident to u_{0} or v_{0}.

If each geodesic in.$/ /(\Gamma)$ begins and ends on C, has no self-intersection, and if.$/ /(\Gamma)$ has no lenses, we say that.$/ /(\Gamma)$ is lensless.

A triangle in.$/(\Gamma)$ is a triple $\{f, g, h\}$ of geodesics which intersect to form a triangle with no other intersections within the configuration, as in Fig. 2(A).

Suppose $\{f, g, h\}$ form a triangle as in Fig. 2(A). A motion of $\{f, g, h\}$ consists of replacing this configuration with that of Fig. 2(B).

Fig. 2. (A) Triangle changed by motion of $\{f, g, h\}$ to another triangle (B).

Lemma 6.1. Two circular planar graphs are Y - Δ equivalent if and only if their medial graphs are equivalent under motions.

Proof. Each $Y-\Delta$ transformation of Γ corresponds to a motion on $/ / /(\Gamma)$. Conversely, a motion on.$/(\Gamma)$ corresponds to a $Y-\Delta$ transformation of Γ.

We shall make extensive use of the following lemma. Our proof is an adaptation of a proof of Steinitz to our situation; see Refs. [10, 11 j .

Lemma 6.2. Suppose Γ is a circular planar graph, for which $\|(\Gamma)$ is lensless. Suppose g and h intersect at p. Suppose g intersects C at q and h intersect C at r. Assume $. \tilde{\mathscr{F}}=\left\{f_{1}, \ldots, f_{m}\right\}$ is a set of geodesics with the preperty that for each $1 \leqslant i \leqslant m, f_{i}$, intersects g between p and q if and only if f_{i} intersects h between p and r. Then a finite sequence of motions will remove all members of.$\overline{\mathcal{F}}$ from the sector apr.

Proof. For each $i=1, \ldots, m$, let v_{i} be the point of intersection (if there is one) of f_{i} with g between p and q. For each f_{i} which intersects another of the f_{j} within sector $q p r$, let D. ee the first point of intersection on f_{i} after v_{i} in sector $q p r$. Let $\mathscr{\mathscr { D }}=\left\{D_{i}\right\}$ be the set of points obtained in this way. If \mathscr{l} is empty, let f_{i} be the geodesic in \mathscr{F} such that v_{i} is closest to p, and $\left\{g, h_{2} f_{i}\right\}$ form a triangle. A motion will remove f_{i} from sector $q p r$. Otherwise, \mathscr{D} is non-empty. Each point $D_{i} \in \mathscr{L}$ is the point of intersection of two of the geodesics, say f_{i} and f_{j}. Let D be a point in \mathscr{C} for which the number of regions within the configuration formed by f_{i} and f_{j} and g is a minimum. This minimum must be one, or there would be another geodesic which intersects f_{i} between v_{i} and D or which intersects f_{j} between v_{j} and D. Then $\left\{g_{i} f_{i} f_{j}\right\}$ form a triangle. A motion will reduce the number of regions within sector $q p r$. After a finite number of motions, no f_{i} crosses into the sector.

Lemma 6.3. Suppose Γ is a circular planar graph, for which. $/ /(\Gamma)$ has a lens. Then Γ is Y - Δ equivalent to a graph Γ^{\prime} which 'has either a pair of edges in series, or a pair of edges in parallel.

Proof. Suppose g and $h i$ arc two geodesics which intersect at p_{1} and p_{2} to form a lens \mathscr{L}. w.l.o.g. assume that \mathscr{L} is a lens with the fewest number of regions inside \mathscr{L}. Each geodesic f which intersects g between p_{1} and p_{2} also intersects h between p_{1} and p_{2}, or there would be a lens with fewer regions than \mathscr{L}. An argument similar to that of Lemma 6.2 shows that all of these f may be removed from \mathscr{L}. Thus Γ is $Y-\Delta$ equivalent to a graph Γ^{\prime} for which $\mathscr{M}\left(\Gamma^{\prime}\right)$ has an empty lens. This empty lens corresponds either tc a pair of edge: in series (if there is a vertex of Γ^{\prime} within \mathscr{L}), or to a pair of edges in parallel (ii there is no vertex of Γ^{\prime} within \mathscr{L}).

Lemma 6.4. If Γ is a critical circular planar graph, then .//($\Gamma)$ is lensless.
Proof. If there were a lens, a closed geodesic or a geodesic with a selfintersection in $/ /(\Gamma)$, then Γ would be $Y-\Delta$ equivalent to a graph Γ^{\prime} with a pair of edges in series or in parallel, or with an interior pendant or an interior loop. In each case an edge could be removed from Γ^{\prime} without breaking any connection, so Γ^{\prime} would not be critical, and hence also Γ would not be critical.

In Section 13, we show that if.$/ /(\Gamma)$ is lensless, then Γ is critical.

7. Standard graphs

Suppose Γ is a circular planar graph with n boundary nodes which is embedded in the plane so that the boundary nodes $v_{1} \ldots \ldots v_{n}$ occur in clockwise order on a circle C and the rest of Γ is in the interior of C. Assume the medial graph .$/ /(\Gamma)$ is lensless. Then.$/ /(\Gamma)$ has n geodesics each of which intersects C twice. The n geodesics intersect C in $2 n$ distinct points. These $2 n$ points are labelled $t_{1}, \ldots, t_{2 n}$, so that

$$
t_{1}<v_{1}<t_{2}<t_{3}<t_{2}<\cdots<t_{2 n-1}<t_{n}<t_{2 n}<t_{1}
$$

in the circular order around C. The geodesics are labelled as follows. Let g_{1} be the geodesic which begins at t_{1}. The remaining geodesics are labelled $g_{2}, g_{3}, \ldots, g_{n}$ so that if $i<j$, then the first point of intersection of g_{i} with C occurs before the first point of intersection of g_{i} with C in the clockwise order starting from t_{1}. For each $i=1,2, \ldots, 2 n$, let z_{i} be the number associated with the geodesic which intersects C at t_{i}. In this way we obtain a sequence $z=z_{1}, z_{2}, \ldots, z_{2 n}$, called the z-sequence for . $/ /(\Gamma)$. Each of the numbers from 1 to n occurs in z exactly twice. If $i<j$, and if the occurrences of i and j appear in z in the order

$$
\ldots i \ldots j \ldots i \ldots j \ldots
$$

we say that i and j interlace in z; otherwise, we say that i and j do not interlace in z.

Suppose $z=z_{1}, z_{2}, \ldots, z_{2 n}$ is a sequence which contains each of the numbers $1,2, \ldots, n$ twice. Assume that if $i<j$, the first occurrence of i comes before the first occurence of j. Associated with this sequence, there is a standard arrangement $\mathscr{A}(z)$, of n pseudolines $\left\{g_{i}\right\}$ in the disc, constructed as follows. Place $2 n$ points in clockwise order around the circle C and label them x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} as follows. The points labelled x_{i} and y_{i} are to be placed at positions corresponding to the two occurrences of i in the sequence $z_{1}, \ldots, z_{2 n}$, with $x_{i}<y_{i}$. We join each x_{i} tn y_{i} by a geodesic g_{i}. It i and j interlace in z, then g_{i} will be made to intersect g_{j}; the point of intersection is denoted $x(i, j)$, with the convention that $x(j, i)$ denotes the same point as $x(i, j)$.

First, join x_{1} to y_{1} by pseudoline g_{1}. After g_{1}, \ldots, g_{m-1} have been placed within C, the pseudoline g_{m} joining x_{m} to y_{m} is placed as follows. For each $i \leqslant m-1$, if m interlaces i in $=$, place a point $x(i, m)$ on g_{i} closer to y_{i} than any previously placed point on g_{i}. Now let g_{m} join x_{m} to y_{m} passing through the points $x(i, m)$ which have just been placed. The points y_{i} which are between x_{m} and y_{m} occur in the same order on C as the points $x(i, m)$ occur on g_{m}.

When all the pseudolines g_{1}, \ldots, g_{n} are in place, the arrangement $\mathscr{A}(=)$ has sequence z. The intersection points $x(i, j)$ occur as follows. For each $i \leqslant m-1$, the points $x(i, j)$ which are on g_{i} appear between x_{i} and y_{i} so that:

1. If $i<j<k$, then $x(i, j)$ appears before $x(i, k)$.
2. If $j<i<k$, then.$x(i, j)$ appears before $x(i, k)$.
3. If $j<k<i$, then $x(i, j)$ and.$x(i, k)$ appear on g_{i} in the same order as y_{j} and y_{k} appear in z.
Let $\left\{x_{1}, \ldots, x_{n}\right\} \cup\left\{y_{1}, \ldots, y_{n}\right\}=\left\{t_{1}, \ldots, t_{2 n}\right\}$ where $t_{1}<\cdots<t_{2 n}$ in the clockwise order around the circle C. Place n boundary points v_{1}, \ldots, v_{n} on C so that the points

$$
t_{1}<v_{1}<t_{2}<t_{3}<v_{2}<\ldots<t_{2 n-1}<v_{n}<t_{2 n}
$$

are in clockwise circular order on C. Next color the regions formed by $/ / /(\Gamma(z))$ inside C in two colors, black and white, with each v_{i} in a black region. To obtain the standard graph $\Gamma(z)$, for which.$/ / \Gamma(z))=A(z)$, we must assume that each of the black regions contains at most one of the vertices i_{i}. After a vertex has been placed in each black region, they are joined by edges, with one edge passing through each of the points $x(i, j)$.

Lemma 7.1. Let Γ be a connected circular pianar graph with n boundary nodes. Assume . $/(\Gamma)$ is lensless. Let $z=z_{1}, z_{2}, \ldots, z_{2 n}$ be the z-sequence associated with Γ, and let $\Gamma(z)$ be the standard graph constructed above. Then Γ is $Y-\Delta$ equivalent to $\Gamma(z)$.

Proof. We make motions in $\mathscr{M}(\Gamma)$ to transform it to $A(z)$. Geodesic g_{i} intersects the outer circle C at two points x_{i} and y_{i}, with $x_{i}<y_{i}$. The points $x_{1}, x_{2}, \ldots, x_{n}$ and $y_{1}, y_{2}, \ldots, y_{n}$ occur in the order of z around C. If i and j interlace in z, the geodesic g_{j} intersects g_{i}. Let $x(i, j)=x(j, i)$ be the point of intersection of g_{i} with g_{j}, and let $S(i, j)$ be the sector formed by $x_{i}, x(i, j)$ and x_{j}. The location of the points $x(i, j)$ is changed by the motions of $\mathscr{M}(\Gamma)$.

Let k be the first index for which g_{k} intersects a previous geodesic. Then g_{k} must intersect g_{k-1}. Consider the geodesics from the set $\left\{g_{k+1}, g_{k+2}, \ldots, g_{n}\right\}$ which intersect g_{k} between $x(k-1, k)$ and x_{k}. Any such geodesic also intersects g_{k-1} between $x(k-1, k)$ and x_{k-1}. Lemma 6.2 implies that finite sequence of motions will remove g_{k+1}, \ldots, g_{n} from the sector $S(k-1, k)$. This process is repeated to remove all intersections of g_{k+1}, \ldots, g_{n} from the sectors $S(i, k)$ for $i=k-2, \ldots, 1$.

We perform a similar process at steps $k+1, \ldots, n-1$. After step ($m-1$), the geodesics are in position so that if $i<j<m$, the geodesics $g_{m}, g_{m+1}, g_{k+1}, \ldots, g_{n}$ have no intersections within any of the sectors $S(i, j)$. Note that for each $1 \leqslant i<m$, if g_{m} intersects g_{i}, then for all $j<m$ the point of intersection $x(i, m)$ is between $x(i, j)$ and y_{i} on g_{i}. Also the set of points

$$
\left\{x_{m}, x(m, 1), \ldots, x(m, m-1), y_{m}\right\}
$$

occur in the following order along g_{m} : if $j<m$ and $k<m$, with $j \neq k$, then $x(m, j)$ and $x(m, k)$ appear in the same order along g_{m} as y_{j} and y_{k} appear in z.

For step (m), Lemma 6.2 implies that we can remove geodesics g_{m+1}, \ldots, g_{n} from the sectors $S(j, m)$ for $1 \leqslant j<m$. These geodesics are removed from the sectors $S(j, m)$ in the same order in which the $x(m, j)$ appear on g_{m}.

Continue until $m=n-1$, when all intersections are as in $\mathscr{A}(z)$.
Theorem 7.2. Suppose Γ_{1} and Γ_{2} are two connected circular planar graphs, each with n boundary nodes. Assume the medial graphs $\mathscr{M}\left(\Gamma_{1}\right)$ and $\mathscr{M}\left(\Gamma_{2}\right)$ are lensless. Then Γ_{1} and Γ_{2} are $Y-\Delta$ equivalent if and only if $\mathscr{M}\left(\Gamma_{1}\right)$ and $\mathscr{M}\left(\Gamma_{2}\right)$ and have the same z-sequence.

Proof. A Y - Δ transformation does not change the z-sequence. Conversely, if .$/ /\left(\Gamma_{1}\right)$ and.$/ /\left(\Gamma_{2}\right)$ and have the same z-sequence, then Γ_{1} and Γ_{2} are each be $Y-\Delta$ equivalent to the same standard graph $\Gamma(z)$.

When the sequence z is $1, \ldots, n, 1, \ldots, n$, the standard arrangement $\mathscr{A}(z)$ is denoted.α_{n} and the standard graph $\Gamma(z)$ is denoted Σ_{n}. In \mathscr{A}_{n}, every pseudoline g_{i} intersects every other pseudoline, and there are $\frac{1}{2} n(n-1)$ points of intersection $x(i, j)$. For each $1 \leqslant i \leqslant n$, the points

$$
x_{i}, x(i, 1), x(i, 2), \ldots, x(i, i-1), x(i, i+1), \ldots, x(i, n), y_{i}
$$

occur in order along g_{i}.

Fig. 3. Graphs Σ_{6} and Σ_{7}.

The standard graph Σ_{n} has $\frac{1}{2} n(n-1)$ edges. The graphs Σ_{6} and Σ_{7} are shown in Fig. 3.

As in Ref. [1], a circular planar graph is called well-connected if every circular pair $(P ; Q)$ is connected through Γ.

Proposition 7.3. For each integer $n \geqslant 3$, the graph Σ_{n} is critical and wellconnected.

Proof. The proof is left to the reader.
Corollary 7.4. Let $n=4 m+3$, and let $C(m, 4 m+3)$ be the circular graph of [7]. Suppose that Γ is a circular planar graph with n boundary nodes, Assume that $\mathscr{M}(\Gamma)$ is lensless and has z-sequence, $1, \ldots, n, 1, \ldots, n$. Then Γ is Y - Δ equivalent to $C(m, 4 m+3)$. In particular, Σ_{n} and $C(m, 4 m+3)$ are $Y-\Delta$ equivalent.

Proof. The medial graph.$\|(C(m, 4 m+3))$ is lensless. The z-sequence is $1, \ldots, n, 1, \ldots, n$. By Lemma $7.2, \Gamma$ and $C(m, 4 m+3)$ are $Y-\Delta$ equivalent.

8. Adjoining edges

Let (Γ, γ) be a circular planar resistor network with n boundary nodes v_{1}, \ldots, v_{n}. We will describe three ways to adjoin an edge to Γ, and the effect of each on the matrix $\Lambda(\Gamma, \gamma)$. In this section $\Lambda(\Gamma)$ stands for $\Lambda(\Gamma, \gamma)$, with the conductivity γ implicit from the context.
(1) Let p and q be two adjacent boundary nodes. For convenience of notation, we make a cyclic re-labelling of the boundary nodes, so that $p=v_{1}$ and $q=v_{2}$. We add an edge $p q$ so that the new graph is still be a circular planar graph with n boundary nodes. We call this process adjoining a boundary edge. If a boundary edge $p q$ is adjoined to Γ, with $\gamma(p q)=\xi$, the resulting resistor network is denoted $\mathscr{T}_{\xi}(\Gamma)$.

Suppose $M=\left\{m_{i, j}\right\}$ is an $n \times n$ matrix, and ξ is a real number. We define a new matrix $\mathscr{T}_{\xi}(M)$ as follows.

$$
\begin{aligned}
& T_{\zeta}(M)_{1.1}=m_{1.1}+\xi \\
& T_{\xi}(M)_{2.2}=m_{2.2}+\zeta \\
& T_{\xi}(M)_{1.2}=m_{1.2}-\xi \\
& T_{\zeta}(M)_{2.1}=m_{2.1}-\xi \\
& T_{\xi}(M)_{i, j}=m_{i, j} \quad \text { otherwise. }
\end{aligned}
$$

Clearly, $T_{-\xi} T_{\xi}=$ identity. From the definition of Kirchhoff matrix, we have

$$
K\left(\mathscr{T}_{\xi}(\Gamma)\right)=T_{\xi}(K(\Gamma))
$$

From Theorem 3.2, it follows that

$$
\begin{aligned}
& \Lambda\left(T_{\xi}(\Gamma)\right)=T_{\xi}(\Lambda(\Gamma)), \\
& \Lambda(\Gamma)=T_{-\xi}\left(\Lambda\left(\mathscr{T}_{\xi}(\Gamma)\right) .\right.
\end{aligned}
$$

Suppose given (Γ, γ) and ξ. Then $\Lambda(\Gamma)$ uniquely determines $\Lambda\left(\mathscr{T}_{\xi}(\Gamma)\right)$.. Also $\Lambda\left(\mathscr{T}_{i}(\Gamma)\right)$ uniquely determines $\Lambda(\Gamma)$.
(2) Let p be a boundary node. By a cyclic re-labelling of the boundary nodes, assume that $p=v_{1}$. We place a new vertex v_{0} on the boundary circle C, between v_{n} and v_{1}, and adjoin a new edge $v_{0} v_{1}$ to Γ. The new graph is a circular planar graph with $n+l$ boundary nodes. We call this process adjoining a boundary spike without interiorizing. If a boundary spike $v_{0} v_{1}$ is adjoined to Γ, without interiorizing the vertex v_{1}, and with $\gamma\left(v_{0} v_{1}\right)=\zeta$, the resulting resistor network is denoted $\mathscr{P}_{s}(\Gamma)$.

Suppose $M=\left\{m_{i, j}\right\}$ is an $n \times n$ matrix, written in block form

$$
M=\left[\begin{array}{ll}
m_{1.1} & a \\
b & C
\end{array}\right]
$$

If $\bar{\xi}$ a real number, let $P_{\xi}(M)$ be the $(n+1) \times(n+1)$ matrix, with indices $0 \leqslant i \leqslant n$ and $0 \leqslant j \leqslant n$,

$$
P_{\xi}(M)=\left[\begin{array}{lll}
\xi & -\xi & 0 \\
-\xi & m_{1.1}+\xi & a \\
0 & b & C
\end{array}\right]
$$

Then by Theorem 3.2.

$$
\Lambda\left(. P_{亏}(\Gamma)=P_{\xi}(\Lambda(\Gamma))\right.
$$

Suppose given (Γ, γ) and ξ. Then $\Lambda(\Gamma)$ uniquely determines $\Lambda\left(j_{j}(\Gamma)\right)$. Also, $\Lambda\left(\mathscr{P}_{\dot{\xi}}(\Gamma)\right)$ uniquely determines $\Lambda(\Gamma)$
(3) Let p be a boundary node. By cyclic re-labelling of the boundary nodes, assume that $p=v_{1}$. We adjoin a boundary spike $r v_{1}$ to Γ, then declare v_{1} to be an interior node, and renumber so that r is the first boundary node. The new graph is a circular planar graph with n boundary nodes. We call this process adjoining a boundary spike. If a boundary spike $r v_{1}$ is adjoined to Γ, with $\gamma\left(r v_{1}\right)=\xi$, the resulting resistor network is denoted $S_{\zeta}(\Gamma)$.

Suppose $M=\left\{m_{i, j}\right\}$ is an $n \times n$ matrix, written in block form

$$
M=\left[\begin{array}{ll}
m_{1.1} & a \\
b & C
\end{array}\right]
$$

For any real number ξ, the $(n+1) \times(n+1)$ matrix $P_{\xi}(M)$ has been defined in part (2). The indexing is $0 \leqslant i \leqslant n$ and $0 \leqslant j \leqslant n$. If the (1,1) entry $\delta=m_{1.1}+\xi$ is not 0 , we take the Schur complement of $P_{\xi}(M)$ with respect to this entry, to obtain

$$
S_{\xi}(M)=P_{\xi} /\left[m_{1.1}+\xi\right]=\left[\begin{array}{ll}
\xi-\xi^{2} / \delta & a \xi / \delta \\
b \xi / \delta & C-b a / \delta
\end{array}\right]
$$

A calculation shows that $S_{-\xi} \circ S_{\xi}=$ identity. From the definition of the Kirchhoff matrix in Section 3,

$$
K\left(\mathscr{S}_{\xi}(\Gamma)\right)=K\left(P_{\xi}(\Gamma)\right)
$$

Thus $\Lambda\left(\mathscr{F}_{\xi}(\Gamma)\right)$ is the Schur complement of $P_{\xi}(K(\Gamma))$ with respect to the block corresponding to $I \cup\left\{v_{1}\right\}$. From Theorem 3.2 and Lemma 3.4, it follows that

$$
\begin{aligned}
& \Lambda\left(\mathscr{T}_{幺}(\Gamma)\right)=S_{\xi}(\Lambda(\Gamma)), \\
& \Lambda(\Gamma)=S_{-\ddot{\xi}}\left(\Lambda\left(\mathscr{Y}_{\dot{\xi}}(\Gamma)\right) .\right.
\end{aligned}
$$

Suppose given (Γ, γ) and the positive real number ξ. Then $\Lambda(\Gamma)$ uniquely determines $\Lambda\left(\mathscr{S}_{\xi}(\Gamma)\right)$. Also $\Lambda\left(\mathscr{Y}_{\xi}^{\prime}(\Gamma)\right)$ uniquely determines $\Lambda(\Gamma)$.

Remark 8.1. We have adjoined the boundary edge at $v_{1} v_{2}$ for convenience of notation. The construction $\mathscr{T}_{\dot{j}}(\Gamma)$ may be made at any pair of boundary nodes p and q which are adjacent in the circular order. The construction $T_{\xi}(M)$ may be made at any pair of indices of which are adjacent in the circular order. Similarly the constructions $\mathscr{P}_{\xi}(\Gamma)$ or $\mathscr{F}_{\xi}(\Gamma)$ may be made at any boundary node, and $P_{\xi}(M)$ or $S_{\xi}(M)$ may be made at any index. In each case, the location of the nodes (or indices) where the construction is to be made will be clear from the context.

9. Recovering conductivities

Lemma 9.1. Suppose Γ is a circular planar graph with n boundary nodes for which the medial graph.$/ / \Gamma)$ is lensless. Assume that the z-sequence for the medial graph $\mathscr{M}(\Gamma)$ is not the sequence $1,2, \ldots, n, 1,2, \ldots, n$. Then either
(1) there is a boundary node where a boundary spike may be adjoined to Γ, so that after the adjunction, the resulting graph Γ^{\prime} is lensless,
or (2) there is a pair of consecutive boundary nodes where a boundary edge may be adjoined, so that after the adjunction, the resulting graph Γ^{\prime} is lensless.

Proof. Let t be a number in the sequence such that two repetitions of t are closest in the circular order around C. By a cyclic relabelling, we may assume that $t=1$, so that the z-sequence for.$/ /(\Gamma)$ is

$$
z=1,2, \ldots, m, 1, z_{m+2}, \ldots, z_{2 n}
$$

with $m<n$. Let h be the first index for which z_{h} is not in the set $\{1,2, \ldots, m\}$. Then z_{h-1} and z_{h} are a pair of numbers which do not interlace in z (see Section 7). The corresponding geodesics in.$/ /(\Gamma)$ do not cross. We now make the single alteration in.$/ /(\Gamma)$ so that these two geodesics do cross, and the new z-sequence is

$$
1,2 \ldots, m, 1, z_{m+2}, \ldots, z_{h}, z_{h-1}, \ldots, z_{2 n} .
$$

The new medial graph is lensless. This change in the medial graph corresponds to adjoining either a boundary edge or a boundary spike to Γ.

Lemma 9.2. Suppose Γ is a circular planar graph with n boundary nodes for which the medial graph . $/(\Gamma)$ is lensless. There is a sequence of circular planar graphs $\Gamma=\Gamma_{0}, \Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{k}$, where each Γ_{i+1} is obtained from Γ_{i} by adjoining a boundary edge or a boundary spike, and where Γ_{k} is $Y-\Delta$ equivalent to the standard graph Σ_{n}.

Proof. We adjoin boundary edges or boundary spikes until the z-sequence for the medial graph . $/ /\left(\Gamma_{k}\right)$ is $1,2, \ldots, n, 1,2, \ldots, n$. By Corollary $7.4, \Gamma_{k}$ is $Y-\Delta$ equivalent to Σ_{n}.

Proof of Theorem 2. By taking connected components, we need only consider the case when Γ is connected. First let (Γ, γ) be a resistor network whose underlying graph is the graph $C(m, 4 m+3)$ of Ref. [7]. In Theorem 5.2 of Ref. [7] we showed that for this graph, the conductivity γ may be recovered from Λ_{ψ}. By Corollary 5.4, any resistor network whose underlying graph is $Y-\Delta$ equivalent to $C(m, 4 m+3)$ is also recoverable. In particular, any conductivity on $\Sigma_{4 m+3}$ is recoverable.

Next suppose (Γ, γ) is any connected critical circular planar resistor network with n boundary nodes. If n is not of the form $4 m+3$, first adjoin 1,2 , or 3 boundary spikes without interiorizing as in Section 8, to obtain a resistor network which does have $4 \mathrm{~m}+3$ boundary nodes. Combining this with Lemma 9.2, we obtain a sequence of circular planar resistor networks $\Gamma=\Gamma_{0}$, $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{k}$, where Γ_{k} is a graph with $4 m+3$ boundary nodes, which is $Y-\Delta$
equivalent to $\Sigma_{4 m+3}$. Each Γ_{i+1} is obtained from Γ_{i} by adjoining a boundary edge, or adjoining a boundary spike (with or without interiorizing). The resistor network Γ_{k} is recoverable, and hence each of the resistor networks Γ_{i} for $k \geqslant i \geqslant 0$ is also recoverable. In particular, the resistor network $\Gamma=\Gamma_{0}$ is recoverable.

10. Totally non-negative matrices

We continue the notations of Sections 1 and 2. Specifically, let $A=\left\{a_{i, j}\right\}$ be a matrix. If $P=\left(p_{1}, \ldots, p_{k}\right)$ is an ordered subset of the rows, and $Q=\left(q_{1}, \ldots, q_{m}\right)$ is an ordered subset of the columns, then $A(P ; Q)$ is the $k \times m$ submatrix of A with

$$
A(P ; Q)_{i, j}=a_{p_{1}, q_{i}}
$$

$A[P ; Q]$ is the matrix obtained by deleting the rows for which the index is in P, and deleting the columns for which the index is in Q. The empty set is ϕ. Thus $A[\phi ; 1]$ refers to the matrix A with the first column deleted.

Following Ref. [9], a rectangular matrix A is called totally non-negative (TNN) if every square minor has determinant $\geqslant 0$. The following facts about TNN matrices will be needed in Sections 11 and 12.

Lemma 10.1. Suppose $A=\left\{a_{i, j}\right\}$ is an $m \times m$ matrix which is TNN and nonsingular. Then any principal minor is non-singular.

Proof. Induction on m. For $m=1$, there is nothing to prove. Let $m>1$. The entry $a_{1,1}$ must be >0, else either the first row or the first columin of A would be entirely 0 , contradicting the assumption that A is non-singular. By the determinantal formula for Schur complements, the Schur complement $A /\left[a_{1,1}\right]$ is non-singular and TNN. Similarly $a_{m, m}>0, A /\left[a_{m, m}\right]$ is non-singular and TNN. By the inductive assumption, every principal minor of $A /\left[a_{1,1}\right]$ is nonsingular. Let $A(P ; P)$ be a principal minor of A, where $P=\left(p_{1}, \ldots, p_{k}\right)$ is an ordered subset of the index set $(1,2, \ldots, m)$. If $1 \in P, A(P ; P) /\left[a_{1.1}\right]$ is a principal minor of $A /\left[a_{1,1}\right]$ and hence is non-singular. Thus $\operatorname{det} A(P ; P) \neq 0$, so $A(P ; P)$ is non-singular. Similarly if $m \in P, A(P ; P)$ is non-singular. Otherwise, P contains neither 1 nor m, and $k \leqslant m-2$. Let $Q=\left(1, p_{1}, \ldots, p_{m}\right)$. The $k+1 \times k+1$ matrix $A(Q ; Q)$ is TNN and non-singular. $A(P ; P)$ is a principal minor of $A(Q, Q)$, so is non-singular by induction.

Lemma 10.2. Suppose that $A=\left\{a_{i, j}\right\}$ is an $m \times m$ matrix, and suppose that $a_{s, 1}<0$ for some index s with $1 \leqslant s \leqslant m$. Assume also that
(i) $A[\phi ; 1]$ is $T N N$.
(ii) $A(s+1, \ldots, m ; 1, \ldots, m)$ is $T N N$.
(iii) $A(1, \ldots, s-1: 2, \ldots, m, 1)$ is $T N N$.

Then
(1) $(-1)^{s} \operatorname{det} A \geqslant 0$.
(2) If it is further assumed that $\operatorname{det} A[s ; 1]>0$, then $(-1)^{s} \operatorname{det} A>0$.

Proof. Induction on m. The assertion of (1) for $m=2$ is immediate. For $m>2$, first consider the case $s=1$, with $a_{1,1}<0$. If all the cofactors of the entries in the first column are 0 , then det $A=0$. If the only non-zero cofactor of an entry in the first column is $A[1 ; 1]$, then

$$
\operatorname{det} A=a_{1.1} \cdot \operatorname{det} A[1 ; 1]<0 .
$$

Otherwise, suppose $\operatorname{det} A[t ; 1]>0$ with $t>1 . A[1, t ; 1,2]$ is a principal minor of $A[t ; 1]$ which is assumed to be TNN, so $\operatorname{det} A[1, t ; 1,2]>0$ by Lemma 10.1 . Dodgson's identity (Lemma 2.1) gives

$$
\begin{equation*}
\operatorname{det} A \cdot \operatorname{det} A[1, t ; 1,2]=\operatorname{det} A[1 ; 1] \cdot \operatorname{det} A[t ; 2]-\operatorname{det} A[1 ; 2] \cdot \operatorname{det} A[t ; 1] \tag{1}
\end{equation*}
$$

$\operatorname{det} A[1 ; 2]$ and $\operatorname{det} A[t ; 1]$ are non-negative by assumption (ii). By the inductive assumption $\operatorname{det} A[t ; 2] \leqslant 0$. Hence $\operatorname{det} A \leqslant 0$.

The case $s=m$ is similar, by considering the matrix $A(1, \ldots, m ; 2, \ldots, m, 1)$. The only negative entry is in the last column. Assumption (iii) is used in place of (ii).

This leaves the case when $1<s<m$. If the only non-zero cofactor of an entry in the first column in $A[s ; 1]$, then

$$
\operatorname{det} A=(-1)^{x+1} \cdot a_{s .1} \cdot \operatorname{det} A[s ; 1] .
$$

If another cofactor is non-zero, w.l.o.g., assume $\operatorname{det} A[t ; 1]>0$ with $1<$ $s<t \leqslant m$. Then $A[1, t ; 1,2]$ is a principal minor of $A[t ; 1]$, so $\operatorname{det} A[1, t ; 1,2]$ >0 by Lemma 10.1. Dodgson's identity (Lemma 2.1) gives

$$
\operatorname{det} A \cdot \operatorname{det} A[1, t ; 1,2]=\operatorname{det} A[1 ; 1] \cdot \operatorname{det} A[t: 2]-\operatorname{det} A[1 ; 2] \cdot \operatorname{det} A[t ; 1]
$$

The factors $\operatorname{det} A[1 ; 1]$ and $\operatorname{det} A[r ; 1]$ are non-negative. By the inductive assumption, $(-1)^{x} \operatorname{det} A[t ; 2] \geqslant 0$ and $(-1)^{s-1} \operatorname{det} A[1 ; 2] \geqslant 0$. In every case, $(-1)^{s} \operatorname{det} A \geqslant 0$.

The proof of (2) is also by induction on m. For $m=2$, the assertion is immediate. Let $m>2$. If the only non-zero cofactor of an entry in the first column is $A[s: 1]$, then

$$
(-1)^{s} \operatorname{det} A=-a_{\mathrm{s} .1} \cdot \operatorname{det} A[s ; 1]>0
$$

If more than one cofactor is non-zero, w.l.o.g., assume $\operatorname{det} A[s ; 1]>0$ and $\operatorname{det} A[t ; 1]>0$ with $1<s<t \leqslant m$. Then $\operatorname{det} A[1, s ; 1,2]>0$ and $\operatorname{det} A[1, t ; 1,2]$ >0 by Lemma 10.1. By the inductive assumption, $(-1)^{s-1} \operatorname{det} A[1 ; 2]>0$, and Eq. (1) shows that $(-1)^{s} \operatorname{det} A>0$.

Lemma 10.3. Suppose A is $a k+1 \times k$ matrix which is TNN. Suppose that for some pair of integers s and t with $1 \leqslant s<t \leqslant k+1$.
(i) $\operatorname{det} A[s ; \phi]=0$,
(ii) $\operatorname{det} A[t ; \phi] \neq 0$.

Then the rank of $A(s+1, \ldots, k+1 ; 1, \ldots, k)$ is $\leqslant k-s$.
Proof. For each $i=1, \ldots, k+1$, let R_{i} be the i th row of A, considered as a vector in \mathbf{R}^{k}. Assumption (ii) implies that $\left\{R_{1}, \ldots, \hat{R}_{t}, \ldots, R_{k+1}\right\}$ form a basis for \mathbf{R}^{k}. Hence,

$$
R_{t}=\sum_{i \neq t} x_{i} R_{i} .
$$

In this sum, $x_{s}=0$, else $\left\{R_{1}, \ldots, \hat{R}_{s}, \ldots, R_{k+1}\right\}$ would also be a basis for \mathbf{R}^{k}, contradicting assumption (i). Then

$$
\operatorname{det} A[1 ; \phi]=(-1)^{t} \cdot x_{1} \cdot \operatorname{det} A[t ; \phi] \geqslant 0 .
$$

Hence $(-1)^{t} x_{1} \geqslant 0$, because $\operatorname{det} A[t ; \phi]>0 A[s, t ; s]$ is a principal minor of $A[t ; \phi]$, so $\operatorname{det} A[s, t ; s]>0$ by Lemma 10.1. Then

$$
\operatorname{det} A[1, s ; s]=(-1)^{t-1} \cdot x_{1} \cdot \operatorname{det} A[s, t ; s] \geqslant 0 .
$$

Hence $(-1)^{t-1} x_{1} \geqslant 0$, Thus $x_{1}=0$. Similarly, $x_{2}=0, \ldots x_{s-1}=0$. Thus

$$
R_{t}=\sum_{\substack{i>i \\ 1>i}} x_{i} R_{i} .
$$

This implies rank $A(s+1, \ldots, k+1: 1, \ldots, k) \leqslant k-s$.
Notation. Let $P=\left(p_{1}, p_{2}, \ldots, p_{k}\right)$ be a sequence of distinct indices. If $p \in P$, then $P-p$ denotes the sequence obtained by deleting the index p from P. If $p \notin$ P, then $p+P$ denotes the sequence $\left(p_{1}, p_{2}, \ldots, p_{k}\right)$. Also $\mu(P ; Q)$ stands for $\operatorname{det} M(P ; Q)$, and $\mu^{\prime}(P ; Q)$ stands for $\operatorname{det} M^{\prime}(P ; Q)$.

Recall the definition of the set Ω_{n} from Section 1. With our conventions, this means that if $M \in \Omega_{n}$ and ($P ; Q$) is a circular pair of indices, then the matrix $-M(P ; Q)$ is TNN.

Lemma 10.4. Let $M \in \Omega_{n}$ and suppose that $m_{h . h}$ is a non-zero diagonal entry. Then the Schur complement $M^{\prime}=M /\left[m_{h .,}\right]$ is in Ω_{n-1}.

Proof. If $(1, \ldots, n)$ is the indexing set for M, it is convenient to regard the deleted set $(1, \ldots, \hat{h}, \ldots, n)$ as the indexing set for M^{\prime}. Let $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$ be a circular pair of indices for M^{\prime}. Then $h \notin P \cup Q$. By interchanging P and Q if necessary, and by a cyclic re-labelling
of the indices, we may assume that $1 \leqslant h<q_{k}$ in the circular order. Let $B=\left(b_{1}, \ldots, b_{k+1}\right)$, be the set $P \cup h$ with the circular ordering, where $b_{s}=h$ with $1 \leqslant s \leqslant k+1$. Thus $1 \leqslant b_{1}<\cdots<b_{k+1}<q_{k}<\cdots<q_{1} \leqslant n$. The matrix

$$
A=-M\left(B ; b_{s}+Q\right)
$$

satisfies the conditions of Lemma 10.2 . Hence $(-1)^{s} \operatorname{det} A \geqslant 0$, so

$$
(-1)^{s+1+k} \mu\left(B ; b_{s}+Q\right) \geqslant 0 .
$$

Taking the Schur complement with respect to the entry $m_{h, h}$, which is in the $(s, 1)$ position of $M\left(B ; b_{s}+Q\right)$, we find that $(-1)^{K} \mu^{\prime}(P ; Q) \geqslant 0$.

Remark 10.5. If $(-1)^{k} \mu(P ; Q)>0$, then part (2) of Lemma 10.2 shows that $(-1)^{s+1+k} \mu\left(B ; b_{s}+Q\right)>0$. Therefore $(-1)^{k} \mu^{\prime}(P ; Q)>0$.

Lemma 10.6. Suppose $M \in \Omega_{n}$. Let $B=\left(b_{1}, \ldots, b_{k+1}\right)$, and $Q=\left(q_{1}, \ldots, q_{k}\right)$ be two sequences of indices, with $1 \leqslant b_{1}<\cdots<b_{k}<b_{k+1}<q_{k}<\cdots q_{1} \leqslant n$. Suppose for some pair of indices (s, t) with $1 \leqslant s<t \leqslant k+1$, that $\mu\left(B-b_{s} ; Q\right)=0$ and $\mu\left(B-b_{t} ; Q\right) \neq 0$. Let $B_{0}=\left(b_{s+1}, \ldots, b_{k+1}\right)$, and let $Q_{0}=\left(q_{s+1}, \ldots, q_{k}\right)$. Then $\mu\left(B_{0}-b_{t} ; Q_{0}\right) \neq 0$, and

$$
\mu\left(B_{i} b_{s}+Q\right)=(-1)^{s} \frac{\mu\left(B-b_{t} ; Q\right) \cdot \mu\left(B_{0} ; b_{s}+Q_{0}\right)}{\mu\left(B_{0}-b_{t} ; Q_{0}\right)}
$$

Proof. For $0 \leqslant r \leqslant s$, let

$$
\begin{aligned}
B_{r} & =\left(b_{1}, \ldots, b_{r}, b_{s+1}, \ldots, b_{k+1}\right) \\
Q_{r} & =\left(q_{1}, \ldots, q_{r}, q_{s+1}, \ldots, q_{k}\right)
\end{aligned}
$$

Then $\mu\left(B_{r}-b_{l} ; Q_{r}\right) \neq 0$ because $M\left(B_{r}-b_{t} ; Q_{r}\right)$ is a principal minor of $M\left(B-b_{t} ; Q\right)$. Dodgson's identity (Lemma 2.1) gives

$$
\begin{aligned}
& \mu\left(B_{r+1} ; b_{s}+Q_{r+1}\right) \cdot \mu\left(B-b_{t} ; Q_{r}\right)=\mu\left(B_{r} ; Q_{r+1}\right) \cdot \mu\left(B-b_{i} ; b_{s}+Q_{r}\right) \\
& -\mu\left(B_{r+1}-b_{t} ; Q_{r}\right) \cdot \mu\left(B_{r} ; b_{s}+Q_{r}\right) .
\end{aligned}
$$

$\mu\left(B_{r} ; Q_{r+1}\right)=0$ by Lemma 10.3, so the first term on the RHS is 0 , and

$$
\frac{\mu\left(B_{r+1} ; b_{s}+Q_{r+1}\right)}{\mu\left(B_{r+1}-b_{t} ; Q_{r+1}\right)}=-\frac{\mu\left(B_{r} ; b_{s}+Q_{r}\right)}{\mu\left(B_{r}-b_{t} ; Q_{r}\right)}
$$

Repeated use of this identity gives the result.
Lemma 10.7. Suppose $M \in \Omega_{n}, p$ and q are adjacent indices, and $\xi>0$. Let $T_{\dot{\zeta}}(M)$ he the matrix constructed in Section 8 (see also Remark 8.1). Then $T_{\xi}(M) \in \Omega_{n}$.

Proof. The circular determinants in $M^{\prime}=T_{\xi}(M)$ are equal to the circular determinants in M except for the ones which correspond to circular pairs $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$ where $p=p_{h}$ and $q=q_{k}$, or $p=p_{1}$ and $q=q_{1}$. Each of these determinants has the form

$$
\begin{aligned}
\mu^{\prime}(P ; Q) & =\operatorname{det}\left[\begin{array}{cc}
C & a \\
b & d-\xi
\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}
C & a \\
b & d
\end{array}\right]-\xi \operatorname{det}(C) \\
& =\mu^{\prime}(P ; Q)-\xi \mu(P-p ; Q-q) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
(-1)^{k} \mu^{\prime}(P ; Q)=(-1)^{k} \mu(P ; Q)-\xi(-1)^{k-i} \mu(P-p ; Q-q) \geqslant 0 . \tag{2}
\end{equation*}
$$

Remark 10.8. If either $(-1)^{k} \mu(P ; Q)>0$ or $(-1)^{k-1} \mu(P-p ; Q-q)>0$, then $(-1)^{k} \mu^{\prime}(P ; Q)>0$; otherwise $\mu^{\prime}(P ; Q)=0$. Thus the signs of the circular determinants in M^{\prime} are determined by the signs of the circular determinants in M.

Lemma 10.9. Suppose $M \in \Omega_{n}$, and $\xi>0$. Let $P_{\xi}(M)$ be the matrix constructed in Section 8. Then $P_{\xi}(M) \in \Omega_{n+1}$.

Proof. Let $M^{\prime}=P_{\xi}(M)$, and let $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$ be a circular pair of indices from the set $(0,1, \ldots, n)$.

1. If $0 \notin P \cup Q$, then $\mu^{\prime}(P ; Q)=\mu(P ; Q)$.
2. If $0 \in P$ and $1 \notin Q$, then $\mu^{\prime}(P ; Q)=0$.
3. If $0 \in P$ and $1 \in Q$, then $0=p_{k}, 1=q_{k}$, and $\mu^{\prime}(P ; Q)=-\xi_{\mu} \mu\left(P-p_{k} ; Q-q_{k}\right)$.
4. The situation is similar if $0 \in Q$.

Lemma 10.10. Supposc $M \in \Omega_{n}$, and $\xi>0$. Let $S_{\xi}(M)$ be the matrix constructed in Section 8. Then $S_{\xi}(M) \in \Omega_{n}$.

Proof. Let $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$ be a circular pair of indices. Let p be the index where the adjunction is made (see Remark 8.1). By interchanging P and Q if necessary, and by a circular re-labelling of the indices, we may assume that $1 \leqslant p<q_{k}$ in the circular order. Let $M^{\prime}=S_{\xi}(M)$.

1. If $p \in P$, then the formula for $S_{\bar{\xi}}(M)$, shows that

$$
\mu^{\prime}(P ; Q)=\left(\frac{\xi}{\xi+m_{p, p}}\right) \mu(P ; Q) .
$$

2. Suppose that $p \notin P$ and $(-1)^{k} \mu(P ; Q)>0$. Then $(-1)^{k} S_{\xi}(M)(P ; Q)>0$, by Remark 10.5.
3. Suppcse that $p \notin P, \mu(P ; Q)=0$, and $\mu\left(P-p_{j}+p ; Q\right)=0$, for all $1 \leqslant j \leqslant k$. Then the proof of Lemma 10.2 shows that $\mu^{\prime}(P ; Q)=0$.
4. Finally, suppose that $p \notin P, \mu(P ; Q)=0$, and that $\mu\left(P-p_{j}+p ; Q\right) \neq 0$ for some j with $1 \leqslant j \leqslant k$. Let $B=\left(b_{1}, \ldots, b_{k+1}\right)$ be the set $P \cup p$ with the circular videring. That is, $p=b_{s}$ for some s, and $p_{j}=b_{t}$ for some t, and w.l.o.g., may assume $s<t . P_{\xi}(M)\left(B, b_{s}+Q\right)$ and $M\left(B, b_{s}+Q\right)$ differ only at the $(s, 1)$ position, and the cofactor of that entry is $\mu(P ; Q)$, assumed to be 0 . Therefore,

$$
\operatorname{det} P_{\xi}(M)\left(B ; b_{s}+Q\right)=\mu\left(B ; b_{s}+Q\right)
$$

Recall that $S_{\bar{\xi}}(M)$ is the Schur complement of $P_{\xi}(M)$ with respect to the entry $m_{p, p}+\xi$, which is in the $(s, 1)$ position of $P_{\xi}(M)\left(B ; b_{s}+Q\right)$. Then

$$
\begin{aligned}
(-1)^{s+1}\left(m_{p, p}+\zeta\right) \cdot \mu^{\prime}(P: Q) & =\operatorname{det} P_{\xi}(M)\left(B ; b_{s}+Q\right) \\
& =\mu\left(B ; b_{s}+Q\right) \\
& =(-1)^{s} \frac{\mu\left(B-b_{t} ; Q\right) \cdot \mu\left(B_{0} ; b_{s}+Q_{0}\right)}{\mu\left(B_{0}-b_{t} ; Q_{0}\right)}
\end{aligned}
$$

The last equality uses Lemma 10.6. Thus $(-1)^{k} M^{\prime}(P ; Q) \geqslant 0$ and if $\mu\left(B_{0} ; b_{s}+Q_{0}\right) \neq 0$, then $(-1)^{k} M^{\prime}(P ; Q)>0$.

Remark 10.11. Parts (1) and (2) show that if $(-1)^{k} \mu(P ; Q)>0$, then $(-1)^{k} \mu^{\prime}(P ; Q)>0$. Together with paris (3) and (4), this shows that the signs of the circular determinants in M^{\prime} are determined by the signs of the circular determinants in M.

Lemma 10.12. Let Γ he a circular planar graph with n boundary nodes.

1. Suppose a boundary edge pq is adjoined to Γ, as in Section 8 . Let $\Gamma^{\prime}=, \bar{T}_{\xi}(\Gamma)$ and $\pi^{\prime}=\pi\left(\Gamma^{\prime}\right)$. If $M \in \Omega(\pi)$, then $T_{\xi}(M) \in \Omega\left(\pi^{\prime}\right)$.
2. Suppose a boundary spike rp is adjoined to Γ at node p, without interiorizing as in Section 8. Let $\Gamma^{\prime}=\mathscr{P}_{;}(\Gamma)$ and $\pi^{\prime}=\pi\left(\Gamma^{\prime}\right)$. If $M \in \Omega(\pi)$, then $P_{\Sigma}(M) \in \Omega\left(\pi^{\prime}\right)$.
3. Suppose p is a boundary node of Γ, and a boundary spike ip is adjoined with p then declared interior, as in Section 8. Let $\Gamma^{\prime}=\mathscr{P}_{\dot{\xi}}(\Gamma)$ and $\pi^{\prime}=\pi\left(\Gamma^{\prime}\right)$. If $M \in \Omega(\pi)$, then $S_{;}(M) \in \Gamma\left(\pi^{\prime}\right)$.

Proof. The three processes are similar, so for definiteness, suppose that the operation is $\%$. Let $;$ be an arbitrary conductivity on Γ. By Section 8 , statement (1) is true if $M=\Lambda(\Gamma, \eta)$. Next, suppose M is any matrix in $\Omega(\pi)$, and let $M^{\prime}=S_{j}(M)$. By Remark 10.11, the signs of the circular determinants in M^{\prime} are determined by the signs of the circular determinants in M. Hence they have the same signs as the circular determinants in $S_{\bar{\xi}}\left(\Lambda\left(\Gamma^{\prime}, \gamma\right)\right)$. Since $S_{\dot{\Xi}}\left(\Lambda\left(\Gamma_{,} ;^{\prime}\right)\right) \in \Omega\left(\pi^{\prime}\right)$ we have $M^{\prime} \in \Omega\left(\pi^{\prime}\right)$ also.

11. Removing edgers

Suppose that r^{\prime} is a circular planar graph with n boundary nodes. Recall from Section 1, that there are two ways to remove an edge from Γ called deietion and contraction. In either case the new graph will be a circular planar graph with n boundary nodes.

Lemma 11.1. Suppose Γ is a critical circular planar graph and $p q$ is a boundary edge. Let Γ_{1} be the graph obtained after deletion of pq. Then Γ_{1} is also critical.

Proof. Let $e \neq p q$ be an edge in Γ. Since Γ is critical, removal of e will break some connection in Γ. If this connection also exists in Γ_{1}, then removal of e from Γ_{1} breaks this connection in Γ_{1}. Suppose that removal of e from Γ breaks a connection $(P ; Q)$ that is not present in Γ_{1}. This connection must use the edge $p q$, so $(P ; Q)$ has the form $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1} \ldots, q_{k}\right)$, where $p_{k}=p$ and $q_{k}=q$. Thus removal of e breaks the connection of $\left(P^{\prime} ; Q^{\prime}\right)=\left(p_{1}, \ldots, p_{k-1} ;\right.$ q_{1}, \ldots, q_{k-1}) in Γ_{1}.

Lemma 11.2. Suppose Γ is a critical circular planar graph with a boundary spike $r p$ where r is a boundary node of Γ. Let Γ_{1} be the graph obtained after contracting $r p$ to p. Then Γ_{1} is also critical.

Proof. Let e be an edge in Γ with $e \neq p r$. Let Γ^{\prime} be the graph with e removed, either by deletion or contraction. Similarly, let Γ_{1}^{\prime} be the graph Γ_{1} with e removed. Let γ be a conductivity on Γ, and by restriction γ gives a conductivity on $\Gamma_{1}, \Gamma^{\prime}$ and Γ_{1}^{\prime}. Let ($P ; Q$) be a pair of sequences of boundary nodes. Then $\lambda(P ; Q), \lambda^{\prime}(P ; Q), \lambda_{1}(P ; Q)$ and $\lambda_{1}^{\prime}(P ; Q)$ will denote the subdeterminants of $\Lambda(\Gamma), \Lambda\left(\Gamma^{\prime}\right), \Lambda(\Gamma 1)$ and $\Lambda\left(\Gamma_{1}^{\prime}\right)$, respectively.

Suppose that removal of e breaks a connection in Γ that persists in Γ_{1}. Then removal of c from Γ_{1} breaks the same connection in Γ_{1}.

Suppose removal of e from Γ breaks a connection $(P ; Q)=\left(p_{1} \ldots, p_{k}\right.$; $\left.q_{1}, \ldots, q_{k}\right)$ in Γ which does not persist in Γ_{1}. Then $r \notin P \cup Q$. w.l.o.g., assume that $q_{1}<p<q_{k}$ in the circular order around Γ_{1}. Let $B=\left(b_{1}, \ldots, b_{k+1}\right)$ be the set $P \cup p$ with the circular ordering around the boundary of Γ_{1}, and suppose $p=b_{s}$. The assumptions that $\lambda(P ; Q) \neq 0$ and $\lambda_{1}(P ; Q)=0$ imply that each connection from Q to P through Γ must use $p=b_{s}$. Such a connection either connects q_{s-1} to b_{s-1} through b_{s} or connects q_{s} to b_{s+1} through b_{s}. w.l.o.g., assume the latter. Let $B_{0}=\left(b_{s+1}, \ldots, b_{k+1}\right)$, and $Q_{0}=\left(q_{1}, \ldots, q_{k}\right)$. Hence $\lambda_{1}\left(B-b_{s+1} ; Q\right) \neq 0 \quad$ and $\quad \lambda_{1}\left(B_{0} ; b_{s}+Q_{0}\right) \neq 0$. Both $\left(B-b_{s+1} ; Q\right)$ and $\left(B_{0} ; b_{s}+Q_{0}\right)$ are circular pairs. Suppose removal of e from Γ_{1} does not break either connection. Then $\lambda_{1}^{\prime}\left(B-b_{s+1} ; Q\right) \neq 0$ and $\lambda_{1}^{\prime}\left(B_{0} ; b_{s}+Q_{0}\right) \neq 0$. We have assumed $\lambda_{1}(P ; Q)=0$; that is $\lambda_{1}\left(B-b_{s} ; Q\right)=0$. Hence $\lambda_{1}^{\prime}\left(B-b_{s} ; Q\right)=0$. By Lemma 10.6, with $t=s+1$,

$$
\begin{aligned}
i_{1}^{\prime}(p+P ; p+Q) & =(-1)^{s-1} \dot{i}_{1}^{\prime}\left(B ; b_{s}+Q\right) \\
& =-\frac{i_{1}^{\prime}\left(B-\dot{b}_{s+1} ; Q\right){\dot{\lambda_{1}^{\prime}}\left(B_{0} ; b_{s}+Q_{0}\right)}_{i_{1}^{\prime}\left(B_{0}-b_{s+1} ; Q_{0}\right)}^{=0 .}}{} .=0 .
\end{aligned}
$$

Let $\xi=\gamma(p r)$. Then A^{\prime} is the Schur complement of $P_{\bar{\xi}}\left(\Lambda_{1}^{\prime}\right)$ with respect to the entry $\Lambda_{1}^{\prime}\left(p_{s} p\right)+\xi$. Part (4) of the proof of Lemma 10.10 shows that $\lambda^{\prime}(P ; Q) \neq 0$. This would contradict the assumption that removal of e from Γ breaks the connection ($P ; Q$).

Lemma 11.3. Suppose Γ is a non-trivial circular planar graph for which .//(Γ) is lensless. Then Γ has either a houndary edge or a boundary spike.

Proof. Refer to Section 7 for the notation. Let t be a number in the z-sequence for .//(Γ) such that there are no repetitions of any other number between two occurrences of t. w.l.o.g., assume that $t=1$, so that a portion of the $=$-sequence is

$$
1,2, \ldots, m, 1, z_{m+2}, \ldots
$$

Let k be the portion of the outer circle C and Γ which lies between x_{1} and y_{1}. Then h contains the points x_{2}, \ldots, x_{m}. Consider h, g_{1} and the family $\left\{g_{2}, \ldots, g_{m}\right\}$. The proof of Lemma 6.2 shows that there is a triangle T formed by h and two of the geodesics from the set $\left\{g_{1}, \ldots, g_{m}\right\}$. The triangle T in.$/ /(\Gamma)$ corresponds in Γ either to a boundary spike (if there is a vertex of Γ inside T), or to a boundary to boundary edge (if there is no vertex of Γ inside T).

Lemmas 11.3, 11.1 and 11.2, together with Corollaries 4.3 and 4.4 show that there is an algorithm for calculating the conductivity of any critical circular planar graph.

12. Surjectivity

Theorem 12.1. Suppose Γ is a critical circular planar graph with n boundary nodes and $\pi=\pi(\Gamma)$. Let M be any matrix in $\Omega(\pi)$. Then there is a conductivity γ on Γ with $\Lambda\left(\Gamma, i^{\prime}\right)=M$.

Proof of Theorem 12.1. We first consider the case where $n=4 m+3$ and the $z-$ sequence for the medial graph . $/ /(\Gamma)$ is $1, \ldots, n .1 \ldots \ldots n$. Corollary 7.4 shows that Γ in $Y-A$ equivalent to the graph $C(m, n)$ of Ref. [7]. By Theorem 6.2 of Ref. [7] there is a conductivity $;^{\prime}$ on $C(m, n)$ with $A\left(C(m, n), i^{\prime}\right)=M$. By Lemma 5.3, there is a conductivity $;$ on Γ with $\Lambda(\Gamma, \gamma)=M$.

Next suppose ($\Gamma, ;$) is any connected critical circular planar resistor network with n boundary nodes. If n is not of the form $4 m+3$, first adjoin 1,2 , or 3 boundary spikes without interiorising as in Section 8, to obtain a resistor net-
work which does have $4 m+3$ boundary nodes. Combining this with Lemma 9.2, we obtain a sequence of circular planar resistor networks $\Gamma=\Gamma_{0}$, $\Gamma_{1}, \Gamma_{2}, \ldots, \Gamma_{k}$, where Γ_{k} is a graph with $4 m+3$ boundary nodes, and which is $Y-\Delta$ equivalent to $\Sigma_{4 m+3}$. Each Γ_{i+1} is obtained from Γ_{i} by one of the operation \mathscr{T}, \mathscr{P} or $\mathscr{\mathscr { P }}$. For each $i=0,1, \ldots, k$, let $\pi_{i}=\pi\left(\Gamma_{i}\right)$. Uiven a matrix M in $\Omega(\pi)$, there is an analogous sequence of matrices $M=M_{0}, M_{1}, \ldots, M_{k}$, where each matrix M_{i+1} is obtained from M_{i} by one of the operation $M_{i+1}=T_{\xi}\left(M_{i}\right), M_{i+1}=P_{\xi}\left(M_{i}\right)$ or $M_{i+1}=S_{\xi}\left(M_{i}\right)$.

Let σ_{n} denote the set of connections in a well-connected circular planar graph with n boundary nodes. By Lemma 5.1 and Proposition $7.3, \pi\left(\Sigma_{n}\right)=\sigma_{n}$. By Lemma 10.12, $M_{k} \in \Omega\left(\sigma_{n}\right)$. Using the first part of the proof, there is a conductivity γ_{k} on Γ_{k} so that $\lambda\left(\Gamma_{k}, \gamma_{k}\right)=M_{k}$. The graph Γ_{k} is obtained from Γ_{k-1} by one of the operations $\mathscr{\mathscr { T }}, \mathscr{P}$ or \mathscr{T}. The processes are similar, so for definiteness, suppose that the operation is S_{ξ} and $M_{k}=S_{\xi}\left(M_{k-1}\right)$.

In going from Γ_{k} to Γ_{k-1}, removal of the spike breaks a connection in Γ_{k}. By Lemma 4.4, the value of this spike can be calculated as the ratio of two nonzero subdeterminants of $\Lambda\left(\Gamma_{k}\right)=M_{k}$. Moreover, the computed value is the same as the value ξ that was used to construct. M_{k} from M_{k-1}. By Section 11, removal of the spike with conductivity ξ from Γ_{k} results in a critical graph Γ_{k-1}, with $\Lambda\left(\Gamma_{k-1}\right)$. Continuing the argument on $\Gamma_{k-1}, \ldots, \Gamma_{0}=\Gamma$. we find that $\Lambda(\Gamma)=M$.

Proof of Theorem 4. As in the proof of Theorem 12.1, there is a sequence of the operations \bar{J}, \mathscr{P}, and \mathscr{Y} which, when applied to the graph Γ, give a graph Γ_{k} which is $Y-\Delta$ equivalent to the graph $C(m, 4 m+3)$ of Ref. [7]. Le. $\% /$ be the composite of these operations, and let U be the composite of the corresponding operations T, P and S applied to the matrix $\Lambda(\Gamma, \gamma)$. With an ordering of the N edges in Γ, the conductivity γ is represented by a point in $\left(R^{+}\right)^{N}$. Similarly, with an ordering of the N_{k} edges in Γ_{k}, the conduciivity γ_{k} is represented by a point in $\left(R^{+}\right)^{N_{k}}$. Let $\pi=\pi(\Gamma)$ and $\pi_{k}=\pi\left(\Gamma_{k}\right)$. With these conventions, there is a communicative diagram shown in Fig. 4. By Theorem 12.1, the map Λ is surjective. By Theorems 4.2 and 5.2 of Ref. [7], the map Λ_{k} is a diffeomorphism. For the differentials, we have

Fig. 4. Commutative diagram.

$$
\mathrm{d} \Lambda_{k} \circ \mathrm{~d} \mathscr{U}=\mathrm{d} U \circ \mathrm{~d} \Lambda .
$$

Since $\mathrm{d} \lambda_{k}$ and $\mathrm{d} \mathscr{\mathscr { V }}$ are $1-1, \mathrm{~d} \Lambda$ is $1-1$. By Theorem $2, \Lambda$ is $1-1$. \mathbb{U}^{-1} is the inverse of $\|$ which is well-defined and continuous on its image in $\left(R^{+}\right)^{N_{k}}$. Then

$$
\Lambda^{-1}=\mathscr{U}^{-1} \circ \Lambda_{k}^{-1} \circ U
$$

Thus Λ^{-1} is continuous. It follows that Λ is a diffeomorphism of $\left(R^{+}\right)^{N}$ onto $\Omega(\pi)$.

Lemma 12.2. Suppose $M \in \Omega_{n}$, with at least one circular determinant equal to 0. Let $\epsilon>0$ be given. Then there is a matrix $M^{\prime} \in \Omega_{n}$, with $\left\|M^{\prime}-M\right\|_{\infty}<\epsilon$, and
(1) $\mu^{\prime}(P ; Q) \neq 0$ whenever $\mu(P ; Q) \neq 0$
(2) For at least one circular pair $(P ; Q), \mu(P ; Q)=0$ and $\mu^{\prime}(P ; Q) \neq 0$.

Proof. As in Section 10, $\mu(P ; Q)$ stands for det $M(P ; Q)$ and $\mu^{\prime}(P ; Q)$ stands for $\operatorname{det} M^{\prime}(P ; Q)$. Let $(P ; Q)=\left(p_{1}, \ldots, p_{k} ; q_{1}, \ldots, q_{k}\right)$ be a circular pair of indices for which the minor $M(P ; Q)$ has determinant 0 , has minimum order k, and for which $q_{k}-p_{k}$ is a minimum.
(1) If $q_{k}-p_{k}=1$, let $M^{\prime}=T_{\xi}(M)$, where the chosen indices are p_{k} and q_{k}. By Remark 10.8, $\mu^{\prime}(P ; Q) \neq 0$. Also by Remark $10.8, \mu^{\prime}(R ; S) \neq 0$ whenever $(R ; S)$ is a circular pair for which $\mu(R ; S) \neq 0$. If ξ is sufficiently small, then $\left\|M^{\prime}-M\right\|_{\chi}<\epsilon$.
(2) If $q_{k}-p_{k}>1$, let $p=p_{k}+1$ and $M^{\prime}=S_{5}(M)$ where the chosen index is p. By Remark 10.11, $\mu^{\prime}(R ; S) \neq 0$ whenever $(R ; S)$ is a circular pair for which $\mu(R ; S) \neq 0$. Dodgson's identity (Lemma 2.1) gives

$$
\begin{aligned}
& \mu(P+p ; Q+p) \cdot \mu\left(P-p_{k} ; Q-q_{k}\right)=\mu\left(P-p_{k}+p ; Q-q_{k}+p\right) \cdot \mu(P ; Q) \\
& \quad-\mu\left(P-p_{k}+p ; Q\right) \cdot \mu\left(P ; Q-q_{k}+p\right) .
\end{aligned}
$$

Using the assumption $\mu(P ; Q)=0$, we have

$$
\begin{equation*}
\mu(P+p ; Q+p)=-\frac{\mu\left(P-p_{k}+p ; Q\right) \cdot \mu\left(P ; Q-q_{k}+p\right)}{\mu\left(P-p_{k} ; Q-q_{k}\right)} \tag{3}
\end{equation*}
$$

Each of the factors on the RHS of Eq. (3) is non-zero because of the assumption of the minimality of $(P ; Q)$. Therefore $\mu^{\prime}(P ; Q) \neq 0$. If ξ is taken sufficiently large, then $\left\|M^{\prime}-M\right\|_{x}<\epsilon$.

Proof of Theorem 3. Recall from Section 7 the graph $\Sigma_{n}=\left(V, V_{B}, E\right)$, with n boundary nodes, and let $\sigma=\pi\left(\Sigma_{n}\right)$. Since Σ_{n} is well-connected, $\Omega(\sigma)$ is the subset of Ω_{n}, consisting of those M which satisfy $(-1)^{k} \operatorname{det} M(P ; Q)>0$ for each $k \times k$ circular subdeterminant of M.

Lemma 12.2 implies that Ω_{n} is the closure of $\Omega(\sigma)$ in the space of $n \times n$ matrices. Thus for any $M \in \Omega_{n}$, there is a sequence of matrices $M_{i} \in \Omega(\sigma)$ which converge to M. Theorem 4 shows that for each integer i, there is a conductivity
γ_{i} on Σ_{n} with $M_{i}=\Lambda\left(\Sigma_{n}, \gamma_{i}\right)$. By taking a subsequence if necessary, we may assume for each edge $e \in E$ that $\lim _{i \rightarrow x} \gamma_{i}(e)$ is either 0 , a finite non-zero value or ∞.

Let E_{0} be the subset of E for which $\lim _{i-\infty} \gamma_{i}(e)=0$.
Let E_{1} be the subset of E for which $\lim _{i-x} \gamma_{i}(e)=\gamma(e)$ is a finite non-zero value.

Let E_{χ} be the subset of E for which $\lim _{i-\mathrm{x}} \gamma_{i}(e)=\infty$.
Let $\Gamma=\left(W, V_{B}, E_{1}\right)$ be the graph obtained from $\Sigma_{n}=\left(V, V_{B}, E\right)$ by deleting the edges of E_{0} and contracting each edge of E_{x} to a point. The vertex set W for Γ is the set of equivalence classes of vertices in V, where $p \sim q$ if $p q \in E_{\mathrm{x}}$. Note that distinct boundary nodes of V_{B} cannot belong to the same equivalence class, because the M_{i} are bounded. Thus we may consider V_{B} as a subject of W. Each edge $e \in E_{1}$ joins a pair of points of W, so the edgeset of Γ is E_{1}. The restrictions of γ_{i} and γ to E_{1} give conductivities on Γ. We shall show that $M=\Lambda(\Gamma, \gamma)$.

Suppose f is a function defined on the set of boundary nodes V_{B} of Γ. Let

$$
Q(f)=\inf \sum_{e \in E_{1}} \gamma(e)(\Delta w(e))^{2},
$$

where $\Delta w(p q)=w(p)-w(q)$, and the infimum is taken over all functions w defined on the nodes of Γ which agree with f on V_{B}. Thus infimum is attained when $w=u$ is the potential function on the resistor network (Γ, γ), with boundary values f. Similarly, for each integer i, let

$$
Q_{i}(f)=\inf \sum_{r \in F_{1}} \gamma_{i}(e)(\Delta w(e))^{2} .
$$

This infimum is attained when $w=u_{i}$ is the potential function on $\left(\Gamma, \gamma_{i}\right)$ with boundary values f. Then $\lim _{i-x} \quad u_{i}=u$, because the γ_{i} and γ are conductivities (non-zero, and finite) on Γ, with $\lim _{i \rightarrow x} \gamma_{i}=\gamma$. Therefore $Q(f)=$ $\lim _{i-\infty} Q_{i}(f)$

For each integer i, let

$$
S_{i}(f)=\inf \sum_{c \in F} \gamma_{i}(e)(\Delta w(e))^{2},
$$

where the infimum is taken over all functions w defined on the nodes of Σ_{n} which agree with f on V_{B}. This infimum is attained when $w=w_{i}$ is the potential function on the resistor network (Σ_{n}, γ_{i}), with boundary values f. The maximum principle implies that $\left|w_{i}(p)\right| \leqslant \max |f(p)|$. By taking a subsequence if necessary, we may assume that for each node $p, w_{i}(p)$ converges to a finite value $w(p)$. The assumption that the M_{i} converge to M guarantees that for each fanction f, the $S_{i}(f)$ are bounded. Thus for each edge $e=p q \in E_{\chi}$, we have $w(p)=w(q)$. Let

$$
\begin{aligned}
& R_{i}(f)=\sum_{e \in E_{1}} \gamma_{i}(e)\left(\Delta w_{i}(e)\right)^{2}, \\
& R(f)=\lim _{i \rightarrow \infty} R_{i}(f)=\sum_{e \in E_{i}} \gamma(e)(\Delta w(e))^{2} .
\end{aligned}
$$

Let \mathscr{F} be the set of functions $v=\{v(p)\}$ defined for all nodes of Σ_{n}, which agree with f on V_{B}, and for which $v(p)=v(q)$ whenever $p q \in E_{\chi}$. Let

$$
P_{i}(f)=\inf _{r \in \neq \bar{F}} \sum_{e \in E} \gamma_{i}(e)(\Delta v(e))^{2}
$$

We have

$$
\begin{aligned}
& P_{i}(f) \geqslant S_{i}(f) \geqslant R_{i}(f), \\
& Q_{i}(f)+\sum_{e \in E_{0}} \gamma_{i}(e)\left(\Delta u_{i}(e)\right)^{2} \geqslant P_{i}(f) \geqslant Q_{i}(f) .
\end{aligned}
$$

The maximum principle implies that the $\left|u_{i}(p)\right|$ are bounded by $\max |f(p)|$. For each edge $e \in E_{0}$, we have $\lim _{i \rightarrow x} \gamma_{i}(e)=0$, so

$$
Q(f)=\lim _{i \rightarrow \infty} Q_{i}(f)=\lim _{i \rightarrow \infty} P_{i}(f) \geqslant \lim _{i \rightarrow \infty} R_{i}(f)=R(f) .
$$

But $R(f) \geqslant Q(f)$, so $R(f)=Q(f)$. Thus

$$
\lim _{i \rightarrow x} S_{i}\left(f^{\prime}\right)=Q\left(f^{\prime}\right)=\lim _{i \rightarrow x}\left\langle f, M_{i}(f)\right\rangle=\langle f, M(f)\rangle .
$$

13. Equivalence

Lemma 13.1. Suppose that Γ is a circular planar graph. Then Γ is critical if and only if the medial graph.$/ /(\Gamma)$ is lensless.

Proof. Lemma 6.4, shows that if Γ is critical, then . $/ /(\Gamma)$ is lensless. Conversely, suppose. $/ /(\Gamma)$ is lensless. Let $z=z_{1} z_{2} \ldots z_{2 n}$ be the z-sequence for.$/ /(\Gamma)$ as in Section 8. If $z=1, \ldots, n, 1, \ldots, n$, then Γ is $Y-\Delta$ equivalent to the graph Σ_{n} of Section 8, which is critical and well-connected. Suppose that z is not the sequence $1, \ldots, n, 1, \ldots, n$. By Lemma 9.2, there is a sequence of graphs $\Gamma_{0}, \Gamma_{1}, \ldots \Gamma_{k}$, where $\Gamma_{0}=\Gamma$, each Γ_{i+1} is obtained from Γ_{i} by adjoining a boundary edge or a boundary spike, and Γ_{k} is $Y-\Delta$ equivalent to the standard graph Σ_{n}. By Lemmas 5.2 and 7.3, Γ_{k} is critical. By Lemmas 11.1 and 11.2, each of the graphs $\Gamma_{k-1}, \Gamma_{k-2}, \ldots, \Gamma_{0}$ is critical; in particular, $\Gamma=\Gamma_{0}$ is critical.

Lemma 13.2. A circular planar graph Γ is recoverable if and only if it is critical.

Proof. By Theorem 2, if Γ is critical, then Γ is recoverable. Suppose that Γ is not critical. By Lemma 13.1, $\mathscr{M}(\Gamma)$ has a lens. By Lemma 6.3, Γ is $Y-\Delta$ equivalent to a graph Γ^{\prime} with two edges in parallel or two edges in series. Γ^{\prime} cannot be recoverable, so by Lemma $5.4, \Gamma$ is not recoverable either.

Proof of Theorem 1. Suppose that Γ_{1} and Γ_{2} are two critical circular planar graphs with $\pi\left(\Gamma_{1}\right)=\pi\left(\Gamma_{2}\right)$. Let conductivities be put on both Γ_{1} and Γ_{2}. By Lemma 9.2, and Lemma 13.1, there is a sequence of critical graphs $\Gamma_{1}=F_{0}, F_{1}, \ldots, F_{k}$, each F_{i+1} is obtained from F_{i} by adjoining a bourdary edge or a boundary spike, and F_{k} is $Y-\Delta$ equivalent to Σ_{n}. We perforn the same operations on Γ_{2} to produce a sequence $\Gamma_{2}=H_{0}, H_{1}, \ldots, H_{k}$. For each i, let $\pi_{i}=\pi\left(F_{i}\right)$. We apply the results of Sections 8 and 12 to conclude that $\Lambda\left(H_{1}\right) \in \Omega\left(\pi_{1}\right)$. Hence $\pi\left(H_{1}\right)=\pi\left(F_{1}\right)$. Continuing, we see that $\pi\left(H_{i}\right)=\pi\left(F_{i}\right)$ for $i=1,2, \ldots, k$. Each F_{i+1} has more connections than F_{i}, so each H_{i+1} has more connections than H_{i}. By Corollaries 4.3 and 4.4, the edge adjoined to H_{i} is recoverable. Working back from H_{k} to H_{0} which is critical and hence recoverable, we find that each H_{k} is recoverable, and hence critical.

Suppose the z-sequence for H_{k} were not $1, \ldots, n, 1, \ldots, n$. Then a boundary edge or boundary spike could be adjoined to H_{k} to give another graph H_{k+1} with more connections than H_{k}. But $\pi\left(H_{k}\right)=\pi\left(F_{k}\right)$ which is the maximal set of connections for circular planar graphs with n boundary nodes, so the z-sequence for $M\left(H_{k}\right)$ is $1, \ldots, n, 1, \ldots, n$.

The process of going from F_{k} to $F_{0}=\Gamma_{1}$ by removing edges is the same as going from H_{k} to $H_{0}=\Gamma_{2}$. Each step of this process preserves equality of the z-sequences of the medial graphs.$/ /\left(F_{i}\right)$ and.$/ /\left(H_{i}\right)$. Thus $\mathscr{H}\left(\Gamma_{1}\right)$ and.$/ /\left(\Gamma_{2}\right)$ have the same z-sequence, and by Lemma 7.2 are Y - Δ equivalent.

References

[1] Y. Colin De Verdiere, Reseaux Electriques Planaires, Publ. de I'Institut Fourier 225 (1992) 120.
[2] Y. Colin De Verdiere, Reseaux Electriques Planaires I. Preprint (1993), pp. 1-20.
[3] Y. Colin De Verdiere, I. Gitler, D. Vertigan, Planar Electric Networks II, Preprint (1994).
[4] D. Crabtree, E. Haynsworth, An identity for the Schur complement of a matrix, Proc. Am. Math. Soc. 22 (1969) 364-366.
[5] E.B. Curtis, J.A. Morrow, Determining the resistors in a network, SIAM J. Appl. Math. 50 (1990) 918-930.
[6] E.B. Curtis, J.A. Morrow, The Dirichlet to Neumann map for a resistor network, SIAM J. Appl. Math. 51 (1991) 1011-1029.
[7] E.B. Curtis, E. Mooers, J.A. Morrow, Finding the conductors in circular networks from boundary measurements, Math. Modelling Numer. Anal. 28 (7) (1994) 781-813.
[8] C.L. Dodgson, Condensation of determinants, Proceedings of Royal Society of London, vol. 15, 1866, pp. 150-155.
[9] F.R. Gantmacher, Matrix Theory, Chelsea, New York, 1959.
[10] B. Grunbaum, Convex Polytopes, Interscience, New York. 1967.
[11] E. Steinitz, H. Rademacher, Vorlesungen uber die Theorie der Polyhedra, Springer, Berlin, 1914.

[^0]: *Corresponding author. Tel.: $+12065463659:$ fax: +12065460461 ; e-mail: curtis(0 math.washington.edu.

