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Chapter 1

Introduction

1.1 Electrical Networks

Suppose an electrical network is inside a black box as in Figure ??. The
interior of the box consists of nodes joined by conductors. The nodes are
the vertices, and the conductors are the edges of a graph G.

• The inverse problem is to find the conductance of each edge in G from
measurements of voltages and currents at the boundary nodes.

The forward problem assumes that the graph G and the conductance
γ(pq) of each edge pq inG are known. If a voltage is imposed at the boundary
nodes, there is a function u defined throughout the network which agrees
with f at the boundary nodes, and which satisfies Kirchhoff’s Law at each
interior node.

Kirchhoff’s Law: At each interior node p, the sum of the currents
from p to its neighboring nodes is 0.

This function u is called the potential due to f . The resulting current at
the boundary nodes is called the network response. The linear map Λ = Λγ
which takes the boundary voltage f to the boundary current φ is called the
response map. Λ is sometimes called the voltage-to-current map because it
gives the current (i.e., the response) to any voltage imposed at the boundary
nodes. The response map will be known when the potential is found for each
boundary function f , and the resulting boundary current φ is calculated. If
the standard basis is used to represent the boundary function f and the

1
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Figure 1-1: Black Box

boundary current φ, the response map is represented by an n by n matrix
also denoted Λ, called the response matrix.

On the other hand, if the response map Λγ is given, but the conductivity
function γ is unknown, the inverse problem is to use Λγ to calculate the
conductance of each edge in G. If the graph G is unknown, then that too
must be deduced from the response matrix Λγ .

The inverse problem as articulated (for a continuous conducting medium)
by Calderon in [?], can be broken into four questions.

(Q1) Uniqueness: Is the map γ → Λγ one-to-one?

(Q2) Characterization: Which linear maps Λ are response maps?

(Q3) Algorithm: Is there a procedure for calculating γ from the response
map Λγ?

(Q4) Continuity: If γ is near µ, does it follow that Λγ is near Λµ?

To these we add a fifth question.

(Q5) Can the graph G be deduced from the response matrix?
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Figure 1-2: Circular planar graph G

Example 1.1 Suppose given a resistor network with five boundary nodes,
one interior node and seven edges as in Figure ??. Measurements of voltages
and currents are made at the boundary nodes v1, v2, v3, v4, v5, located on
the dashed circle (not part of the network). The response matrix Λ is:

Λ =


2.4 −1.2 −0.8 0 −0.4
−1.2 7.1 −5.6 0 −0.3
−0.8 −5.6 7.6 −1.0 −0.2

0 0 −1.0 4.0 −3.0
−0.4 −0.3 −0.2 −3.0 3.9

 (1.1)

The inverse problem is to calculate the conductances of each of the seven
edges in G from Λ.

Returning to the general situation, the solution to the forward problem
reveals some facts about the response matrix. For any resistor network
Γ = (G, γ) with n boundary nodes, the response matrix Λ is an n by n
matrix which has the following three properties.

(1) Λ is symmetric: Λi,j = Λj,i

(2) The sum of the entries in each row is 0.
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(3) For i 6= j, Λi,j ≤ 0

If the graph is allowed to be arbitrary, there is an easy answer to the
inverse problem. Every n by n matrix Λ which satisfies (1), (2) and (3)
is the response matrix for a suitable conductivity on a subgraph of the
complete graph with n nodes v1, v2, . . . , vn, as follows. For each pair (i, j)
with Λi,j 6= 0, place an edge joining vi to vj and assign the conductance of
this edge to be γ(vivj) = −Λi,j . The response matrix for this network will
be Λγ = Λ. The inverse problem for resistor networks becomes interesting
only if a restriction is placed on the type of graph allowed in the interior of
the box. A circular planar resistor network consists of a graph, embedded
in the disc in the plane, with the boundary nodes on the boundary circle,
and with a conductance assigned to each of the edges.

• This text is concerned with circular planar resistor networks.

The surprising outcome is that, for circular planar resistor networks,
there is a positive answer to the five questions (Q1) - (Q5). The answers
involve three main techniques, which turn out to be closely related.

(I) Schur complements.

(II) Harmonic continuation.

(III) Medial graphs.

The first use of Schur complements is to obtain the response matrix from
the Kirchoff matrix. More subtle is the use of Schur complements to obtain
formulas (??) and (??) for calculating conductances of boundary edges and
boundary spikes from the response matrix Λ. These same formulas can also
be arrived at by a process called harmonic continuation. The medial graphs
in Chapters ?? and ?? give even more insight into the same formulas. These
three techniques are discussed briefly in the remainder of this chapter, and
will be dealt with in much greater detail in the succeeding chapters.

Some important concepts concerning circular planar graphs are path,
connection, critical, and well-connected. A path p↔ q between two boundary
nodes p and q is a sequence of nodes in the interior of G whose edges join
p to q. For example in the graph of Figure ??, the path v1v6v2 joins v1 to
v2. There is no path joining v1 to v4 through G. If P = (p1, . . . , pk), and
Q = (q1, . . . , qk) are sequences of boundary points, a k-connection through
G, denoted P ↔ Q, is a set of paths {pi ↔ qi} which are vertex disjoint.
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In Figure ??, there is a 2-connection through G from (v1, v5) to (v2, v4),
but there is no 2-connection from (v1, v5) to (v2, v3). The set of connections
(through a graph G) between pairs of sequences of boundary nodes which
are in disjoint arcs of the circle, will be denoted π(G). A graph is called
well-connected if it has all possible connections between pairs of sequences
of boundary nodes which are in disjoint arcs of the boundary circle. A
graph is called critical if removing any edge breaks a connection. Roughly
speaking, this means that every edge is essential. Every circular planar
resistor network is electrically equivalent to one whose underlying graph is
critical. These concepts will be examined more fully in Chapters ?? and ??.

The matrix construction called Schur complement is essential for almost
all the later algebraic development. If Γ = (G, γ) is a resistor network, the
Kirchhoff matrix K = KΓ gives the response currents φ = Ku at all nodes
(interior and boundary) to a voltage defined at all the nodes of the network.
In Chapter 3, the response matrix of a network is shown to be obtained by
taking the Schur complement in K of a certain submatrix.

Example 1.2 Let Γ = (G, γ) be the resistor network where G is the graph
of Figure ??, and the conductances of the edges are: γ(v1v6) = 4, γ(v2v6) =
3, γ(v2v3) = 5, γ(v3v6) = 2, γ(v3v4) = 1, γ(v4v5) = 3, γ(v5v6) = 1. The
Kirchhoff matrix is

K =



4 0 0 0 0 −4
0 8 −5 0 0 −3
0 −5 8 −1 0 −2
0 0 −1 4 −3 0
0 0 0 −3 4 −1
−4 −3 −2 0 −1 10


In this case, the response matrix Λγ is the Schur complement in K of the
lower right hand corner entry, which is the number 10. Λγ is the 5 by 5
matrix in the upper left corner obtained by row-reduction using this entry.
The result is the matrix Λ which was given in equation ??.

Notation: The entry at the (i, j) position of a matrix A will sometimes be
referred to as A(i; j), instead of the usual Ai,j . This is convenient when i
and j themselves are subscripted. This notation also extends to a convenient
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notation for submatrices. Thus Aγ(1, 5; 2, 4) means the 2 by 2 submatrix of
A with entries from rows 1 and 5, and columns 2 and 4. (See Chapter ??.)

Many of the properties of the response matrix follow from its expression
as a Schur complement. In particular, Theorem ?? shows that connections
through the network can be determined from its response matrix. For exam-
ple the statement that Λγ(1; 2) 6= 0 implies that there is a path from v1 to
v2 through G. The statement that Λγ(1; 4) = 0 implies that there is no path
from v1 to v4 through G. The statement that det Λγ(1, 5; 2, 4) 6= 0 implies
there is a 2-connection through G from (v1, v5) to (v2, v4). The statement
det Λγ(1, 5; 2, 3) = 0 implies there is no 2-connection through G from (v1, v5)
to (v2, v3). The relation between connections through the graph and subde-
terminants of the response matrix is important both theoretically, and for
the numerical recovery of conductors. It is one of the cornerstones of the
theory presented in this text.

There are two formulas for computing the values of conductors at the
boundary of the network directly from the response matrix Λγ . Formula ??
gives the conductance of a boundary edge. Formula ?? gives the conductance
of a boundary spike. These formulas are used in the proof that Λγ uniquely
determines γ.

It is important to be able to construct harmonic functions (that is, po-
tentials) on a resistor network, given various type of boundary data. This
construction is made by a process called harmonic continuation, described in
Chapter ??. Harmonic continuation is used to show the existence of several
types of harmonic functions which are the basis for the recovery algorithm
of Chapter ??. Using these functions, there is a direct way to calculate the
conductors in a rectangular network, and there is a direct way to calcu-
late the conductors in the well-connected circularly symmetric graphs Gn
introduced in Chapter ??.

Harmonic continuation is also used to show the existence of functions
needed to characterize the set of response matrices for circular planar graphs.
For each integer n, there is a well-connected critical graph with n boundary
nodes, unique to within Y −4 equivalence. One such graph is Gn described
in Chapter ??, and another is the graph Hn, which is Y −4 equivalent to
Gn, described in Chapter ??. For either of these graphs, the set of response
matrices is a certain set of matrices L(n), which is simply described in
terms of signs of subdeterminants of the response matrices. The first of
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the characterization theorems, Theorem ??, shows that the set of response
matrices for Gn (or equivalently, Hn) is L(n).

There are three ways to adjoin an edge to a graph:

(1) Adjoin a boundary edge. An edge is added between two adjacent
boundary nodes.

(2) Adjoin a boundary pendant. A boundary node is added together
with an edge joining that node to an old boundary node. This increases the
number of boundary nodes by one.

(3) Adjoin a boundary spike. A new boundary node is added together
with an edge joining that node to an old boundary node. The old boundary
is then declared to be an interior node. This does not change the number
of boundary nodes.

If Γ = (G, γ) is a resistor network, the effect on the response matrix
of adjoining a boundary edge conductor or a boundary spike conductor is
also described in Chapter ??. By considering the reverse operations, the
effect on the response matrix of removing a conductor from the network is
also described. This leads to Theorem ?? and its corollaries which show
that the values of the conductors in any well-connected critical graph can
be recovered from the response matrix. This requires a result from Chapter
?? showing that there is always at least one boundary edge or boundary
spike. The boundary edge formula (Equation ??) or the boundary spike
formula (Equation ??) is then used to calculate the conductance. Each time
an edge is removed a new graph is formed, which is critical, and its response
matrix is calculated. In this way, if Γ = (G, γ) is a resistor network whose
underlying graph is critical, the conductances of all the edges in G can be
calculated. At the conclusion of Chapter ??, questions (Q1), (Q3), and
(Q4) have been answered affirmatively for all circular planar graphs, as
well as question (Q2) for well-connected graphs.

The answer to question (Q2) for arbitrary circular planar graphs requires
some elementary but non-standard matrix algebra, which is presented in
Section ??. In Section ?? the set of response matrices (for arbitrary circular
planar graphs) is proven to be a certain set of matrices Ωn which is defined
in terms of signs of subdeterminants. The only use made of Section ?? is to
prove Theorem ??, where it is shown that every matrix in Ωn is the response
matrix for a conductivity function on a suitable critical but not necessarily
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well-connected graph. This set Ωn is of course closely related to the set L(n)
defined in Chapter ??.

The answer to (Q5) makes use of the medial graph associated to a cir-
cular planar graph. The relation between circular planar graphs and their
medial graphs is brought out in Chapter ??. The set of Y −4 equivalence
classes of critical circular planar graphs is shown to be in 1-1 correspon-
dence with (the equivalence) classes of medial graphs. Furthermore, (the
equivalence class of) each medial graph is determined by the set S of pairs
of endpoints of the medial lines on the boundary circle.

For each integer n ≥ 3, let

• Gn be the set of Y −4 equivalence classes of critical circular planar
graphs with n boundary nodes.

• Mn be the set of equivalence classes of medial graphs arising from Gn.

• Sn be the set of {S} where each S = {xi, yi}, is the set of endpoints
of the geodesics arising from a graph M in Mn.

• �n be the set of {π}, where each π is the set of connections for a graph
G in Gn.

The reason medial graphs are useful in studying circular planar graphs is
that there are natural 1-1 correspondences between these four sets.

Gn ≈Mn ≈ Sn ≈ �n

Chapter ?? goes into detail on the relations between a graph G, its medial
graph M, the set S of pairs of numbers which define the endpoints of the
geodesics, and the set of connections π(G) through G. The connections π(G)
are obtained from subdeterminants of the response matrices. Theorem ??
which summarizes this material, is paraphrased as follows.

(1) If a matrix A is given which is in the algebraically defined set Ωn,
Proposition ?? shows how to construct a medial graph, and from it a circular
planar graph G.

(2) The formulas of Chapter ?? can be used to calculate conductances
on G so that the response matrix is A.
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Thus all five of the questions (Q1) - (Q5) for inverse problems for
circular planar resistor networks have been answered.

Layered networks are discussed in Chapter ??. These are circularly sym-
metric graphs, where the conductivity is constant on the layers. We present
a theorem (from David Ingerman’s thesis, [?]) which characterizes the re-
sponse matrices for such networks. It is believed, but not yet established,
that the recovery of conductances is much better for these graphs than for
arbitrary circular planar resistor networks.

1.2 Other Topics

There are several topics related to inverse problems for electrical networks,
which are not covered here. Among these are the following.

1. Duality. To each circular planar graph G there is a circular planar
graph G⊥ called the dual graph. This is mentioned briefly in conjunction
with the 2-coloring of the regions in the disc defined by medial graphM. If
the black regions are the nodes of G, the white regions are the nodes of G⊥.
To each circular planar resistor network Γ = (G, γ) there is a dual network
Γ⊥ = (G⊥, γ⊥). The conductance of each edge in G⊥ is the reciprocal of
the conductance of the edge in G which it crosses. This is gone into more
fully in [?], where the relation between the “voltage-to-current” map and
the “current-to-voltage” map is also discussed.

2. Markov Chains. A resistor network Γ gives rise to a reversible
Markov chain, as described in [?]. It is possible that the techniques in this
text can be used to handle inverse problems for reversible Markov chains,
especially ones for which the graph is circular planar. As far as we know at
the present time, this is unexplored.

3. Continuous Media. The inverse problem for resistor networks
is analogous to the inverse problem for a continuous conducting medium.
Suppose R is a compact region, with boundary, in Euclidean space, with
a conductivity function γ which is positive on R. If a boundary voltage
f is given, the solution to the Dirichlet problem is a potential u defined
throughout R, which agrees with f on the boundary of R, and which satisfies
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the conductivity equation, inside R. That is,

∇ · (γ∇u) = 0 inside R

u = f on the boundary of R

The boundary current due to the potential u is the function φ = γ
∂u

∂n
where

n is the unit inward normal to the boundary of R. In the continuous case,
the response map is sometimes called the Dirichlet-to-Neumann map because
the function f is Dirichlet boundary data, and the function φ is Neumann
boundary data for the conductivity equation. A circular planar resistor
network is a discretization of a continuous conducting medium occupying
a bounded region R in the plane, and Kirchhoff’s Law is a discretization
of the conductivity equation. A great deal is known about the uniqueness
(Q1) and the continuity question (Q4). Research is currently focused on
the reconstruction algorithm (Q3). The characterization problem for con-
tinuous media is very much open. Some of the properties characterizing
response matrices for resistor networks carry over to the continuous case,
but a complete characterization has not yet been attained. An up-to-date
source for inverse problems is [?].

4. The Inverse Problem is Ill-posed. It should be pointed out that
even though the answer to (Q4) is positive in that γ depends continuously
on Λγ (as a rational function in the entries of Λγ), the calculations of the con-
ductances is extremely sensitive to small errors in Λ. Thus, if the response
matrix Λγ is known only approximately, the recovery of the conductances
might be very poor, even meaningless. That is, the calculation might give
negative values for the conductances. Roughly speaking, one digit of ac-
curacy is lost for each additional layer in the network. In this sense, the
general inverse problem for circular planar resistor networks is ill-posed.



Chapter 2

Circular Planar Graphs

2.1 Connections

A graph with boundary is a triple G = (V, VB, E), where V is the set of nodes
and E is the set of edges for a finite graph, and VB is a nonempty subset of
V called the set of boundary nodes. The set I = V − VB is called the set
of interior nodes. G is allowed to have multiple edges (that is, more than
one edge joining two nodes) or loops (a loop is an edge joining a node to
itself) or pendants (a pendant is an edge with one endpoint of valence one.
Examples are given in Figures ??, ?? and ??.

A circular planar graph is a graph G with boundary which is embedded
in a disc D in the plane so that the boundary nodes lie on the circle C which
bounds D, and the rest of G is in the interior of D. The boundary nodes are
labeled v1, . . . , vn in clockwise order around C. Figure ?? shows a circular
planar graph with 6 boundary nodes, 2 interior nodes (8 nodes altogether),
and 9 edges. The dashed circle indicates the boundary circle.

If p and q are distinct boundary nodes, a path β from p to q through
G, consists of a sequence of edges: e0 = pr1, e1 = r1r2, . . . , eh−1 =
rh−1rh, eh = rhq such that r1, r2, . . . , rh are distinct interior nodes of G.
An edge pq between two distinct boundary nodes p and q is allowed as a
path from p to q through G. If each of the edges is uniquely specified by its
endpoints, or if it only matters which interior vertices are along the path β,
the path may be written as:

β = pr1r2 · · · rhq

11
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Figure 2-1: Circular planar graph G

The existence of a path from p to q through G is sometimes indicated simply
by p↔ q.

Example 2.1 In the graph G of Figure ??, starting from v1, there are the
following paths originating from v1:

v1 ↔ v2 : β1 = v1v7v8v2

v1 ↔ v3 : β2 = v1v7v8v3

v1 ↔ v5 : β3 = v1v7v5

v1 ↔ v6 : β4 = v1v6

but there is no path from v1 to v4 through G. The existence of paths is
reflexive; that is, a path from p to q implies that there is a path from q to
p, namely the same vertices taken in the opposite order. But paths are not
transitive, as the above example shows: there is a path from v1 to v3 and
also a path from v3 to v4, but there is no path from v1 to v4.

Suppose P = (p1, . . . , pk) and Q = (q1, . . . , qk) are two sequences of
boundary nodes. P and Q are said to be connected through G if there is
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a permutation τ of the indices 1, . . . , k, and k disjoint paths α1, . . . , αk in
G, such that for each i, the path αi starts at pi, ends at qτ(i), and passes
through no other boundary nodes. To say that the paths α1, . . . , αk are
disjoint means that if i 6= j, then αi and αj have no vertex in common. The
set α = {α1, . . . , αk} is called a k-connection from P to Q. The existence
of a connection is denoted P ↔ Q, similar to the notation p ↔ q for the
existence of a path between two boundary vertices p and q. A path which
joins one boundary node to another boundary node is a 1-connection.

A sequence r1, r2, . . . , rm of distinct points on the boundary circle C is
said to be in circular order around C if r̂1rm is an arc of C, the points
r2, . . . , rm−1 are in the arc r̂1rm and

r1 < r2 < . . . < rm

in the linear order induced by the angles of the arc, measured clockwise from
r1. A pair of sequences of boundary nodes (P ;Q) = (p1, . . . , pk; q1, . . . , qk)
such that the sequence (p1, . . . , pk, qk, . . . , q1) is in circular order is called a
circular pair. If (P ;Q) is a circular pair, the vertices in Q are in the reverse
order of those in P on the boundary circle C. In this case, any connection
P ↔ Q must connect pi to qi for i = 1, . . . , k.

• If G is a circular planar graph, π(G) will denote the set of connections
P ↔ Q through G where the (P ;Q) are a circular pairs.

Remark 2.1 Suppose G is a circular planar graph, and P and Q are two
sequence that are in disjoint arcs of the circle. Any connection P ↔ Q can
be considered to be a connection P ′ ↔ Q′ of a circular pair (P ′;Q′) where
P ′ and Q′ are suitable permutations of P and Q. Because of this, π(G) is
defined to be the set of circular pairs (P ;Q) that are connected through G.

Example 2.2 In the graph G of Figure ??, let P = (v1, v2) and Q = (v5, v3)
and R = (v6, v1). Then

(i) (P ;Q) is a circular pair that is 2-connected. The paths are:

v1 ↔ v5 : v1v7v5

v2 ↔ v3 : v2v8v3
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Figure 2-2: Y and 4

(ii) (R;Q) is a circular pair that is not 2-connected. There is a 1-
connection from v6 to v5; there is a 1-connection from v1 to v3. The paths
are:

v6 ↔ v5 : v6v7v5

v1 ↔ v3 : v1v7v8v3

but there is no 2-connection from R = (v6, v1) to R = (v5, v3), because the
the paths v6 ↔ v5 and v1 ↔ v3 are not disjoint (each path uses v7).

(iii) There is a 3-connection (v1, v2, v3)↔ (v6, v5, v4). but there is no 3-
connection from (v2, v3, v4) to (v1, v6, v5) nor from (v3, v4, v5) to (v6, v1, v2).

2.2 Y −4 Transformations

Suppose a circular planar graph G contains a configuration such as that of
Figure ??a. Within the region indicated by the dotted circle, there are four
vertices, p, q, r and w, and three edges pw, qw and rw; the vertex w is not a
boundary node of G and there are no other edges incident to w. There may
be any number of edges incident to p, q or r. Such a configuration is called
a Y in the graph G. A Y −4 transformation in G consists in eliminating
the vertex w, deleting the edges pw, qw, rw, and inserting edges pq, qr and
rp to form the 4 as in Figure ??b. No other vertices or edges are affected.
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(b) Graph G′ with 4v1v7v5

Figure 2-3: Y −4 transformation

Replacing the configuration of Figure ??b with that of Figure ??a reverses
the process, and is called a 4− Y transformation

If G and G′ are two circular planar graphs and there is a sequence of
graphs:

G = G0, G1, . . . Gk = G′

where each Gi+1 is obtained from Gi by either a Y −4 or a 4−Y transfor-
mation, G and G′ are said to be Y −4 equivalent. The graph G′ in Figure
??b is Y −4 equivalent to the graph G of Figure ??a: the Y with vertex
at v6 in G has been replaced by a 4 with sides v1v7, v7v5 and v5v1 in the
graph G′.

Refer back to Figure ??. Suppose a graph G is transformed into a graph
G′ by a Y −4 transformation, where the Y of Figure ??a in G is replaced
by the triangle of Figure ??b in G′. Suppose α and β are disjoint paths in
G where α passes through p and β passes through edges rw and wq. There
are corresponding paths α′ and β′ in G′, where α′ = α and β′ is the same
as β except that the two edges rw and wq are replaced by the single edge
rq. That is, if

α = a1 . . . p . . . a2

β = b1 . . . rwq . . . b2
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then

α′ = a1 . . . p . . . a2

β′ = b1 . . . rq . . . b2

It follows that if α is any connection P ↔ Q through G, then there is
a corresponding connection P ↔ Q through G′. These observations are
summarized in the following important theorem.

Theorem 2.1 Suppose G and G′ are two circular planar graphs which are
Y −∆ equivalent. Then the set of connections in G is in 1−1 correspondence
with the set of connections in G′.

Example 2.3 In Figure ??a, let P = (v1, v2) and Q = (v5, v3). There is a
2-connection (α1, α2) from P to Q through G, where

v1 ↔ v5 : α1 = v1v6v5

v2 ↔ v3α2 = v2v7v3

There is still a 2-connection from P to Q through G′ of Figure ??, where

v1 ↔ v5 : α′1 = v1v5

v2 ↔ v3α
′
2 = v2v7v3

2.3 Edge Removal

There are two ways to remove an edge from a graph:

(1) By deleting an edge such as vw in G as in Figure ??a. Deleting edge
vw replaces this configuration with that of Figure ??b. An edge joining two
boundary nodes of G may be deleted.

(2) By contracting an edge to one of its endpoints. The edge vw in Figure
??a has been contracted to a single node w in Figure ??c. An edge joining
two boundary nodes is not allowed to be contracted to a single node.

Suppose G is a circular planar graph and removal of an edge e, either
by deletion or contraction, results in a graph G′. Let P = (p1, . . . , pk) and
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Figure 2-5: Edge removed

Q = (q1, . . . , qk) be two sequences of boundary nodes of G, which form a
circular pair. We say that removing edge e breaks the connection from P
to Q if there is a k-connection from P to Q through G, but there is not a
k-connection from P to Q through G′. A graph G is called critical if the
removal of any edge breaks some connection through G. Contracting v6v7 to
a single node v7 in the graph G of Figure ??a results in the graph of Figure
??. Notice also that deleting the edge v1v5 of Figure ??b results in the same
graph in Figure ??. In either case, the 2-connection from P = (v1, v2) to
Q = (v5, v3) has been broken.

Lemma 2.2 Suppose G and G′ are two circular planar graphs which are
Y −∆ equivalent. Then G is critical if and only if G′ is critical.

Proof: Suppose G is transformed into G′ where the Y of Figure ??a is
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replaced by the triangle of Figure ??b. Assume that G is not critical. There
are three cases to consider.

(1) Suppose e is an edge in G which is not pw, qw, or rw and e can be
removed without breaking a connection through G. Removal of the same
edge in G′ breaks no connection through G′.

(2) Suppose deletion of pw breaks no connection through G. Deletion of
pr breaks no connection through G′.

(3) Suppose contraction of pw breaks no connection through G. Deletion
of rq breaks no connection through G′.

Assume that G′ is not critical. Again there are three cases.

(4) Suppose e is an edge in G′ which is not pq, qr, or rp and e can be
removed without breaking a connection through G′. Removal of the same
edge in G breaks no connection through G.

(5) Suppose deletion of rq breaks no connection through G′. Contraction
of pw breaks no connection through G.

(6) Suppose contraction of rq breaks no connection through G′. Con-
traction of rw breaks no connection through G.

The easiest way to see if a circular planar graph G is critical is to see if
the medial graph M is lens-free, and use Proposition ??. The graph G in
Figure ?? is critical; by Lemma ??, any graph Y −4 to G is also critical.

2.4 Trivial Modifications

There are four simplifications of a graph that do not change any connec-
tions, and may be considered trivial modifications. These modifications are
indicated in Figures ??, ??, ?? and ??.

(1) Suppose G has a pair of edges e = uv and f = vw in series, as in
Figure ??a. Assume that v is an interior node of G, and that there are no
other edges incident to v. A trivial modification of G consists in replacing
the configuration of Figure ??a with that of Figure ??b.

(2) Suppose G has a pair of edges e = uv and f = uv in parallel, as
in Figure ??a. The configuration of Figure ??a may be replaced by that of
Figure ??b.
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(3) Suppose G has an interior pendant as in Figure ??e. That is, v
is an interior node of G, and there are no other edges incident to v. The
configuration of Figure ??a may be replaced by that of Figure ??b.

(4) Suppose G has an interior loop e = vv, that is e is an edge for
which the initial and final vertices are the same, as in Figure ??a. The
configuration of Figure ??a may be replaced by that of Figure ??b.

Each of the trivial modifications (1) to (4) does not break (or add) any
connection through G. Therefore a graph that contains any of these config-
urations cannot be critical. In a later chapter, we will show that a sequence
of trivial modifications and Y −4 transformations, will transform G into a
critical graph G′ which has the same connections as G. In fact, G can be
transformed into a critical graph G′ by a sequence of trivial modifications
only; the Y −4 transformations are not needed. Anticipating the definitions
of Chapter ??, if Γ = (G, γ) is an electrical network, then the conductors in
G′ can be chosen so that Γ and Γ′ are electrically equivalent. This means
that the response matrix for Γ is the same as the response matrix for Γ′.

2.5 Well-connected Graphs

A circular planar graph G is called well-connected if for every circular pair
(P ;Q) = (p1, . . . , pk; q1, . . . , qk) of sequences of boundary nodes, there is a
k-connection from P to Q. For each integer n ≥ 3, we will describe a specific
graph Gn with n boundary nodes, which is both well-connected and critical.
In Chapter ??, all the well-connected critical graphs with n boundary nodes,
for a fixed value of n, will be shown to be Y −4 equivalent.

For each integer n ≥ 3, the nodes of the graph Gn are the points of
intersection of n radial lines and some circles centered at the origin. The
n rays ρ0, ρ1, . . . , ρn−1 originate from the origin, and are at angles θ0, θ1,
. . . , θn−1 measured clockwise from the first ray ρ0, where 0 = θ0 < θ1 <
. . . < θn−1 < 2π. The circles have radii ri with 0 < r1 < . . . < ri < . . ..
For convenience, (i, j) will represent the point which is the intersection of
the circle of radius ri with ray ρj . All the points (0, j) are identified to the
single point (0, 0). If it occurs, the point (i, j + n) is to be identified with
the point (i, j); in particular (i, n) is the same point as (i, 0).
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Figure 2-10: Graph G9

Because the indexing is different for each of the four cases of n mod
4, the well-connected critical graphs Gn require four separate descriptions
depending on n mod 4.

(1) Let n = 4m + 1. The boundary circle is the circle of radius m + 1,
centered at (0, 0). The nodes of G4m+1 are the points (i, j) for integers i
and j with 0 < i ≤ m + 1 and 1 ≤ j ≤ 4m + 1. The radial edges are the
radial line segments joining (i, j) to (i + 1, j) for each 0 < i ≤ m and each
1 ≤ j ≤ 4m + 1. The circular edges are the circular arcs joining (i, j) to
(i, j + 1) for each 1 ≤ i ≤ m and each 1 ≤ j ≤ 4m + 1. The graph G4m+1

has 2m(4m + 1) edges and (m − 1)(4m + 1) nodes. The boundary nodes
of G4m+1 are the points vj = (m + 1, j), for j = 1, . . . , 4m + 1, with the
convention that v0 = v4m+1. The graph G9 is shown in Figure ??.

(2) Let n = 4m+2. In this case the boundary “circle” is only a topologi-
cal circle (i.e., the homeomorph of a circle) to be described later. The nodes
of G4m+2 are the points (h, j) for integers h and j with 0 ≤ h ≤ m and
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Figure 2-11: Graph G10

0 ≤ j ≤ 4m+ 2. In addition, there are nodes (m+ 1, j) for even values of j
with 1 ≤ j ≤ 4m+ 2. The radial edges are the radial line segments joining
(h, j) to (h + 1, j) for each 0 ≤ h ≤ m − 1 and each 1 ≤ j ≤ 4m + 2, and
also the radial line segments joining (m, j) to (m+ 1, j) for each even value
of j with 1 ≤ j ≤ 4m + 2. The circular edges are the circular arcs joining
(h, j) to (h, j + 1) for each 1 ≤ h ≤ m and each value of 1 ≤ j ≤ 4m + 2.
In this case, the boundary nodes are the points (m+ 1, j) for even values of
j, and points (m, j) for odd values of j. There are (2m+ 1)(4m+ 1) edges
in G4m+2 and there are (2m + 1)2 + 1 nodes. The boundary “circle” is a
closed loop passing through these points, but intersecting G4m+2 in no other
points. The graph G10 is shown in Figure ??. The boundary circle is not
shown.

(3) Let n = 4m + 3. The boundary circle for G4m+3 is the circle of
radius m + 1, centered at (0, 0). The nodes of G4m+3 are the points (h, j)
for integers h and j with 0 ≤ h ≤ m+1 and 0 ≤ j < 4m+3. The radial edges
are the radial line segments joining (h, j) to (h + 1, j) for each 0 ≤ h ≤ m
and each 0 ≤ j < 4m + 3. The circular edges are the circular arcs joining
(h, j) to (h, j + 1) for each 1 ≤ h ≤ m and each 0 ≤ j < 4m+ 3. The graph



2.5. WELL-CONNECTED GRAPHS 23

•

•

•
•

•

•

•

•

•
•

•

•

•

••
•

•

•

•
• •

•

•

•

•
•

•

•

•

•

•
•

•

•

Figure 2-12: Graph G11

G4m+3 has (2m + 1)(4m + 3) edges and (m + 1)(4m + 3) + 1 nodes. The
graph G11 is shown in Figure ??. The dashed circle is the boundary circle.
The circular arcs on the boundary circle are not edges in the graph G4m+3.

(4) Let n = 4m. The boundary circle for G4m is the circle of radius
m, centered at (0, 0). The nodes of G4m are the points (h, j) for integers
h and j with 0 ≤ h ≤ m and 1 ≤ j ≤ 4m. The radial edges are the
radial line segments joining (h, j) to (h + 1, j) for each 0 ≤ h ≤ m − 1 and
each 1 ≤ j ≤ 4m. The circular edges are the circular arcs joining (h, j) to
(h, j + 1) 1 ≤ h < m and also the circular arcs joining (m, j) to (m, j + 1)
for each odd value of j with 0 ≤ j < 2m, and also the circular arcs joining
(m, 4m − j) to (m, 4m − j − 1) for each odd value of j with 0 ≤ j < 2m.
There are (4m− 1)(2m) edges in G4m+1 and there are 4m2 + 1 nodes. The
graph G8 is shown in Figure ??. The boundary circle is not shown.

Proposition 2.3 For each integer n ≥ 3, the graph Gn is well-connected
and critical.
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Figure 2-13: Graph G8

Proof: We will show that G4m+1 is well-connected. (The proof that G4m+1

is critical is postponed to Chapter ??.) Suppose (P ;Q) = (p1, . . . , pk; q1, . . . , qk)
is a circular pair of boundary points. Assume the indexing of the nodes is
such that pi = (m+ 1, pi) and qi = (m+ 1, qi) with

0 ≤ p1 < . . . < pk < qk < . . . < q1 < 4m+ 1

For each positive integer m, and integers s and t, define paths in G4m+1 as
follows.

• ε(m; s, t) is the counter-clockwise path along the circle of radius m
from (m, s) to (m, t),

• δ(m; s, t) is the clockwise path along the circle of radius m from (m, s)
to (m, t).

For each pair of non-negative integers m,m′, and non-negative integer s,

• ξ(m,m′; s) is the path along the ray from (m, s) to (m′, s)

The notations ε(m; s, t), δ(m,m′; s) and ξ(m; s, t) will be abbreviated ε, δ
and ξ respectively, when the endpoints are clear from the context. If ν is
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any of the paths ε, δ or ξ, the notation (a, b)
ν→ (c, d) means the path ν from

the vertex (a, b) to vertex (c, d) along either a circular arc or a radial ray.

The paths in the connection P ↔ Q are as follows. For 1 ≤ j ≤ m, pj is
connected to qj by the path

pj = (m+ 1, pj)
ξ→ (m+ 1− j, pj)

ε→ (m+ 1− j, qj)
ξ→ (m+ 1, qj) = qj

For m+ 1 ≤ j ≤ k, pj is connected to qj by the path

pj = (m+ 1, pj)
ξ→ (j −m, pj)

δ→ (j −m, qj)
ξ→ (m+ 1, qj) = qj

This gives a k-connection from P ↔ Q through G4m+1. Since (P ;Q) was an
arbitrary pair of sequences of boundary nodes in circular order, this shows
that G4m+1 is well-connected when n = 4m+ 1.

The proof that G4m+3 is well-connected is similar; one of the paths goes
through the center node (0, 0). The proofs for n = 4m + 2 or n = 4m are
also similar but require taking some care with the slight irregularity of the
nodes and edges on the outermost circle. The proof that each Gn is critical
is postponed to Chapter ??, where another circular planar graph Hn which
is Y − ∆ equivalent to Gn will be described. The proof that Hn is both
well-connected and critical is much easier than for the graphs Gn described
above. Corollary ?? shows that Gn is also well-connected and critical.

Example 2.4 Figure ?? illustrates a 3-connection (P ↔ Q), through G7,
where P = (v1, v2, v3) and Q = (v4, v5, v6). In this drawing of G7, the circu-
lar arcs have been replaced by straight lines. The paths in the connection
are indicated by solid lines. The edges of the graph G7 not used in the
connection are indicated by dotted lines. This connection is closely related
to the paths called principal flow paths which will be described in Section
??.
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Chapter 3

Resistor Networks

3.1 Conductivities on Graphs

A conductivity on a graph G is a function γ which assigns to each edge e in G
a positive real number γ(e), called the conductance of the edge e. A resistor
network Γ = (G, γ) is a graph G together with a conductivity function γ.

• “Resistor network” is the standard term for a graph with resistors as
edges. The conductance of a resistor is the reciprocal of the resistance. For
algebraic reasons, conductance is more convenient than resistance.

If Γ is a resistor network with boundary, the set VB of boundary nodes
will sometimes be denoted ∂G, and the set I = V − VB of interior nodes of
G will sometimes be denoted int G.

If u is a function defined on all the nodes of a resistor network Γ, and e
is an edge of G, with endpoints p and q, the current c(e) through edge e is
defined by Ohm’s Law:

c(e) = γ(e)[u(p)− u(q)]

If there is one or more edges joining p to q in G, γ(p, q) is defined to be the
sum of the conductances of edges joining p to q. The current from p to q is

c(p, q) = γ(p, q)[u(p)− u(q)]

For each node p in G, the set of nodes q for which there is an edge joining
p to q is called the set of neighbors of p and is denoted N (p). A function u

27
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defined on the nodes of G is said to be γ-harmonic at p if the (algebraic)
sum of the currents from p to the neighboring nodes is 0. That is:∑

q∈N (p)

γ(p, q) [u(p)− u(q)] = 0 (3.1)

If u is γ-harmonic at each of the interior nodes, u is said to be a γ-harmonic
function. At a node p where u is not γ-harmonic, Kirchhoff’s Law says that
the current φ(p) into the network at p must be equal to the (algebraic) sum
of the currents from p to its neighboring nodes. That is,

φ(p) =
∑

q∈N (p)

γ(p, q) [u(p)− u(q)]

Summing φ(p) for all nodes p in G, and observing that the current across
each edge occurs twice with opposite signs, gives∑

p∈G
φ(p) = 0 (3.2)

That is, the (algebraic) sum of the currents into Γ at all nodes is 0. If u is
a γ-harmonic function on a resistor network with boundary, then φ(p) = 0
at all interior nodes, and equation ?? becomes∑

p∈∂G
φ(p) = 0

Suppose that Γ = (G, γ) is a resistor network with n boundary nodes
and d interior nodes; there are m = n + d nodes altogether. If f is a
function defined on the boundary nodes, there will be a unique function
u which agrees with f at the boundary nodes, and is γ-harmonic at the
interior nodes of Γ. This function u on Γ is called the potential due to f .
The response matrix Λ gives the current flow φ = Λf at the boundary due
to the potential u. Several ways to construct Λ will be described, and then
used to derive some of the properties of γ-harmonic functions on a resistor
network.

(I) Direct use of Kirchhoff’s Law. Kirchhoff’s Law can be used
to establish elementary properties of γ-harmonic functions such as the max-
imum principle for values and the maximum principle for currents. Kirch-
hoff’s Law can also be used to construct γ-harmonic functions with certain
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prescribed boundary data, by a process called harmonic continuation. In
Chapter ??, harmonic continuation will be used to show the existence of the
special functions on networks needed in the algorithm for the recovery of
conductances from the response matrix.

(II) The Kirchhoff Matrix. Suppose Γ = (G, γ) is a connected
resistor network, for which the underlying graph G has a total of m nodes.
The Kirchhoff matrix (see Section ??) is an m × m matrix K which has
the following interpretation. If u is a function, not necessarily γ-harmonic,
defined at all the nodes of G, and u is considered to be a voltage, then
φ = Ku is the resulting current flow into Γ. If Γ is a connected resistor
network with boundary, the response matrix Λγ can be obtained as the Schur
complement in K of the square submatrix corresponding to the interior
nodes of Γ. This will be used to establish certain properties of Λγ , especially
the close relation between subdeterminants of Λγ and connections through
the graph G.

(III) The Dirichlet Norm. If Γ = (G, γ) is a resistor network, there is
a quadratic form Wγ(u) which is the discrete analogue of the Dirichlet norm
for functions defined on a continuous media. For any function u defined at
all the nodes of G,

Wγ(u) =
∑
pq

γ(p, q) (u(p)− u(q))2

The sum is taken over all edges pq in G. Wγ has the following minimizing
property. If the values of u are fixed at the boundary nodes, then Wγ(u)
achieves its minimum value when u is γ-harmonic at each interior node.
Under certain restrictions, if some boundary values and some boundary
currents are specified, the function Wγ can be used to show that there is a
unique γ-harmonic function on Γ with this boundary data. See Section ??.

We begin with (I). If u is a γ-harmonic function on a resistor network
Γ = (G, γ), then for each interior node p, equation ?? can be rewritten as: ∑

q∈N (p)

γ(p, q)

u(p) =
∑

q∈N (p)

γ(p, q)u(q) (3.3)

This says that if u is a γ-harmonic function on Γ, then the value of u at each
interior node is the weighted average of the values of u at the neighboring
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Figure 3-1: Node with four neighboring nodes

nodes. The weights are positive, because γ is assumed to be a positive
function on the edges of G. For a rectangular graph, illustrated in the
square network of Figure ??, this is a 5-point formula at each interior node.
If any four of the values u(q1), u(q2), u(q3) and u(q4), u(p), are known, the
fifth value is determined by equation ??. Similarly, if the values of u(q2),
u(q3) and u(q4), and the current across the edge q3p are known, the value
of u(q1) can be found by Kirchhoff’s Law.

Throughout the remainder of this section, Γ = (G, γ) is a resistor net-
work with boundary, and it is assumed that each connected component of
the graph G contains at least one boundary point. To say that u is a γ-
harmonic function on Γ, means that u is a function defined at all the nodes
of G, and u satisfies equation ?? (or equivalently equation ??) at each in-
terior node. The following is an immediate consequence of the averaging
property for γ-harmonic functions.
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Lemma 3.1 Suppose u is a γ-harmonic function on Γ, and let p be an
interior node. Then either u(p) = u(q) for all nodes q ∈ N (p) or there is
at least one node q ∈ N (p) for which u(p) > u(q) and there is at least one
node r ∈ N (p) for which u(p) < u(r).

If u is a γ-harmonic function on Γ and if the maximum value of u were
to occur at an interior node, then the value of u at all the neighbors would
be the same. Thus either u is a constant or the maximum value does not
occur at an interior node and so must occur at one or more of the boundary
nodes. Similarly the minimum value of u must occur on the boundary of Γ.
This proves the following.

Theorem 3.2 (Maximum Principle for Harmonic Functions) Sup-
pose u is a γ-harmonic function on a resistor network Γ with boundary.
Then the maximum and minimum values of u occur on the boundary of Γ.

Corollary 3.3 If u is a γ-harmonic function on Γ such that u(p) = 0 for
all boundary nodes p. Then u(p) = 0 for all interior nodes.

There is also a maximum principle for currents.

Theorem 3.4 (Maximum Principle for Currents) Suppose u is a γ-
harmonic function on a resistor network Γ with boundary, Then the current
across any edge pq is less than or equal to the sum of the positive currents
into the boundary nodes.

Proof: Assume that u(p) > u(q). A subgraph H of G is constructed
in stages as follows. Let H0 be the node p. Next let H1 consist of all
nodes r and edges rp in G, such that r is a neighbor of p and u(r) > u(p).
Inductively, having defined Hj , let Hj+1 consist of all edges in Hj and all
nodes s and edges st in G such that t ∈ Hj and u(s) > u(t). This gives an
increasing sequences of subnetworks

H1 ⊆ H2 ⊆ H3 ⊆ . . .

Eventually no new edges are added and the process ends. Let H be the
union of the Hj . By restricting the conductivity function γ to the edges
in the subgraph H, (H, γ) may be considered a resistor network. For each
node r in H, let ψ(r) be the (algebraic) sum of the currents from r to its
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neighboring nodes in H, and let φ(r) be the (algebraic) sum of the currents
from r to its neighboring nodes in G. By the construction of H, ψ(r) ≤ φ(r)
for all nodes r in H. For all nodes r in H which are interior nodes of G,
ψ(r) ≤ 0, so the function ψ(r) can be positive only at a node of H which is
a boundary node of G. Then

c(p, q) ≤ −
∑

r∈intG∩H
ψ(r)

≤
∑

r∈∂G∩H
ψ(r)

≤
∑

r∈∂G∩H
φ(r)

Thus the current c(p, q) is less than or equal to the sum of the positive
currents into Γ at the boundary nodes of G.

3.2 The Response Matrix

Suppose Γ = (G, γ) is a resistor network which has n boundary nodes, and d
interior nodes. The nodes are indexed so that {v1, . . . , vn} are the boundary
nodes and {vn+1, . . . , vn+d} are the interior nodes. If the values of a function
f are specified at the boundary nodes, the extension of f to a function u
which is γ-harmonic at all the interior nodes can be obtained as follows.
At each interior node, equation ?? is a linear equation for the d unknown
quantities which are the values of u at the interior nodes. This gives a linear
system of d equations in d unknowns. Anticipating notation to come later,
this system can be written as

Dg = b

The entries of the matrix D are obtained from the values of the conductors.
g stands for the vector of values of u at the d interior nodes, and the values
of b are obtained by moving, to the right hand side, in each of the equations
expressing Kirchhoff’s Law, each term involving u(vi) where vi is a boundary
node. The values in the vector b will be 0 if and only if f(vi) = 0 for all
boundary nodes. The Maximum Principle (??) implies that, if f(vi) = 0
at all boundary nodes, then the values of u(p) must be 0 at all interior
nodes also. Thus the matrix D is non-singular. Hence, for any assignment
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of values f(vi) at the boundary nodes, there is a unique solution g to the
matrix equation Dg = b. Let u be the vector u = [f, g], where f stands for
the first n components of u, namely the given values of f at the boundary
nodes of G, and g stands for the last d components of u, which are the values
of u at the interior nodes of G obtained by solving the linear system Dg = b.

Note: Vectors such as u, f , g or b will usually be written as a row
vectors, but when they appear in a matrix equation such as Dg = b, they
are to be interpreted as column vectors. This is to avoid having to write
equations such as DgT = bT .

This function u is defined on all the nodes of G and is γ-harmonic at the
interior nodes. u defines a current φ where φ(p) is the current into the
network at boundary node p. Specifically, for each boundary node p,

φ(p) =
∑

q∈N (p)

γ(p, q)[u(p)− u(q)]

The linear map which sends f to φ is called the network response. If the
standard basis is used to represent this linear map, the resulting n × n
matrix is called the response matrix, and is denoted Λ, or Λγ if it is necessary
to emphasize the dependence on the conductivity function γ. The response
matrix is more conveniently defined, and its properties more easily obtained,
from the Kirchhoff matrix which is taken up next.

3.3 The Kirchhoff Matrix

Suppose Γ = (G, γ) is a resistor network, with a total of m nodes v1, . . . , vm.
The notation

• γi,j stands for the sum of the conductances γ(e) taken over all edges
e joining vi to vj and γi,j = 0 if there is no edge joining vi to vj .

This function γi,j is a function of pairs of indices which is symmetric in i
and j, and γi,j > 0 if and only if there is an edge from vi to vj in Γ.

The Kirchhoff matrix K, which depends on the network Γ and the con-
ductivity function γ, is the m × m matrix defined as follows.

(1) If i 6= j then Ki,j = −γi,j
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(2) Ki,i =
∑

j 6=i γi,j

Example 3.1 Let Γ = (G, γ) be a resistor network whose underlying graph
G is shown Figure ??, and with conductances indicated next to the edges.
The Kirchhoff matrix K for this network is:

K =



23 0 0 −5 −18 0
0 12 0 0 −12 0
0 0 4 0 0 −4
−5 0 0 6 0 −1
−18 −12 0 0 36 −6

0 0 −4 −1 −6 11


The Kirchhoff matrix has the following interpretation. If the function u
is considered as a voltage defined at the nodes of G, then φ = Ku is the
resulting current (into the network). If a voltage is placed at all the nodes
of G, which has value 1 at node j and 0 at all other nodes, then Ki,j is
the current into Γ at node i. Thus column j of K gives the values of the
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currents into Γ at nodes i = 1, . . . ,m. If u is a voltage whose components
are u = {uj} = {u(vj)}, then φ(vi) =

∑
jKi,juj is the current flowing into

the network at node vi. In Section ?? the response matrix will be obtained
as a Schur complement of a submatrix in K.

3.4 The Dirichlet Norm

Let Γ = (G, γ) be a resistor network with a total of m nodes. If x and y
are functions defined at the nodes of G, for i = 1, . . . ,m, let xi = x(vi)
and yi = y(vi). By a slight abuse of notation, x and y will also stand for
the vectors x = [x1, . . . , xm], and y = [y1, . . . , ym] respectively. There is a
bilinear form Fγ(x, y) obtained from the Kirchhoff matrix by

Fγ(x, y) = y ·K · xT

If this matrix product is expanded out using the definition of the Kirchhoff
matrix K, after some algebraic manipulations, the result is:

Fγ(x, y) =
∑

γi,j(xi − xj)(yi − yj)

where the sum is taken over all edges e = vivj in E. Since γi,j is defined to
be 0 when there is no edge joining vi to vj , this sum can be taken for all
pairs i and j with i < j. Thus the bilinear form becomes:

Fγ(x, y) =
∑
i<j

γi,j(xi − xj)(yi − yj)

=
∑
i<j

γi,j(xi − xj)yi −
∑
i<j

γi,j(xi − xj)yj

=
∑
i<j

γi,j(xi − xj)yi +
∑
i>j

γi,j(xi − xj)yi

=
∑
i

yi

∑
j

γi,j(xi − xj)


Here the symmetry of γi,j is used to rewrite the second summand in line two
to give line three, and then the terms in line three are combined to give line
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four. Since γi,j is symmetric and satisfies γi,i = 0, this bilinear form can be
expressed in the more usual way as a sum over all pairs of indices i, j as

Fγ(x, y) =
1

2

∑
i,j

γi,j(xi − xj)(yi − yj)

The quadratic form associated to the bilinear form Fγ(x, y) is denoted Wγ .
If x = [x1, . . . , xm], is any function defined on the nodes of Γ, then

xKxT = Wγ(x) =
1

2

∑
i,j

γi,j(xi − xj)2

Wγ is the discrete analogue, for functions x on a network Γ, of the Dirichlet
norm for functions defined on a region in the plane which has an underlying
conductivity function.

Suppose Γ = (G, γ) is a connected resistor network with boundary. Let
x be a function defined at the nodes of G. The current into the network
at node vi will be denoted φ(vi), or φx(vi) if it is necessary to specify the
dependence on the function x. Ohm’s Law says that the current from node
vi to node vj is γi,j(xi− xj). Kirchhoff’s Law says that the current into the
network at node vi must be the same as the sum of the currents from node
vi to its neighbors. That is, for each node vi

φx(vi) =
∑

vj∈N (vi)

γi,j(xi − xj)

If the function x is γ-harmonic at each interior node vi of Γ, then φx(vi) = 0,
and the bilinear form becomes:

Fγ(x, y) =
∑
i

yi

∑
j

γi,j(xi − xj)


=
∑
i

y(vi) · φx(vi)

=
∑
i∈∂G

y(vi) · φx(vi)

The last sum is taken over only the boundary nodes vi in Γ. This is a
discrete analogue of one of Green’s identities for the Dirichlet form Fγ(x, y).
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Similarly,

Fγ(x, y) =
∑
i∈∂G

φy(vi) · x(vi)

The equality ∑
i∈∂G

y(vi) · φx(vi) = Fγ(x, y) =
∑
i∈∂G

φy(vi) · x(vi)

is the discrete analogue of another of Green’s identities.

Lemma 3.5 Suppose u is a function on Γ which is γ-harmonic at all in-
terior nodes, and let y be any function with u(p) = y(p) for all boundary
nodes p. Then

Wγ(u) ≤Wγ(y)

Proof: Write y = u+ z, where z = 0 on ∂G. Then, using Green’s identity,

Fγ(u, y) =
∑
p

z(p)φu(p)

=
∑
p∈∂G

z(p)φu(p) +
∑
p∈intG

z(p)φu(p)

The first term is 0 since z = 0 on ∂G, and the second term is 0 since
φu(p) = 0 at all nodes p in the interior of G. Thus

Wγ(y) = Wγ(u) + 2Fγ(u, z) +Wγ(z)

= Wγ(u) +Wγ(z)

≥Wγ(u)

Lemma 3.6 Suppose Wγ(u) ≤ Wγ(y) for all functions y on G with y = u
on ∂G. Then φu(p) = 0 for all p ∈ int G. Thus u is γ-harmonic on G.

Proof: Suppose z is a fixed function on G, with z = 0 on ∂G. Let
yt = u+ tz, where t is a real parameter and let f(t) = Wγ(yt). This function
f(t) has a minimum at t = 0. Expanding,

f(t) = Wγ(u) + 2tFγ(u, z) + t2Wγ(z)
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Thus f ′(0) = 2Fγ(u, z) = 0, which shows that any function z defined on
the nodes of G which is 0 on ∂G is orthogonal to u. This implies that∑
z(p)φu(p) = 0. For each node p ∈ int G, let z be the function which is 1

at p and 0 for all other nodes. Then φu(p) = 0. Thus u is γ-harmonic.

This leads to a quite general set of conditions on boundary values and
boundary currents that may be imposed, and for which there is a unique
potential. Suppose Γ is a connected resistor network where V is the set
of nodes, ∂G a non-empty connected subset of V designated as the set of
boundary nodes, and I = V − ∂G is the set of interior nodes. For each
boundary node vi either (but not both) of the following conditions may be
imposed:

(1) The value of the function x(vi).

(2) The value of the current φ(vi).

The value of x must be specified at least one boundary node. Suppose
there are a total of m nodes of G which are numbered so that v1, . . . , vn
are the boundary nodes and vn+1, . . . , vm are the interior nodes. Suppose
that 1 ≤ n1 ≤ n and that the values of x are specified for the nodes vi
for 1 ≤ i ≤ n1; the values of the current are specified for n1 < i ≤ n; the
function is to be γ-harmonic for n < i ≤ m. That is, suppose values {ai},
and {bi} are given, and it is required that:

(1) xi = ai for 1 ≤ i ≤ n1

(2) φ(vi) = bi for n1 < i ≤ n

(3) φ(vi) = 0 for n < i ≤ m

The equations in (1), (2) and (3) are a total of m linear equations for the
m values x1, . . . , xm. (Some of these equations give the values xi directly,
namely the first n1 equations.) To show that matrix for this system is non-
singular, suppose there were two solutions x = {xi} and y = {yi} with the
same boundary conditions. For each 1 ≤ i ≤ m, let zi = xi − yi. Then
z = {zi} would be a solution to the system

(1) zi = 0 for 1 ≤ i ≤ n1

(2)
∑

j γi,j(zi − zj) = 0, for n1 < i ≤ m
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Since the function z is γ-harmonic at all nodes vi for n1 < i ≤ m, z must
be the function for which

Wγ(z) =
∑
i<j

γi,j(zi − zj)2

achieves its minimum value. Since zi = 0 for 1 ≤ i ≤ n1, this minimum
value can be 0, and so must be 0. Hence zi = zj for each of the neighbors of
zi. Since G is assumed to be connected as a graph, the values of z must be
constant, and the constant must be 0, since there is at least one boundary
node, and thus at least one equation zi = 0. Therefore the system always
has a unique solution.

The assumption that the graph G be connected is not strictly necessary.
It need only be assumed that in each connected component of G there is
at least one boundary node at which the value of x is specified. With this
proviso, boundary conditions can be specified by imposing either a value for
the function or a value for the current at each boundary node, and there
will be a unique potential on G with this boundary data.

The bilinear form Fγ(x, y) is related to the bilinear form < g,Λγf >
defined by the response matrix Λγ as follows. Suppose f and g are functions
defined on the boundary nodes. Let x and y be the potentials due to f
and g respectively. For each boundary node vi, let φf (vi) be the boundary
current due to the function f . Then

Fγ(x, y) =
∑

g(vi)φf (vi)

=< g,Λγf >

=< f,Λγg >

There is a quadratic form Qγ(·) associated to the bilinear form < g,Λγf >,
as follows. For each function f defined on the boundary nodes of Γ,

Qγ(f) =< f,Λγf >

The polarization identity for Qγ is:

Qγ(f + g)−Qγ(f − g) = 4 < g,Λγf >

This shows that the quadratic form Qγ determines the matrix Λγ , and con-
versely. This quadratic form Qγ will be used Section ?? and in Chapter ??.
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3.5 The Schur Complement

Suppose Γ = (G, γ) is a connected resistor network with boundary. V is
the set of nodes, VB is the subset of V designated as boundary nodes, and
I = V − VB is the set of interior nodes.

• K(I; I) is the submatrix of K with index set = I.

The response matrix can be obtained by using the sub-matrix K(I; I) to
block reduce K. This is best explained by means of the Schur complement:
Λ = K/K(I; I). To make this treatment as self-contained as possible, a brief
description of the Schur complement will be given.

Suppose M is a square matrix and D is a non-singular square sub-matrix
of M . For convenience, assume that D is the lower right hand corner of M ,
so that M has the following block structure:

M =

[
A B
C D

]
(3.4)

The Schur complement of D in M is defined to be the matrix

M/D = A−BD−1C (3.5)

M/D is the submatrix in the upper left corner that results from using D to
block reduceM . The Schur complement satisfies the following determinantal
identity:

detM = det(M/D) · detD (3.6)

If E is a non-singular square sub-matrix of D, then

detM = det(M/D) · det(D/E) · detE

In this situation, the quotient formula of [?] is:

M/D = (M/E)/(D/E) (3.7)

Let A = {ai,j} be an n × n matrix, and assume that ah,k is a non-zero
entry. The 1 × 1 matrix with entry ah,k is denoted [ah,k]. In this case,
the Schur complement, of [ah,k] can be obtained by row-reduction using the
single entry ah,k. The determinantal identity becomes:

detA = (−1)h+kah,k · det(A/[ah,k])
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At the other extreme, suppose D is an (n − 1) × (n − 1) non-singular
submatrix of an n × n matrix A. In this case A/D is the 1 × 1 matrix
consisting of the single entry

a′ = a1,1 −BD−1C

The determinantal identity becomes

detA = a′ · detD (3.8)

Suppose A is an n × n matrix, with n ≥ 2. If i and j are any two indices,
A[i; j] will denote the (n − 1) × (n − 1) matrix obtained by deleting row i
and column j. Similarly, if (h, i) and (j, k) are two pairs of indices, then
A[h, i; j, k] will denote the (n − 2) × (n − 2) matrix obtained by deleting
rows h and i and deleting columns j and k.

We make extensive use of the following identity, due to Sylvester. It was
used by Dodgson in [?]. It will be called the six-term identity.

Lemma 3.7 The Six-term Identity Let A be an n × n matrix. Then
for any indices [h, i; j, k] with 1 ≤ h < i ≤ n and 1 ≤ j < k ≤ n,

detA · detA[h, i; j, k] = detA[h; j] · detA[i; k]− detA[h; k] · detA[i; j]

Proof: By re-ordering the rows and columns, the indices may be assumed
to be (h, i) = (1, 2) and (j, k) = (1, 2). Let D = A[1, 2; 1, 2]. Then A has
the form:

A =

 a b x
c d y
w z D


where x and y are 1 × (n− 2) row vectors, w and z are (n− 2) × 1 column
vectors. Temporarily assume that D is non-singular. The formula for the
Schur complement A/D gives:

A/D =

[
a− xD−1w b− xD−1z
c− yD−1w d− yD−1z

]

det(A/D) = (a− xD−1w)(d− yD−1z)− (b− xD−1z)(c− yD−1w)

= det(A[2; 2]/D) · det(A[1; 1]/D)− det(A[1; 2]/D) · det(A[2; 1]/D)
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The determinantal identity for Schur complements gives:

detA · detD = det(A/D) · (detD)2

= detA[2; 2] · detA[1; 1]− detA[1; 2] · detA[2; 1]

This is a polynomial relation which holds for the n2 values of the entries of
A whenever detD 6= 0. Therefore it is an identity in the coefficients of A.

Lemma 3.8 Suppose Γ = (G, γ) is a connected resistor network. Then the
Kirchhoff matrix K is positive semi-definite. If P = (p1, . . . , pk) is a non-
empty proper subset of the nodes of G, then the matrix K(P ;P ) is positive
definite.

Proof: Suppose there are a total of m nodes numbered v1, . . . , vm. Let
x = [x1, . . . , xm] is a vector of length m. The expression for xKxT as the
Dirichlet norm in equation ?? is

xKxT =
1

2

∑
i,j

γi,j(xi − xj)2 (3.9)

which shows that K is positive semi-definite. Suppose xKxT = 0. If γi,j > 0,
then xi = xj . Since the graph G is connected, this means that xi = xj for
all nodes vi and vj . Let A = K(P ;P ), and suppose y = [y1, . . . , yk] is a
vector with yAyT = 0. Let x = [x1, . . . , xm] be the vector with xpi = yi for
1 ≤ i ≤ k, and xj = 0 if j is not in P . Then xKxT = yAyT = 0. Since P is
a proper subset of the vertex set for G, at least one of the xi is 0. Since G
is connected, all the xi must be 0. Hence the yi are also 0.

Until now in this section, Γ = (G, γ) has been assumed only to be a
resistor network. For the remainder of the section, Γ = (G, γ) is a resistor
network with boundary. The nodes are indexed so that VB = {v1, . . . , vn} is
the set of boundary nodes, and I = {vn+1, . . . , vn+d} is the set of interior
nodes.

Theorem 3.9 Suppose Γ = (G, γ) is a connected resistor network with
boundary. Then the network response matrix Λγ is the Schur complement

Λγ = K/K(I; I)
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Proof: If I is the empty set, K/K(I; I) is defined to be K, and Λγ = K.
Otherwise, I is non-empty. Let D = K(I; I). Then K has a block structure:

K =

[
A B
BT D

]
(3.10)

By Lemma ??, D is non-singular. Suppose that f is a function imposed at
the boundary nodes. Let g be the values of the resulting potential at the
interior nodes. f will also stand for the vector [f1, . . . , fn], where fi = f(vi)
for each 1 ≤ i ≤ n. g will also stand for [gn+1, . . . , gn+d] where gi = g(vi)
for each n+ 1 ≤ i ≤ n+ d. The vector of currents into the boundary nodes
is denoted φ. Kirchhoff’s current law says that the sum of the currents into
each interior node is 0. Thus

Af +Bg = φ

BT f +Dg = 0
(3.11)

When written in block form, equations ?? become[
A B
BT D

] [
f
g

]
=

[
φ
0

]
Solving equations ?? first for g, and then for φ, we have

g = −D−1BT f

φ = (A−BD−1BT )f

Therefore the response matrix is Λγ = A − BD−1BT , which is the Schur
complement of D in K.

Observation 3.1 The values of the potential u at the interior nodes p are:

u(p) = g(p) = [−D−1BT f ](p) (3.12)

Example 3.2 Suppose that Γ = (G, γ) is the circular planar graph in the
shape of an (inverted) Y , as in Figure ??a, with three boundary nodes v1,
v2, and v3, and one interior node v4. The conductances of the edges are:
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Figure 3-3: Y and 4

γ(v1v4) = 6, γ(v2v4) = 12 and γ(v3v4) = 18, as indicated on the figure. The
Kirchhoff matrix for the network Γ is:

K =


6 0 0 −6
0 12 0 −12
0 0 18 −18
−6 −12 −18 36


In this case, the response matrix Λ is the Schur complement in K of the
single entry 6 in the (4, 4) position. Using this entry to row-reduce the last
column of K, the result is:

Λ =

 5 −2 −3
−2 8 −6
−3 −6 9


The values 2, 3 and 6 are the values of the conductances for the edges v1v2,
v1v3 and v2v3 for the graph in the shape of the 4 in Figure ??b. Since there
are no interior nodes, the off-diagonal entries in the Kirchhoff matrix for the
graph 4 in Figure ??b are the (negatives of) values of the conductors. The
Kirchhoff matrix for the network in Figure ??b is the same as its response
matrix.

If the values of the conductors in a Y (such as that of Figure ??a) are
γ(v1v4) = a, γ(v2v4) = b, γ(v3v4) = c, then the values of the conductors in
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the4 (such as that of Figure ??b) will be γ(v1v2) = σ−1ab, γ(v2v3) = σ−1bc,
γ(v1v3) = σ−1ac, where σ = a+b+c. A resistor network that contains the Y
of Figure ??a will be electrically equivalent to the resistor network obtained
by replacing the conductors of the Y in Figure ??a by the conductors of the
4 in Figure ??b.

Example 3.3 Let Γ = (G, γ) be the network of Figure ??, with conduc-
tances as indicated adjacent to the edges in the figure. The Kirchhoff matrix
K for Γ is:

K =



23 0 0 −5 −18 0
0 12 0 0 −12 0
0 0 4 0 0 −4
−5 0 0 6 0 −1
−18 −12 0 0 36 −6

0 0 −4 −1 −6 11


The response matrix is the Schur complement of the sub-matrix K(5, 6; 5, 6)
in K, where

K(5, 6; 5, 6) =

[
36 −6
−6 11

]
For this network, the response matrix, calculated as the Schur complement
Λ = K/K(5, 6; 5, 6), is

Λ =


13.1 −6.6 −1.2 −5.3
−6.6 7.6 −0.8 −0.2
−1.2 −0.8 2.4 −0.4
−5.3 −0.2 −0.4 5.9

 (3.13)

Figure ?? shows a graph H which is not a circular planar graph. H has
6 edges; the conductances for the edges are γ(v1v2) = 6.6, γ(v2v3) = 0.8,
γ(v3v4) = 0.4, γ(v1v4) = 5.3, γ(v1v3) = 1.2, γ(v2v4) = 0.2. Since there
are no interior nodes, the off-diagonal entries in the response matrix for the
graph in Figure ?? are the (negatives of) values of the conductors. Thus
the Kirchhoff matrix of the network of Figure ?? is the same as its response
matrix which is also the response matrix for the network in Figure ??.

Suppose the vector of voltages f = [1, 0, 0, 0] is applied to the boundary
nodes in the network of Figure ??. That is the voltage is 1 at node v1 and
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Figure 3-4: Graph H exhibiting the response matrix Λ

0 at nodes v2, v3 and v4. The current into Γ is the first column of Λ, which
is:

Λ · f = [13.1,−6.6,−1.2,−5.3]T

at nodes v1, v2, v3, v4. The potential at the interior nodes can be found by
formula ??, which says that

u(p) = [−D−1BT f ](p)

In this case, u(v5) = 0.55 and u(v6) = 0.3. The voltages are indicated
in Figure ??a. The current through each edge and the direction of the
current flow is indicated in Figure ??b. The current into the network at
each boundary node is indicated in parentheses; the negative sign means
that the current flows out.

3.6 Sub-matrices of the Response Matrix

If A = (a1, . . . , as) and B = (b1, . . . , bt) are two sequences of nodes, the
notation A + B denotes the sequence (a1, . . . , as, b1, . . . , bt). With this no-
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tation, the following is an immediate consequence of Theorem ?? and the
definition of Schur complement.

Lemma 3.10 Suppose Γ is a connected resistor network with boundary, and
let Λ be its response matrix. Let P and Q be two sequences of boundary nodes
of Γ. Then the sub-matrix Λ(P ;Q) of Λ is the Schur complement

Λ(P ;Q) = K(P + I;Q+ I)/K(I; I)

Suppose Γ = (G, γ) is a connected resistor network with boundary, and
p is one of the boundary nodes. Let Γ′ be the resistor network with the
same graph G, with the same conductivity function γ, but p is declared to
be an interior node. Let Λ′ denote the response matrix for Γ′. By Theorem
?? and the quotient formula ??,

Λ′ = K/K(I + p; I + p)

Suppose P = (p1, . . . , pk) and Q = (q1, . . . , qk) are two sequences of bound-
ary nodes, and p is another boundary node of Γ, with p not in the set P ∪Q.
The identification of the response matrix as a Schur complement (Theorem
??), the quotient formula ??, and the determinantal identity, equation ??,
for Schur complements shows the following.

Lemma 3.11 (1) Λ′(P ;Q) = Λ(P + p;Q+ p)/Λ(p; p)

(2) det Λ′(P ;Q) = det Λ(P + p;Q+ p)/ det Λ(p; p)

3.7 Connections and Determinants

Suppose Γ = (G, γ) is a connected resistor network with boundary. E is the
edge-set, V is the vertex set, VB is the subset of V designated as boundary
nodes, and I = V − VB is the set of interior nodes. The definition of a
connection through G will be given in slightly greater generality than in
Chapter ??. If p and q are two boundary nodes, a path from p to q through
G is a sequence of edges e0 = pr1, e0 = r1r2, . . . eh−1 = rh−1rh, eh =
rhq such that r1, r2, . . . , rh are distinct interior nodes of G. Suppose P =
(p1, . . . , pk) and Q = (q1, . . . , qk) are two disjoint sets of boundary nodes. A
k-connection P ↔ Q from P to Q through G is a set α = (α1, . . . , αk) of
disjoint paths through G, where for each 1 ≤ i ≤ k, αi is a path from Pi to
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Qτ(i), and τ is an element of the permutation group Sk. This is more general
than the previous definition of k-connection, because here the graph G is
not assumed to be planar. There may be two (or more) k-connections α and
β from P to Q where the endpoints of α and β are different permutations of
the nodes in Q. This cannot occur if (P ;Q) are a circular pair of boundary
nodes in a circular planar graph.

Let C(P ;Q) be the set of connections from P to Q. For each k-connection
α = (α1, . . . , αk) in C(P ;Q), let

• τα be the permutation of the nodes (q1, q2, . . . , qk) which results at the
final endpoints of the paths (α1, α2, . . . , αk);

• Eα be the set of edges in α;

• Jα be the set of interior nodes which are not the endpoints of any edge
in α.

• Dα = detK(Jα; Jα)

Lemma 3.12 Suppose Γ = (G, γ) is a connected resistor network with
boundary. Let P = (p1, p2, . . . , pk) and Q = (q1, q2, . . . , qk) be two disjoint
sequences of boundary nodes. Then

det Λ(P ;Q) · detK(I; I) = (−1)k
∑
τ∈Sk

sgn(τ)


∑
α

τα = τ

∏
e∈Eα

γ(e) ·Dα


Proof: Suppose there are n boundary nodes, d interior nodes, and m =
n+d nodes altogether. Let ν = k+d. Let the interior nodes be numbered ri
for i = k+1, . . . , k+d. (This is a convenient re-indexing of the interior nodes
vn+1, . . . , vn+d.) Taking the Schur complement of K(I; I), the determinantal
formula ?? gives

det Λ(P ;Q) · detK(I; I) = detK(P + I;Q+ I)
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Temporarily let the ν×ν matrix K(P+I;Q+I) be denoted by M = {mi,j}.
Then

detM =
∑
σ∈Sν

sgn(σ)

ν∏
i=1

mi,σ(i)

Here Sν denotes the symmetric group on ν symbols. Fix σ ∈ Sν , and for
each 1 ≤ i ≤ k, let ni be the first index j for which σj(i) ≤ k. For each
1 ≤ i ≤ k, and 0 ≤ j ≤ ni, let a(i, j) = σj(i). Let τ be the permutation of
1, 2, . . . , k where τ(i) = a(i, ni). Thus each σ ∈ Sν gives a diagram of the
following form:

1 = a(1, 0)
σ7→ a(1, 1)

σ7→ a(1, 2)
σ7→ . . .

σ7→ a(1, n1) = τ(1)

2 = a(2, 0)
σ7→ a(2, 1)

σ7→ a(2, 2)
σ7→ . . .

σ7→ a(2, n2) = τ(2)

. . .

k = a(k, 0)
σ7→ a(k, 1)

σ7→ a(k, 2)
σ7→ . . .

σ7→ a(k, nk) = τ(k)

Let A be the subset of {1, 2, . . . , ν} consisting of the a(i, j) for 1 ≤ i ≤ k

0 ≤ j < ni. Let t =
∑

ni, which is the cardinality of A. Let B be the set

{1, 2, . . . , ν}−A. Then σ may be expressed as a product σ = φ ·µ, where φ
is a permutation of A, and µ is a permutation of B. Let φ be expressed as a
product of disjoint cycles φ = φ1 ·φ2 · . . . ·φs. Then sgn(σ) = (−1)t−ssgn(µ).
Then τ will also be expressed as a product of s cycles. τ = ψ1 ·ψ2 · · ·ψs and
sgn(τ) = (−1)k−s. Thus sgn(σ) = (−1)k+tsgn(τ)sgn(µ).

The diagram above determines a set α = (α1, . . . , αk) of sequences of
nodes in G, where αi is the sequence a(i, 0), a(i, 1), . . . , a(i, ni). For each
1 ≤ i ≤ k, a(i, 0) = pi and a(i, ni) = qτ(i). For each 1 ≤ i ≤ k, and

0 < j < ni, a(i, j) is the interior node ra(i,j). The product
ν∏
i=1

mi,σ(i) can

be non-zero only if α = (α1, α2, . . . , αk) forms a connection through G from
P to Q. For each α ∈ C(P ;Q), let S(α) be the set of σ ∈ Sν for which the
connection is α. As σ varies over S(α), µ varies over the permutations of
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Jα. Then

∑
σ∈S(α)

sgn(σ)
ν∏
i=1

mi,σ(i)

=
∑

σ∈S(α)

(−1)k+tsgn(τ)
∏
e∈Eα

(−γ(e)) · sgn(µ) ·
∏
i∈Jα

mi,µ(i)

= (−1)ksgn(τ) ·
∏
e∈Eα

γ(e) · detK(Jα; Jα).

For each τ ∈ Sk, take the sum over all α which induce this τ . Then take
the sum over all τ ∈ Sk, and the proof is complete.

Observation 3.2 Comments on the proof of Lemma ??.

(1) K(P + I;Q + I) is a ν × ν matrix. Every σ ∈ Sν corresponds to a
potential path α from P to Q through G, which might be a connection from
(p1, . . . , pk) to (qτ(1), . . . , qτ(k)). The path αi is the sequence

pi = a(i, 0)
σ7→ a(i, 1)

σ7→ a(i, 2)
σ7→ . . .

σ7→ a(i, ni) = qτ(i)

where each a(i, j)a(i, j + 1) might be an edge in G.

(2) If for each 1 ≤ i ≤ k, and each 0 ≤ j ≤ ni − 1, the value of
γ(a(i, j)a(i, j + 1)) is non-zero, then the diagram corresponds to an actual
path from (p1, . . . , pk) to (qτ(1), . . . , qτ(k)).

(3) α is an actual path if and only if
∏ν
i=1mi,σ(i) 6= 0.

(4) The analysis of the signs of the permutations shows that for each
fixed τ ∈ Sk, all the signs of the terms in the expansion of the determinant
are all the same, namely (−1)ksgn(τ).

Observation 3.3 A consequence of Lemma ?? is that if det Λ(P ;Q) = 0,
then one or the other of the following two possibilities is true.

(1) There is no connection from P to Q.

(2) There are (at least) two connections α and β from P to Q, with
permutations τα and τβ of opposite sign.
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Theorem 3.13 Suppose Γ = (G, γ) is a circular planar resistor network
and (P ;Q) = (p1, . . . , pk; q1, . . . , qk) is a circular pair of sequences of bound-
ary nodes.

(a) If (P ;Q) are not connected through G, then det Λ(P ;Q) = 0.

(b) If (P ;Q) are connected through G, then (−1)k det Λ(P ;Q) > 0.

Proof: Part (a) follows directly from ??. For part (b), first consider the
case when G is connected as a graph. By Lemma ??, K(I; I) is positive def-
inite, so detK(J ; J) > 0 for all J ⊆ I. The sequence (p1, . . . , pk, qk, . . . , q1)
is in circular order around the boundary of G. If there is a connection from
P to Q, it must connect pi to qi for 1 ≤ i ≤ k. Thus each permutation
τ which appears in Lemma ?? is the identity, so all the terms in the sum
have the same sign. In the general case, G is a disjoint union of connected
components Gi, and Λ = Λ(Γ, γ) is a direct sum of the Λ(Γi, γi) .

Suppose P = (p1, . . . , pk) and Q = (q1, . . . , qk) are two sequences of
boundary nodes that are in disjoint arcs of the boundary circle. Let P ′

and Q′ be the permutations of P and Q respectively, so that (P ′;Q′) are a
circular pair. Then

det Λ(P ;Q) = ±Λ(P ′;Q′)

Corollary 3.14 Suppose Γ = (G, γ) is a circular planar resistor network
with P and Q are arbitrary sequences (of the same length) of boundary nodes
which are in disjoint arcs of the boundary circle. Then Λ(P ;Q) is non-
singular if and only if P and Q are connected through G. In particular, if
G is well-connected as a graph, then Λ(P ;Q) is non-singular.

This Corollary of Theorem ?? is useful for showing the existence of
solutions to linear systems of the form Λ(P ;Q)x = c, where P and Q are
sets of boundary nodes in disjoint arcs of the boundary circle, but P and Q
are not necessarily in circular order.

Example 3.4 Let Γ = (G, γ) be a resistor network with five boundary
nodes as in Figure ??a. Suppose it is known that

(1) there is a 1-connection from v1 to v4

(2) there is a 1-connection from v2 to v3
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Figure 3-6: Example ??

(3) there is no 2-connection from P = (v1, v2) to Q = (v4, v3).

Statement (3) and Theorem ?? imply that

det Λ(P ;Q) = det

[
Λ(1, 4) Λ(1, 3)
Λ(2, 4) Λ(2, 3)

]
= 0

The diagonal entries are both non-zero, so the off-diagonal entries must both
be non-zero also. Thus there must be:

(4) a 1-connection from v1 to v3, and also

(5) a 1-connection from v2 to v4.

Then there must also be
(6) a 1-connection from v1 to v2 and

(7) a 1-connection from v3 to v4.

To see this, let R = (v4, v1) and S = (v3, v2), and consider the submatrix

Λ(R;S) = det

[
Λ(4, 3) Λ(4, 2)
Λ(1, 3) Λ(1, 2)

]
The off-diagonal entries Λ(1, 3) and Λ(4, 2) are both non-zero (negative)
by (4) and (5). By Theorem ??, det Λ(R;S) cannot be negative, so both
diagonal entries Λ(1, 2) and Λ(4, 3) must be non-zero, which implies the
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connections of (6) and (7). In this second use of Theorem ??, it is important
that the pair (R;S) be in circular order. Figure ??b shows a possibility for
connections through the graph that satisfy the conditions.

Example 3.5 Let Γ = (G, γ) be a resistor network with six boundary nodes
as in Figure ??a. Suppose it is known that

(1) there is a 2-connection from (v1, v2) to (v6, v5), and

(2) there is a 2-connection from (v2, v3) to (v5, v4), but

(3) there is no 3-connection from P = (v1, v2, v3) to Q = (v6, v5, v4).

Then there must be:

(4) a 2-connection from (v1, v2) to (v5, v4) and also

(5) a 2-connection from (v2, v3) to (v6, v5).

The relevant submatrix of Λ is

Λ(P ;Q) =

 Λ(1, 6) Λ(1, 5) Λ(1, 4)
Λ(2, 6) Λ(2, 5) Λ(2, 4)
Λ(3, 6) Λ(3, 5) Λ(3, 4)


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With the obvious (and standard) notation for the 2 × 2 corner matrices, the
six-term identity of Lemma ?? shows that:

det Λ(P ;Q) · Λ(2, 5) = det[NW ] · det[SE]− det[NE] · det[SW ]

The assumptions imply that det[NW ] 6= 0, det[SE] 6= 0. Theorem ??
implies that det Λ(P ;Q) = 0, so det[NE] and det[SW ] must both be non-
zero, which implies the existence of the connections asserted in (3) and (5).
Figure ??b shows a possibility for paths which satisfy the given conditions.

3.8 Recovery of Conductances I

To say that removing an edge e from a graph G breaks the connection from
P ↔ Q means that P and Q are connected through G (possibly in many
ways), but that P and Q are not connected through G′, which is the graph
G which results when edge e is removed. By Theorem ??, this is equivalent
to the two assertions that det Λ(P ;Q) 6= 0 and det Λ′(P ;Q) = 0.

An edge pq between a pair of adjacent boundary nodes is called a bound-
ary edge. If p is a boundary node which is joined by an edge to only one
other node r which is an interior node, the edge pr is called a boundary
spike.

Corollary 3.15 Boundary edge formula. Let Γ = (G, γ) be a circular
planar resistor network and let pq be a boundary edge of G. Suppose P =
(p1, . . . , pk) and Q = (q1, . . . , qk) are two sequences of boundary nodes such
that (P ′;Q′) = (p, p1, . . . , pk; q, q1, . . . , qk) is a circular pair that is (k + 1)-
connected, and deleting pq breaks the connection between P ′ and Q′. Then

γ(p, q) = −Λ(p; q) + Λ(p;Q) · Λ(P ;Q)−1 · Λ(P ; q) (3.14)

Proof: Let ξ = γ(p, q). Consider detK(P ′ + I;Q′ + I) as a linear func-
tion F (z) of the first column z of K(P ′ + I;Q′ + I). This is the column
corresponding to node q ∈ Q′. Thus z = x+ y, where

x =

[
−ξ

0

]
and y =

[
0
a

]
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Then F (z) = F (x) +F (y). Since there is no connection from P ′ to Q′ after
pq is deleted, F (y) = 0, Therefore

detK(P ′ + I;Q′ + I) = F (x) + F (y)

= F (x)

= −ξ detK(P + I;Q+ I)

Taking the Schur complement of K(I; I) in K(P + I;Q + I), and using
Lemma ?? gives

det Λ(P ′;Q′) = −ξ · det Λ(P ;Q)

The Schur complement of Λ(P ;Q) in Λ(P ′;Q′) produces the 1 × 1 matrix
consisting of the single number:

Λ(p; q)− Λ(p;Q) · Λ(P ;Q)−1 · Λ(P ; q)

The determinantal identity for Schur complements, equation ??, shows that
this value is −ξ. This gives the formula for γ(p, q).

Example 3.6 Let Γ = (G, γ) be a resistor network whose graph is the
graph G of Figure ??, and suppose the response matrix Λ is:

Λ =


2.4 −0.4 0.0 −0.8 −1.2
−0.4 1.9 −1.0 −0.2 −0.3

0.0 −1.0 2.0 −1.0 0.0
−0.8 −0.2 −1.0 3.6 −1.6
−1.2 −0.3 0.0 −1.6 3.1

 (3.15)

Deleting edge v4v5 breaks the connection P ′ ↔ Q′, where P = (v4, v2), and
Q = (v5, v1). Thus with p = v4, q = v5, P = (v2) and Q = (v1), equation ??
gives

γ(v4, v5) = −Λ(4; 5) + Λ(4; 1)Λ(2; 1)−1Λ(2, 5)

= 1.6 + (−0.8)(−0.4)−1(−0.3)

= 1.6− (0.6) = 1.0

Corollary 3.16 Boundary spike formula. Suppose Γ is a circular pla-
nar resistor network and pr is boundary spike joining a boundary node p to
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an interior node r. Suppose that contracting pr to a single node breaks the
connection between a circular pair (P ;Q) = (p1, . . . , pk; q1, . . . , qk). Then

γ(pr) = Λ(p; p)− Λ(p;Q) · Λ(P ;Q)−1 · Λ(P ; p) (3.16)

Proof: Let ξ = γ(pr). Then K(P + p + I;Q + p + I) has a submatrix
K(p, r; p, r) which has the form:

K(p, r; p, r) =

[
ξ −ξ
−ξ σ

]
The remaining entries of K(P + p + I;Q + p + I) in both the row and the
column corresponding to p are 0. Thus

detK(P + p+ I;Q+ p+ I) = ξ detK(P + I;Q+ I)

− ξ2 detK(P + I − r;Q+ I − r)

The last term is 0 since contracting pr breaks the connection from P to
Q. If each of the other terms is divided by detK(I; I), and each quotient
interpreted as the determinant of a Schur complement, the result is:

det Λ(P + p;Q+ p) = ξ · det Λ(P ;Q)
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Taking the Schur complement of Λ(P ;Q) in Λ(P + p;Q + p) results in a 1
× 1 matrix with the single entry:

Λ(p; p)− Λ(p;Q) · Λ(P ;Q)−1 · Λ(P ; p)

The determinantal identity ?? shows that this value is ξ = γ(pr).

Example 3.7 Again let G be the graph of Figure ?? with the response
matrix Λ given by equation ??. Contracting edge v1v6 in the graph G breaks
the connection P ↔ Q, where P = (v5, v4) and Q = (v2, v3). Formula ??
gives

γ(v1v6) = Λ(1; 1)− Λ(1; 2, 3)Λ(5, 4; 2, 3)−1Λ(5, 4; 1)

= 2.4− [−0.4, 0]

[
−0.3 0.0
−0.2 −1

]−1 [ −1.2
−0.8

]
= 2.4− (−1.6) = 4.0



Chapter 4

Harmonic Functions

4.1 Harmonic Continuation

In this section, Kirchhoff’s Laws will be used to construct γ-harmonic func-
tions on a resistor network, in particular, γ-harmonic functions where the
boundary values are prescribed at some of the boundary nodes, and the
boundary currents are prescribed at some of the same nodes. This is not
always possible, but when it is, it provides useful information about the net-
work. First to be considered are rectangular networks, with nodes at (some
of) the integer lattice points, as illustrated in Figure ??.

Specifically, the rectangular graph R(m,n) has nodes at points (i, j)
for 0 ≤ i ≤ m + 1 and 0 ≤ j ≤ n + 1, with the four corner points (0, 0),
(m+1, 0), (m+1, n+1) and (0, n+1) omitted. The edges are the horizontal
or vertical line segments between adjacent nodes, excluding the edges on the
lines x = 0, x = m + 1, y = 0, and y = n + 1. Thus R(m,n) has 2n + 2m
boundary nodes, mn interior nodes, and n(m+ 1) + (n+ 1)m edges.

• The boundary nodes on the right-hand face are called East nodes, or
simply E. These are the nodes (i, j) where i = m+ 1 and 1 ≤ j ≤ n.

• The boundary nodes on the bottom face are called South nodes, or S.
These are the nodes (i, j) where j = 0 and 1 ≤ i ≤ m.

• The boundary nodes on the left-hand face are called West nodes, or
W. These are the nodes (i, j) where i = 0 and 1 ≤ j ≤ n.

59
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Figure 4-1: Rectangular graph

• The boundary nodes on the top face are called North nodes, or N .
These are the nodes (i, j) where j = n+ 1 and 1 ≤ i ≤ m.

• The nodes of R(m,n) along the vertical line x = i are denoted by Yi.
Thus Y0 is the west face W , and Yn+1 is the east face E.

The boundary “circle” for R(m,n) passes through the nodes on the faces
E, S, W, and N .

The graph R(7, 5) in Figure ?? has 5 boundary nodes on each of the E
and W faces, and 7 boundary nodes on each of the N and S faces.

Suppose u is a γ-harmonic function on a rectangular network, and p is
an interior node with 4 neighboring nodes q1, q2, q3 and q4, as shown in
Figure ??. For such a configuration, equation ?? is a 5-point formula: 4∑

j=1

γ(pqj)

u(p) =

4∑
j=1

γ(pqj)u(qj) (4.1)

If any four of these values of the function u are known, the fifth value
is determined. In particular, if the values of u(p), u(q2), u(q3) and u(q4)
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are all known, then the value of u(q1) will be known too. If the values of
u(q2), u(q3) and u(q4) are known, and the current through q3p is known, the
value of u(p) can be calculated by using Ohm’s Law and then u(q1) can be
calculated by the 5-point formula, ??.

Observation 4.1 There is a similar statement when the points q2, q3, q4

are replaced by the entire faces S, W and N , the node p is replaced by the
set of interior nodes, and q1 is replaced by the entire E face.

Suppose that u is a γ-harmonic function on a rectangular network whose
values are given on the S, W, and N faces, and suppose also that the current
is given on the W face. Then the value of u at all the nodes of Γ can be
found by a process called harmonic continuation as follows.

(1) The values of u on Y0 = W , the values of the horizontal conductors
on the W face, the currents into Γ at the nodes of W and Ohm’s Law, give
the values of u(1, j), for 1 ≤ j ≤ n. Together with the given values, u(1, 0)
and u(1, n+ 1), the values of u can be found for all nodes in Y1.

(2) The values of u(2, j), for 1 ≤ j ≤ n can be calculated from the values
of u at the nodes in the vertical lines Y0 and Y1 and the 5-point formula ??.
Together with the given values u(2, 0) and u(2, n+ 1) on the boundary, the
values of u can be found for all nodes in Y2,

(3) Continuing in this way across Γ, the values of u at each of the nodes
in each of the columns Y1, . . .Yn can be calculated. And last to be found
are the values of u in Yn+1, which are the E face nodes.

Example 4.1 Suppose that the conductance of each edge in the rectangular
network of Figure ??, has value 1 and that the boundary values for a γ-
harmonic function u are 0 for all nodes in the S, W and N faces and the
current on the W face is given by: φ(0, j) = (−1)j for 1 ≤ j ≤ 5. The
γ-harmonic function u with this boundary data will have values
[ 0,+1,−1,+1,−1,+1, 0] on the nodes in column Y1. The values of u are
successively greater and greater in magnitude in columns Y2, . . . , Y7, and the
signs alternate vertically in each Yi. The values of u at all the nodes of the
network are given in Figure ??. This γ-harmonic function has exponential
growth in the x-direction, and sinusoidal behavior in the y-direction.
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

0 0 0 0 0 0 0
0 1 5 25 129 681 3652 19799 108151
0 −1 −6 −34 −190 −1057 −5872 −32607 −181042
0 1 6 35 202 1153 6574 36687 205438
0 −1 −6 −34 −190 −1057 −5872 −32607 −181042
0 1 5 25 129 681 3652 19799 108151

0 0 0 0 0 0 0


Figure 4-2: Table of values of a harmonic function on R(7, 5)

4.2 Recovering Conductances from Λ

Suppose that Γ = (R, γ) is a resistor network whose underlying graph is a
rectangular graph R. The conductances can be calculated from Λγ using the
functions constructed by harmonic continuation. If boundary values for u
are specified appropriately at some of the boundary nodes, and the boundary
currents are specified at some of those nodes, harmonic continuation guar-
antees that the potential u is 0 throughout a zone of Γ. The response matrix
is used to determine the boundary values for this function. The response
matrix is used a second time to find the current into the boundary nodes,
and finally Ohm’s Law is used to calculate the values of the conductors.

The method for recovering the conductances will be illustrated first for
a resistor network Γ = (G, γ) whose underlying graph is the square network
G = R(5, 5) which has 5 boundary nodes on each face shown in Figure ??.
The same considerations apply to any rectangular network. Starting at the
top, the nodes on the E face are labeled, p1, p2, . . . , p5. Starting from the
left, the nodes on the N face are labeled, q5, q4, . . . , q1. The node on the N
face adjacent to p1 is q1.

There is a γ-harmonic function u which has value 0 for all nodes on the
S, W and N faces except u(q1) = 1, and the current is 0 on the W face.
Harmonic continuation guarantees that there is such a function and the value
of u is 0 at all interior nodes. The value of u(p1) is uniquely determined
by the values of the conductors in Γ. This is what permits the calculation
of the values of γ(p1r) and γ(q1r). (Incidentally, but not essential to the
argument at this point, the values of u at p2, p3, p4 and p5 are all 0.) If
the conductances of all edges in G were known, the value of u(p1) could be
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Figure 4-3: The graph R(5, 5)

obtained by harmonic continuation starting from the nodes on the W face,
and continuing across to the E face. Since the conductances are not yet
known, the response matrix Λγ is used to find the value of u(p1) as follows.
Λγ has the block form shown in Figure ??. Here E stands for the 5 indices
corresponding to the nodes on the E face, S stands for the 5 indices on the
S face, etc. Thus the block Λ(W ;N) at position (W,N) is a 5 × 5 matrix
which gives the current on the W face due to boundary values imposed on
the N face. A similar block structure will be used for vectors of voltages
and vectors of currents. For example the notation uN stands for a vector of
5 values which are boundary voltages on the N face.

(1a) There is a potential for which the boundary values are the function
y, where y(q1) = 1, and for all other boundary nodes p, y(p) = 0. Using
the notation for vectors and currents implied by the block structure of Λ,
this means that yE = 0, yS = 0, yW = 0, yN = [0, 0, 0, 0, 1] and y =
[yE , yS , yW , yN ]. The value of the current (at all nodes) is ψ = Λ · y. The
value of the current on the W face is ψW = Λ(W ;N) · yN .

(1b) The submatrix Λ(W ;E) of Figure ?? gives the current on the W
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Λ =

E S W N

E

S

W

N

Λ(E;E) Λ(E;S) Λ(E;W ) Λ(E;N)

Λ(S;E) Λ(S;S) Λ(S;W ) Λ(S;N)

Λ(W ;E) Λ(W ;S) Λ(W ;W ) Λ(W ;N)

Λ(N ;E) Λ(N ;S) Λ(N ;W ) Λ(N ;N)

Figure 4-4: Block structure of Λ for a rectangular graph

face due to boundary values imposed on the E face. The 5 nodes on the E
face and the 5 nodes on the W face, are 5-connected, so by Theorem ??,
the matrix Λ(W ;E) is nonsingular, and there is a unique solution xE =
[x1, x2, x3, x4, x5] to the 5 × 5 linear system

Λ(W ;E) · xE + ψW = 0

(1c) Let u be the potential on Γ due to the boundary function x, where
(in block form) x = [xE , 0, 0, xN ] and xE is obtained above, xS = 0, xW = 0
and xN = [0, 0, 0, 0, 1] on the N face. The network response is the current
φ = Λ · x. On the W nodes the current is

φW = Λ(W ;E) · xE + 0 + 0 + Λ(W ;N) · xN = 0

Using the fact that the current is 0 on the W face, harmonic continuation
starting from the W face shows that the value of u is 0 for all the interior
nodes. The current due to the boundary function x is φ = Λ · x. The value
of the current φ at node q1 gives the current across q1r. The values u are
u(q1) = 1, and u(r) = 0, so by Ohm’s Law

φ(q1) = γ(q1r)(u(q1)− u(r))

= γ(q1r)(1− 0)
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Figure 4-5: R(5, 5)

The value of γ(q1r) is calculated as follows.

γ(q1r) = φ(q1)

= Λ(q1;E)xE + Λ(N ; q1)xN

= −Λ(q1;E) · Λ(W ;E)−1 · Λ(W ; q1) + Λ(q1; q1)

This is the same as the boundary spike formula ??. The value of the con-
ductors at each of the corners is calculated in the same way.

(2) The next step is to find the values of the conductors γ(q2s1), γ(s1r),
γ(s2p2) and γ(rs2) in Figure ??.

(2a) There is a potential with boundary function y, where y(q2) = 1
and y = 0 for all other boundary nodes. Thus yE = 0, yS = 0, yW = 0,
yN = [0, 0, 0, 1, 0] and y = [yE , yS , yW , yN ]. The network response at all
boundary nodes due to y is the current ψ = Λ · y. The current on the W
face is ψW = Λ(W ;N) · yN . Since Λ(W ;E) is non-singular, the 5 × 5 linear
system

Λ(W ;E) · xE + ψW = 0
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has a unique solution vector xE . There is a potential u for which the bound-
ary function is x where xN = yN and x = [xE , 0, 0, yN ]. The current due to
the potential u is φ = Λ · x. The current on the W nodes

φW = Λ(W ;E) · vE + 0 + 0 + Λ(W ;N) · xN = 0

Harmonic continuation starting from the W face shows that the value of u
is 0 at all interior nodes, except at node r. The value of u is specified to be 1
at q2. The value of the current at node q2 gives the current across conductor
q2s1. Ohm’s Law is:

φ(q2) = γ(q2s1)(u(q2)− 0)

This gives the value of γ(q2s1).

γ(q2s1) = φ(q2)

= Λ(q2;E)xE + Λ(N ; q2)xN

= −Λ(q2;E)Λ(W ;E)−1Λ(W ; q2) + Λ(q2; q2)

This is another case of the boundary spike formula of Corollary ??.

(2b) Furthermore, φ(q1) is the value of the current across conductor q1r.
The potential at q1 is 0, the conductance γ(q1r) has been calculated, so the
value of u(r) can be found by Ohm’s Law.

φ(q1) = γ(q1r)(0− u(r))

The current c(s1r) across s1r must be the same as the current across q2s1,
which is φ(q2). The value of γ(s1r) can be calculated by Ohm’s Law.

φ(q2) = γ(s1r)(u(s1)− u(r))

= γ(s1r)(0− u(r))
(4.2)

(3) The response matrix can be used in a similar way to find the con-
ductances of the edges at level three, that is, the values of the conductors
γ(q3, t1) γ(t1, s1) γ(s1, t2) γ(t2, s2) γ(s2, t3) γ(t3, p3) in Figure ??. The first
step is to start with a potential with boundary values x, where x(q3) = 1,
and x(p) = 0 for all other boundary nodes. Thus xE = 0, xS = 0, xW = 0,
xN = [0, 0, 1, 0, 0] and x = [xE , xS , xW , xN ]. The rest of the calculation is
similar to the calculation at level (2) above. For R(5, 5), the recovery of the
conductances is complete after five levels.
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4.3 Special Functions on Networks

Suppose Γ = (G, γ) is circular planar resistor network with response matrix
Λ, and (P ;Q) = (p1, . . . , pk; q1, . . . , qk) is a circular pair of sequences of
boundary nodes. If there is a k-connection from P to Q, Theorem ?? implies
that the sub-matrix Λ(P ;Q) of Λ is non-singular. This fact will be used to
construct special γ-harmonic functions on Γ. These functions are obtained
by imposing conditions on u, some of which are boundary values, and some
of which are boundary currents, similar to the conditions which were used
for rectangular networks. These functions will be used extensively in the
recovery algorithm for the well-connected critical graphs of Section ??.

Lemma 4.1 Let Γ be a circular planar resistor network with n boundary
nodes. Let (P ;Q) = (p1, . . . , pk; q1, . . . , qk) be two sequences of boundary
nodes which are in disjoint arcs, and suppose there is a k-connection from
P to Q. Let R be the set of boundary nodes not in Q. Suppose the boundary
values are specified to be 0 at the nodes of R and suppose k real numbers
c1, . . . , ck are chosen to be boundary currents at the nodes of P . Then there
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is a unique γ-harmonic function u on Γ with the specified boundary data.

Proof: Since there is a k-connection from P to Q, Theorem ?? implies
that the sub-matrix Λ(P ;Q) of Λ is non-singular. Let c = [c1, c2, . . . , ck],
and take x = [x1, x2, . . . , xk] to be the solution to the matrix equation

Λ(P ;Q)x = c

Let u be the potential on G with boundary values [x1, x2, . . . , xk] at nodes
q1, q2, . . . , qk, and 0 at all other boundary nodes. This function u on G has
the specified currents and boundary values.

Example 4.2 Refer to Figure ??. Suppose Γ = (G, γ) is a resistor network
whose underlying graph is a circular planar graph G with n boundary nodes.
Suppose P = (p1, p2, p3) and Q = (q1, q2, q3) are a circular pair which are
3-connected. According to Lemma ??, there is a potential u on Γ with
boundary current φ, where φ(p1) = +1, φ(p2) = −1, φ(p3) = +1, and where
the value of u is 0 at all boundary nodes except q1, q2 and q3.

(1) The current of (+1) at p1 and the value u(p1) = 0 together imply
that there is a node r1 adjacent to p1 of negative potential, and another
node adjacent to that of yet more negative potential, leading eventually to
a boundary node of negative potential. Call this path α1.

(2) The current of (−1) at p2 and the value u(p2) = 0 together imply
that there is a node r2 adjacent to p2 of positive potential, another node
adjacent to that of yet higher positive potential, leading to a boundary node
of positive potential. Call this path α2.

(3) The current of (+1) at p3 and the value u(p3) = 0 together imply
that there is a node r3 adjacent to p3 of negative potential, and another
node adjacent to that of yet more negative potential, leading to a boundary
node of negative potential. Call this path α3.

The path α1 cannot intersect the path α2 because the potential is negative
at all interior nodes of α1 and positive at all interior nodes of α2. Similarly,
the path α2 cannot intersect the path α3 because the potential is positive
on α2 and negative on α3. The only boundary nodes of non-zero potential
are q1, q2 and q3. Therefore
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Figure 4-7: Flow paths across a network

(1) The path α1 must connect p1 to q1. On all nodes of α1 except p1,
the potential will be negative; the potential at q1 is negative.

(2) The path α2 must connect p2 to q2. On all nodes of α2 except p2,
the potential will be positive; the potential at q2 is positive.

(3) The path α3 must connect p3 to q3. On all nodes of α3 except q3,
the potential will be negative; the potential at q3 is negative.

A drawing of these paths is shown in Figure ??. The arrows indicate di-
rection of current flow, which is the direction of decreasing potential. The
currents at nodes p1, p2 and p3 are indicated by (+1), (−1) and (+1) re-
spectively.

There may be more than one path α = (α1, α2, α3) joining P to Q. The
argument shows only the existence of at least one such path α.

Observation 4.2 Suppose Γ = (G, γ) is a resistor network whose under-
lying graph is a circular planar graph G with n boundary nodes. Sup-
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pose P = (p1, . . . , pk) and Q = (q1, . . . , qk) are a circular pair which are
k-connected. Suppose y is a boundary function which is 0 except at the
nodes in Q. Let φ be the boundary current due to y and suppose the val-
ues of φ alternate in sign at the nodes in P . Then, just as in Example
??, the values of y must alternate in sign at the nodes in Q. Specifically if
(−1)i+1φ(pi) > 0, then it must happen that (−1)iy(qi) > 0. In matrix form,
this says that if c alternates in sign, then the solution x to

Λ(P ;Q) · x = c

must alternate in sign also. In the terminology of [?], this says that if
Λ(P ;Q) is non-singular, then Λ(P ;Q)−1 has the alternating property. For
the circular planar graphs in [?], the alternating property was established
geometrically, and then used to prove that the existence of a connection
P ↔ Q implies the non-singularity of the matrix Λ(P ;Q). In this text we
have given a purely algebraic proof of Theorem ??.

More general boundary conditions may also be imposed, as follows.

Theorem 4.2 Let Γ be a circular planar resistor network with n boundary
nodes. Let (P ;Q) = (p1, . . . , pk; q1, . . . , qk) pair of sequences of boundary
nodes which are in disjoint arcs of the boundary circle, and suppose that
there is a k-connection from P to Q. Let R be the set of boundary nodes
not in Q. Suppose n− k boundary values {bi} are specified arbitrarily at the
nodes vi of R and suppose k real numbers {ci} are specified to be boundary
currents at the nodes vi of P . Then there is a unique γ-harmonic function
u on Γ with this boundary data.

Proof: Suppose Λ is the response matrix for Γ. Take y = [y1, . . . , yn] to
be the boundary function, where yi = bi for vi ∈ R, and yi = 0 for vi /∈ R.
Let ψ = Λ · y, and then take d = [d1, . . . , dk] for 1 ≤ i ≤ k to be the set of
boundary currents, where di = ci−ψ(qi) for qi ∈ Q. Lemma ?? implies that
there is a boundary function z with zi = 0 for vi ∈ R, and the potential due
to z has current di at the nodes qi ∈ Q. Let x be the boundary function
where x = y+ z. The potential u due to x has the specified boundary data.
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4.4 Special Functions on G4m+3

Let n = 4m + 3, and let Γ = (Gn, γ) be a circular planar resistor network
whose underlying graph is the well-connected graph Gn with 4m+ 3 bound-
ary nodes. Theorem ?? shows that there are special γ-harmonic functions
on Γ. Recall the description of the circular planar graph Gn. There are n
rays ρ0, . . . , ρn−1 originating at the origin and making angles θ0, . . . , θn−1

measured clockwise from the first ray ρ0, with 0 = θ0 < . . . < θn−1 < 2π.
(By convention, ρn = ρ0.) The circles have radii 1, . . . ,m. The node in Gn
which is the intersection of circle of radius i with ray ρj is denoted (i, j).
The boundary nodes are vj = (m+ 1, j) for 1 ≤ j ≤ n. By convention, the
boundary node v0 = (m+ 1, 0) = (m+ 1, n) = vn.

There is a γ-harmonic function f on G4m+3 with boundary current φ
which has the following boundary data:

f(v0) = 1

f(vj) = 0 for 2m+ 2 ≤ j ≤ 4m+ 2

φ(vj) = 0 for 2m+ 2 ≤ j ≤ 4m+ 2

(4.3)

This function f has value 0 throughout a zone Z of G4m+3. Specifically
f(i, j) = 0, except for those nodes (i, j) for which both of the following
conditions hold.

(1) 1 ≤ i ≤ m+ 1

(2) m+ 1− i ≤ j ≤ m+ i

Harmonic continuation starting from the boundary nodes v2m+2, . . . v4m+2

shows that f is 0 throughout a wedge, with vertex at (0, 0) and whose outer
vertices are v2m+2, . . . , v4m+2. Another use of harmonic continuation, both
clockwise and counterclockwise from the sides of the wedge, shows that f is
0 throughout the zone Z.

The sign of f(p) can be determined for all nodes p in G. The zone of
0’s for f includes the nodes (m, 0) and (m − 1, 1). The given value of the
function is f(m+1, 0) = 1. The averaging property of a γ-harmonic function
(Chapter ??, equation ??) implies that f(m, 1) must be negative. Similarly,
f(m − 1, 2) must be positive, f(m − 2, 3) must be negative, etc. This is
summarized in Proposition ??.
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Proposition 4.3 The harmonic function f on G4m+3 with boundary data
given by ?? satisfies the following.

(1) For 0 ≤ j ≤ m, and j even,

0 = f(m− j, j) < . . . < f(i, j) < . . . < f(m+ 1, j)

(2) For 0 ≤ j ≤ m, and j odd,

0 = f(m− j, j) > . . . > f(i, j) > . . . > f(m+ 1, j)

(3) For m+ 1 ≤ j ≤ 2m, and j even,

0 = f(2m+ 1− j, j) < . . . < f(i, j) < . . . < f(m+ 1, j)

(4) For m+ 1 ≤ j ≤ 2m, and j odd,

0 = f(2m+ 1− j, j) > . . . > f(i, j) > . . . > f(m+ 1, j)

(5) For any edge pq with at least one of the endpoints not in the zone of
0’s, f(p)− f(q) 6= 0.

Example 4.3 This is illustrated in Figure ?? for the graph G11. f(v0) =
+1. The nodes where the function f must be positive are indicated by +,
and the nodes where f must be negative are indicated by −. At all other
nodes, the value of the function f is 0. Thus the sign of the potential f is
known at all nodes of G. By (1) to (4), the direction of current flow across
all edges of G is also known.

The function f constructed above is denoted f (0). There are similar
functions f (1), . . . , f (n−1), obtained by rotating the graph through angles θ1,
. . . , θn−1. Specifically, the boundary values and boundary currents φ(k) for
the function f (k) will be

f (k)(vk) = 1

f (k)(vk+j) = 0 for 2m+ 2 ≤ j ≤ 4m+ 2

φ(k)(vk+j) = 0 for 2m+ 2 ≤ j ≤ 4m+ 2

There is another family of functions g(k) similar to the functions f (k), ob-
tained by reversing the directions around the boundary circle. For each
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Figure 4-8: Zone of zeros in G11

0 ≤ k ≤ 4m + 2, the boundary values and boundary currents ψ(k) for g(k)

are

g(k)(vk) = 1

g(k)(vk+j) = 0 for 1 ≤ j ≤ 2m+ 1

ψ(k)(zk+j) = 0 for 1 ≤ k ≤ 2m+ 1

These special γ-harmonic functions f (j) and g(j) will be used in the
recovery algorithm of Section ??. These same special γ-harmonic functions
f (j) and g(j) will be used in Section ?? to show that the differential of the
map

L : (R+)N −→ Rn
2

which takes γ to Λγ is non-singular.
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4.5 Recovery of Conductances II

Let m be a fixed non-negative integer. Let n = 2m+ 1, and let Γ = (G, γ)
be a circular planar resistor network whose underlying graph is the circular
planar graph Gn described in Chapter 2. Suppose the response matrix
Λ = Λγ is given. The response matrix Λ is used to find the boundary
values for the special γ-harmonic functions described in Section ??. These
boundary values x and the corresponding currents φ = Λx will be used in
an algorithm for computing the conductance γ(pq) for each edge in Gn.

In our notation Λ(P ;n) is the vector of currents at the nodes of P due
to a potential of 1 at node vn. Since Gn is well-connected, and P and Q are
in disjoint arcs of the boundary circle, Theorem ??, and Corollary ?? imply
that Λ(P ;Q) is non-singular. Hence there is a unique solution for the vector
xQ = [x1, . . . , xm] in the matrix equation

Λ(P ;Q)xQ + Λ(P ;n) = 0

Let x = [x1, x2, x3, . . . , xm, 0, . . . , 1]. This is an explicit calculation of the
boundary values x and boundary current φ = Λx for the function f of
Section ??. The potential due to x is the function f with boundary current
φ for which

f(vn) = 1

f(vj) = 0 for m+ 1 ≤ j ≤ 2m

φ(vj) = 0 for m+ 1 ≤ j ≤ 2m

(4.4)

The algorithm for computing conductances in Gn proceeds inwards by
levels. For each boundary node vj , let tj be the interior node adjacent to
vj . Harmonic continuation shows that f(tn) = 0. Therefore

φ(vn) = γ(vntn)(f(vn)− f(tn))

= γ(vntn)(1− 0)

Thus

γ(vntn) = φ(vn)

= Λ · x(vn)

= Λ(n;Q)xQ + 0 + Λ(n;n)xn

= −Λ(n;Q)Λ(P ;Q)−1Λ(P, n) + Λ(n;n)
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This is the boundary spike formula ??. There is a similar formula for each
of the boundary spikes. Let P (j) = (vm+1+j , . . . , v2m+j) and
Q(j) = (v1+j , . . . , vm+j). Then

γ(vjtj) = −Λ(j;Q(j)) · Λ(P (j);Q(j))−1 · Λ(P (j); j) + Λ(j; j)

Observation 4.3 This shows that using harmonic continuation to produce
a zone of 0’s in Γ results in a calculation of the conductances of boundary
spikes which is the same as that of formula ??, which was obtained by taking
Schur complements. If the network had boundary edges instead of boundary
spikes, harmonic continuation could also be used to produce a zone of 0’s
resulting in a calculation of the conductance of each boundary edge which
is the same as the boundary edge formula ??.

After calculating all the conductances γ(vjtj), the boundary values x and
the boundary current φ = Λx for the function f are used again to calculate
conductances at the next level. For each edge rs in Gn, let c(rs) denote the
current from r to s. In our notation, v0 = vn and t0 = tn. The current
c(t0t1) across t0t1 is the same as the current c(v0t0) across v0t0 because
the other neighbors of t0 all have potential 0. The value of f(t1) can be
calculated from x1 = f(v1), the previously computed value of γ(v1t1) and
the current φ(v1). Thus

φ(v1) = γ(v1t1)(f(v1)− f(t1))

φ(v0) = c(v0t0)

= c(t0t1)

= γ(t0t1)(f(t0)− f(t1))

= γ(t0t1)(0− f(t1))

The result is

γ(t0t1) = (− 1

f(t1)
)φ(v0)

The conductances γ(tj , tj+1) can be computed for j = 1, . . . , 2m + 1, in
exactly the same way, using the functions f (j), and the known values of
γ(vktk)
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For each j = 1, . . . , n, let sj be the interior node on ray j adjacent to
tj . The radial conductors γ(tjsj) are calculated next. The value of f at
all nodes tj on the circle of radius m can be calculated from the boundary
values x, the boundary current φ and the values of γ(vjtj). The zone of 0’s
for f includes s1, so the calculation of γ(t1s1) is similar to that of γ(vntn).
Ohm’s Law gives the current across edges (v1t1), (tnt1), and (t1t2). Using
Kirchhoff’s Law, f(s1) = 0 and γ(t1s1) is calculated by Ohm’s Law. Sim-
ilarly, conductances for all radial edges tjsj are found using the boundary
functions and the boundary currents for the special functions f (j) of Section
??. The calculation of the circular conductances at radius m − 1, similar
to the calculation of the circular conductances at radius m. Continuing
inwards, the conductances of all edges in Gn are computed.

There is a similar algorithm for calculating the conductances in a resistor
network Γ = (Gn, γ) when n is an even integer. The conductances of the
boundary edges are first calculated by the boundary edge formula ??. Then
the calculation proceeds just as for the case n odd.

This algorithm shows that the response matrix Λγ uniquely determines
the conductivity γ. The algorithm also shows that the value of each con-
ductance can be calculated by a rational algebraic expression that never
involves division by 0. This is summarized in the following Theorem.

Theorem 4.4 let Γ be a circular network whose underlying graph is the
well-connected critical graph Gn. The map which sends the conductivity
function γ to the response matrix Λγ is 1 - 1. Let γ and µ be two con-
ductivities on Gn. If Λγ is sufficiently near to Λµ, then γ will be near to
µ.

The method of special functions can also be used to calculate the con-
ductances of any circularly symmetric planar resistor network, provided that
there are sufficiently many radial lines, in particular if there are m concen-
tric circles, and the number of radial lines is n where n ≥ 4m+3. The nodes
of G are the intersection points of m+ 1 concentric circles and n rays, orig-
inating from the origin. The edges of G are the radial lines joining adjacent
nodes on the rays, and the circular arcs joining adjacent nodes on all circles
except the outer one. The recovery of the conductances for such a network
is very similar to the recovery for the networks whose underlying graph is
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of the form G4m+3. The uniqueness and the continuity of the inverse also
hold for such networks.

4.6 The Differential of L

Let n be an integer with n ≥ 3 and G = Gn be the well-connected circular
graph constructed in Chapter ??. The number of edges in Gn is N =
n(n− 1)/2. For each conductivity function γ on Gn, let Λγ be the response
matrix. Let Bγ( · , ·) be the bilinear form in n variables as defined in
Chapter ??. For each pair of functions x and y defined on the boundary
nodes of Gn,

Bγ(x, y) =< y, Λγx >

Let B(n) be the space of bilinear forms in n variables. Then let

L : (R+)N → B(n)

be the function given by L(γ) = Bγ( . , .).

The following notation is used in the computation of the differential of
L. If σ is a function defined on the edges of G, then

• σi,j will stand for σ(e) if there is an edge e joining vi to vj , and σi,j = 0
if there is no edge joining vi to vj . In particular, γi,j = γ(e) if there is an
edge e joining vi to vj . and γi,j = 0 if there is no edge joining vi to vj .

If f is a function defined on the nodes of G, then

• fi = f(vi) is the value of f at the node vi.

• ∇i,jf = fi − fj .

• φf (p) is the current into the network at node p.

For each pair of functions x and y defined on the boundary nodes of G,
let u and w be the potentials due to x and y respectively. Then,

Bγ(x, y) =< y,Λx >

=
∑

γi,j(ui − uj)(wi − wj)

Let κ be a real-valued function defined on the N edges of G, and let t be
a real parameter sufficiently small so that γ + tκ is positive on all the edges
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of G. Denote by ut and wt the (γ + tκ)-harmonic functions with boundary
values x and y respectively. Then ut = u + δut and wt = w + δwt, where
δut and δwt are functions defined on the nodes of G which are 0 on the
boundary nodes. Then

Bγ+tκ(x, y) =
∑

(γi,j + tκi,j)(∇i,ju+∇i,jδut)(∇i,jδw +∇i,jδwt)

=
∑

γi,j(∇i,ju)(∇i,jw) + t
∑

κi,j(∇i,ju)(∇i,jw)

+
∑

γi,j ((∇i,ju)(∇i,jδwt) + (∇i,jδut)(∇i,jw) + (∇i,jδut)(∇i,jδwt))

+ t
∑

κi, j ((∇i,ju)(∇i,jδwt) + (∇i,jδut)(∇i,jw) + (∇i,jδut)(∇i,jδwt))

Now ∑
γi,j∇i,ju∇i,jδwt =

∑
δwt(p)φu(p) = 0∑

γi,j∇i,jδut∇i,jw =
∑

δut(p)φw(p) = 0

since φu(p) = 0 = φw(p) for all p ∈ int G, and δwt(p) = 0 = δut(p) for all
p ∈ ∂G.

If x is any function defined on the boundary nodes, and u is the potential
due to x, the Kirchhoff matrix can be used to calculate the values of u at
each interior node. Suppose the Kirchhoff matrix K for (G, γ) is:

K =

[
A B
BT D

]
where D = K(I; I) is the block corresponding to the interior nodes of G.
By formula ??, the values of u at the interior nodes of G are:

u(p) = [−D−1BTx](p)

Similarly, let Kt be the Kirchhoff matrix for the conductivity γ + tκ on G
and suppose the block structure for Kt is:

Kt =

[
At Bt
BT
t Dt

]
The values of ut at the interior nodes of G are:

ut(p) = [−D−1
t BT

t x](p)
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The matrix [−D−1
t BT

t ] is a rational function of t, hence differentiable, with

D−1
0 BT

0 = −D−1BT

Therefore
D−1
t BT

t = D−1BT + tEt

where limt→0Et = 0. Thus

D−1
t BT

t x = D−1BTx+ tEtx

This implies that δut = tũt where limt→0 ũt = ũ0. Thus

Bγ+tκ(x, y) =
∑

γi,j∇i,ju∇i,jw + t
∑

κi,j∇i,ju∇i,jw

+ t2
∑

γi,j∇i,j ũt∇i,jw̃t

+ t2
∑

κi,j (∇i,ju∇i,jw̃t +∇i,j ũt∇i,jw + t∇i,j ũt∇i,jw̃t)

Hence
d

dt
Bγ+tκ(x, y)

∣∣
t=0

=
∑

κi,j∇i,ju∇i,jw (4.5)

We return to the standard notation f(p) for the value of a function f at
node p, and κ(pq) for the value of κ on the edge pq.

Lemma 4.5 Let Gn be the circular network of Chapter 2. Let κ be any
real-valued function on the edges of Gn. Suppose that for all γ-harmonic
functions u and w, that∑

pq∈E
κ(pq)(u(p)− u(q))(w(p)− w(q)) = 0

Then κ is identically 0.

Proof: The proof will be given for n of the form 4m + 3; the proof for
the other values of n is similar, but the indexing of the nodes is different.
The nodes of Gn on the boundary circle (of radius m+ 1) are labeled vj =
(m + 1, j), for j = 0, . . . , n − 1. The nodes on the circle of radius m are
labeled tj = (m, j); the nodes on the circle of radius m − 1 are labeled
sj = (m − 1, j). The edges of Gn are ordered by levels from the outside
inwards. That is, the outermost spikes viti are at level 0, the circular edges
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titi+1 are at level 1, the radial edges tisi are at level 2, etc. There are 2m+1
levels, with the radial edges ((0, 0), (1, j)) at the last level 2m.

The special functions f and g constructed in Section ?? have the property
that the product

κ(pq)(f(p)− f(q))(g(p)− g(q)) 6= 0

only for the edge pq = v0t0. This implies that κ(v0t0) = 0. Similarly,
for each spike e = vjtj in Gn, the special functions f (j) and g(j), have the
property that the product

κ(pq)(f (j)(p)− f (j)(q))(g(j)(p)− g(j)(q)) 6= 0

only when pq is the edge vjtj . Thus κ(vjtj) = 0 for j = 0, . . . , n− 1. Next,
consider an edge of the form tjtj+1. The special functions f (j) and g(j+1)

have the property that the product

κ(pq)(f (j)(p)− f (j)(q))(g(j+1)(p)− g(j+1)(q)) 6= 0

only when pq is the edge tjtj+1 or is a boundary spike. Thus κ(tjtj+1) = 0
for j = 0, . . . , n− 1.

More generally, for each edge e in Gn there is a pair of special functions
f (j) and g(k), with the property that the product

κ(pq)(f (j)(p)− f (j)(q))(g(k)(p)− g(k)(q)) 6= 0

only when pq is the edge e or an edge pq which precedes e in the ordering.
The proof that κ(pq) = 0 for all edges pq in Gn follows by induction using
the ordering on the edges.

Let n be a positive integer, and Gn be the well-connected graph of Chap-
ter ??. For each conductivity function γ on Gn, let L(γ) = Bγ( · , ·) be the
bilinear form in n variables defined by ??. The space B(n), of bilinear forms
in n variables, has dimension N = n(n − 1)/2. L may be considered as a
function from (R+)N to B(n). It follows from the expression ?? and Lemma
?? that:

Theorem 4.6 The differential of L is one-to-one.
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For each conductivity function γ on Gn, let Λγ be the response matrix.
Let P be the set of pairs of integers (i, j) with 1 ≤ i < j ≤ n, considered as
positions of entries in Λγ . Suppose the N edges in Gn and the N positions
in P are each ordered in some fixed way. For each n × n matrix A, let
P (A) be the point in RN obtained by listing the entries of A in this fixed
order. Let T be the function from (R+)N to RN , defined by T (γ) = P (Λγ).
It follows immediately from Theorem ?? and the relation between matrices
and quadratic forms that:

Corollary 4.7 The differential of T is one-to-one.



82 CHAPTER 4. HARMONIC FUNCTIONS



Chapter 5

Characterization I

5.1 Properties of Response Matrices

We will give an explicit algebraic description of the set of all n × n matrices
which are response matrices for conductivities on resistor networks Γ =
(Gn, γ) whose underlying graph is the well-connected graph Gn of Chapter
??. The boundary nodes v1, v2, . . . , vn are numbered clockwise around the
boundary circle, with the convention that vn = v0; in general vn+i = vi.

Throughout this chapter, if A is a matrix, A(i; j) refers to the entry in
the (i, j)-position. More generally, if P = (p1, . . . , pk) and Q = (q1, . . . , qm)
are subsets of the rows and columns of A, then A(P ;Q) refers to the k × m
sub-matrix of A obtained by taking the entries that are in rows p1, . . . , pk
and columns q1, . . . , qm of A.

If A is an n× nmatrix, the indices {1, 2, . . . , n} are in 1-1 correspondence
with the points {v1, v2, . . . , vn} on the boundary circle for the graph Gn. An
ordered subset S = (s1, . . . , sk) of {1, . . . , n} is said to be in circular order
if the corresponding points in {v1, . . . , vn} are in circular order on the unit
circle as defined in Chapter ??. If the numbers in the set {1, . . . , n} are
identified with the corresponding points in the set {v1, . . . , vn}, this means
that s1, . . . , sk are in circular order if:

(1) s1sk is an arc of the circle.

(2) 0 = s1 < s2 < . . . < sk < 2π where the points si are measured by
angles clockwise from s1.

83
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Following the definition in Chapter ?? of a circular pair of boundary
nodes, a pair (P ;Q) = (p1, . . . , pk; q1, . . . , qk) of sequences of indices is said
to be a circular pair if the sequence (p1, . . . , pk, qk, . . . , q1) is in circular order.
For example, let A be a 7 × 7 matrix, with index set {1, 2, . . . , 7}, and let
P = (3, 4), Q = (7, 5), R = (2, 6). Then (P ;Q) is a circular pair, because
3, 4, 5, 7 are in order in the set 3, 4, 5, 6, 7, 1, 2. (P ;R) is a circular pair,
because 3, 4, 6, 2 are in order in the same set; but (Q;R) is not a circular
pair.

Recall from Chapter 3, that if Γ = (G, γ) is a circular planar resistor
network, the response matrix Λγ has the following properties.

(P1) Λγ is symmetric; that is, Λγ(i; j) = Λγ(j; i)

(P2) The sum of the entries in each row is 0.

(P3) For each circular pair (P ;Q) = (p1, . . . , pk; q1, . . . , qk),

(−1)k det Λγ(P ;Q) ≥ 0

Property (P3) above, when applied to the 1 × 1 subdeterminants of Λγ , says
that each entry of Λγ is ≤ 0.

If G is well-connected as a graph, then for each circular pair (P ;Q),
appearing under (P3), the value of (−1)k det Λγ(P ;Q) is positive. In partic-
ular, each entry of Λγ is strictly negative. We are led to consider all n × n
matrices A which satisfy the following three conditions:

(L1) The matrix A is symmetric; that is, A(i; j) = A(j; i)

(L2) The sum of the entries in each row is 0

(L3) For each circular pair (P ;Q) = (p1, . . . , pk; q1, . . . , qk),

(−1)k detA(P ;Q) > 0

For each non-negative integer n, and let Gn be the well-connected graph of
Chapter 2. The main result of this chapter is the following.

Theorem 5.1 Let A be an n × n matrix whose entries satisfy the relations
(L1), (L2), and (L3). Then there is a unique conductivity function γ on the
graph Gn such that the response matrix Λγ = A.
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The set of all n × n matrices satisfying conditions (L1), (L2), and (L3)
will be called L(n). The given matrix A in L(n) can be joined to the
matrix Λ1 corresponding to γ = 1 by a path in L(n). Theorem ?? will
be proven by showing that each matrix on this path is the response matrix
for a conductivity γ on Gn.

5.2 Some Matrix Algebra

In preparation for the proof of Theorem ??, some non-standard, but easily
established facts from matrix algebra are needed. Let M be any matrix.
If every square sub-matrix of M (including M itself, if M happens to be
square) has positive determinant, M is said to be totally positive. If every
square sub-matrix of M (including M itself, if M is square) has non-negative
determinant, M is said to be totally non-negative. Totally positive will
sometimes be abbreviated TP, and totally non-negative will sometimes be
abbreviated TNN.

More generally, let N be an array whose positions are a subset of the
positions a rectangular matrix. If every square submatrix that can be formed
from the entries of N has positive determinant, then N is said to be TP.

Recall that M(i; j) is the entry in the (i, j) position of M ; M [i; j] is
the matrix obtained from M by deleting the ith row and the jth column of
M . If M is a k × k matrix, M∗ will denote the array with k2 − 1 entries
formed from M by omitting the entry in the (1, 1) position. With the above
terminology, to say that M∗ is TP, means that every square sub-matrix of M
which can be formed not using the entry M(1; 1) has positive determinant.

Lemma 5.2 Suppose M is a k × k matrix for which M∗ is totally positive.
If detM > 0, then M itself is totally positive.

Proof: It is sufficient to show that every (k − 1) × (k − 1) sub-matrix of
M has positive determinant. Let M [h; j] be such a matrix. If either i = 1
or j = 1, M [h; j] has positive determinant by assumption, so assume that
h 6= 1 and j 6= 1. The six-term identity (Lemma ??) shows that

detM detM [1, h; 1, j] = detM [1; 1] detM [h; j]− detM [1; j] detM [h; 1]
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Each of the determinants except detM [h; j] is positive. Therefore detM [h; j]
must also be positive.

The expansion of det(M) of a k × k matrix by the cofactors of the first
column is:

detM =
i=k∑
i=1

(−1)i+1M(i; 1) · detM [i; 1] (5.1)

For each positive integer k, a function fk is defined as follows. The function
f1 is defined to be identically 0. Let k ≥ 2, and suppose M is a k × k matrix
for which detM [1; 1] 6= 0. Then fk is to be the function of the entries of M
defined by the formula:

• fk(M) · detM [1; 1] =
∑k

i=2(−1)iM(i; 1) · detM [i; 1]

Observe that fk(M) is a function of the k2 − 1 entries M(i; j) for (i, j) 6=
(1, 1). Since M∗ is the array obtained from M by omitting the (1, 1)-entry,
this function can be written fk(M

∗), which is well-defined if detM [1; 1] 6= 0.
Let M be a k × k matrix such that M∗ is TP. Lemma ?? implies that if
the entry M(1; 1) > fk(M

∗), then M will be TP also.

5.3 Parametrizing Response Matrices

Suppose that A is an n × n matrix whose entries satisfy the relations (L1),
(L2) and (L3). If the values of A(i; j) are given for all pairs (i, j) with 1 ≤
i < j ≤ n, the entries below the diagonal are obtained from the symmetry
relation: A(i; j) = A(j; i). The diagonal entries are then obtained from the
assumption that the row sums are 0. Thus the entries above the diagonal
may be taken as parameters for A. The total number of parameters is
N = n(n − 1)/2, which is the same as the number of conductors in the
well-connected graph Gn.

The next task is to parametrize the set L(n), which is the set of n × n
matrices satisfying (L1), (L2) and (L3). For each A ∈ L(n), for all circular
pairs (P ;Q) with indices in the set {1, . . . , n}, condition (L3) says that
the matrix [−A(P ;Q)] must have positive determinant. It is convenient to
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consider not A itself, but its negative [−A], which means taking the negative
of every entry of A. Thus condition (L3) is replaced by (L′3), where

(L′3) For each circular pair (P ;Q) = (p1, . . . , pk; q1, . . . , qk),

detA(P ;Q) > 0

• L′(n) = {n × n matrices A, satisfying (L1), (L2) and (L′3)}.

A parametrization of the set L′(n), will give a parametrization of L(n).

For each fixed positive integer n ≥ 3, let P (which depends on n) be the
set of pairs of integers {(i, j)} such that 1 ≤ i < j ≤ n. The cardinality of P
is N = n(n−1)/2. The set P will be ordered as follows. For each (i, j) ∈ P,
let d(i, j) be the lesser of the two numbers j − i and n+ i− j. Thus if the
vertices v1, v2, . . . , vn are equally spaced on the boundary circle C, d(i, j)
is the shortest distance from vi to vj , measured either counterclockwise or
clockwise around C, counting adjacent vertices as distance 1 apart. Let

m = [
n

2
]. The set P is the disjoint union of the sets P1,Pj , . . . ,Pm, where

Pk is the set of pairs (i, j) such that d(i, j) = m + 1 − k. The requirement
on the ordering of P is that

• P may be ordered in any way such that P1 < P2 < . . . < Pm
That is, if d(i, j) > d(i′, j′), then (i, j) is to precede (i′, j′) in the ordering.
The pairs that are distance m occur first, then those that are distance m−1
apart, and finally the (i, j) that are adjacent.

Assume that a fixed choice of ordering of P is made, as above. This
ordering gives a 1-1 correspondence between the set {1, . . . , N} and P. For
each 1 ≤ a ≤ N , we must identify the largest square sub-matrix of the
form A(P ;Q) where (P ;Q) is a circular pair, such that the a-th parameter
position of A is in the upper left corner of A(P ;Q), and every other position
of A(P ;Q) precedes a in the ordering.

Remark 5.1 The a-th parameter position will be in the upper righthand
corner of a submatrix A(P ;R) of A where the indices of both P and R occur
in the natural order (possibly after a circular shift). The indices of Q are
in reverse order from the indices of R which makes (P ;Q) a pair in circular
order. The only reason for doing this is that the signs are more manageable
for A(P ;Q) than for A(P ;R).
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The situation is slightly different depending on whether n is an odd
integer or an even integer. Only the case of n odd will be considered here.
The details of the even case are left to the reader.

Parametrizing L(n) for n odd

Let m be a fixed positive integer, and n = 2m + 1. For each (i, j) ∈ P
let k = m + 1 − d(i, j). A circular pair (P ;Q) = (p1, . . . , pk; q1, . . . , qk) of
indices is defined as follows.

(1) If j − i > m, then k = j − i−m. (P ;Q) is defined by:

P = (i, i+ 1, . . . , i+ k − 1)

Q = (j, j − 1, . . . , j − k + 1)

(2) If j − i ≤ m, then k = m+ 1− j + i. (P ;Q) is defined by:

P = (j, j + 1, . . . , j + k − 1)

Q = (i, i− 1, . . . , i− k + 1)

In case (2), the matrix A(P ;Q) will be below the main diagonal of A. By a
circular shift of the indices, A(P ;Q) will be above the main diagonal.

For 1 ≤ a ≤ N , let (i, j) be the pair in P which corresponds to a in the
ordering of P, and let A(P ;Q) be the k × k matrix obtained above. Then
this A(P ;Q) is the largest square sub-matrix such that the a-th parameter
position of A is in the upper left corner of A(P ;Q), and every other position
of A(P ;Q) precedes a in the ordering.

For 1 ≤ a ≤ 2m + 1, the matrix A(P ;Q) is the 1 × 1 matrix which is
the entry in the position of A corresponding to a, and M(a) is this entry.
For a > 2m + 1, write a = a′ + (k − 1)n where 1 ≤ a′ ≤ n . Then the
parameter position (i, j) corresponding to a is in the set Pk, and M(a) is a
k × k sub-matrix A(P ;Q).

Example 5.1 Figure ?? shows an ordering of the parameter entries for a 7
× 7 matrix in A.

(1) Let n = 7, and suppose the ordering of the parameters is that given
in Figure ??. The (1, 6) position of A is numbered 13 in the ordering. For
this entry, the circular pair is P = (1, 2) and Q = (6, 5), and

A(P ;Q) =

[
Λ(1, 6) Λ(1, 5)
Λ(2, 6) Λ(2, 5)

]
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Figure 5-1: Parameters positions for G7

(2) For parameter number a = 11, the position is (4, 6), the circular pair
is P = (6, 7) and Q = (4, 3) and

A(P ;Q) =

[
Λ(6, 4) Λ(6, 3)
Λ(7, 4) Λ(7, 3)

]

(3) For a = 15, the circular pair is P = (2, 3, 4) and Q = (1, 7, 6)

A(P ;Q) =

 Λ(2, 1) Λ(2, 7) Λ(2, 6)
Λ(3, 1) Λ(3, 7) Λ(3, 6)
Λ(4, 1) Λ(4, 7) Λ(4, 6)


For each 1 ≤ a ≤ N , xa stands for the value in the a-th parameter posi-

tion of A. Let M(a) = A(P ;Q) where A(P ;Q) is the matrix for which the
parameter position corresponding to a is the upper left corner, as described
above. The other entries of M(a) correspond to parameters xb for b < a. For
each integer 1 ≤ a ≤ N , a function Fa(x1, . . . , xa−1) is defined as follows.
For 1 ≤ a ≤ n, Fa = 0. Suppose inductively that Fb has been defined for
1 ≤ b < a.
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• The domain of Fa is the set of all points (x1, x2, . . . , xa−1) in Ra−1

such that for each 1 ≤ b < a, xb > Fb(x1, x2, . . . , xb−1).

• Fa(x1, . . . , xa−1) is defined to be fk(M(a)∗), where M(a) is the k × k
matrix obtained above, and M(a)∗ is the array with k2− 1 entries obtained
from M(a) by omitting the (1, 1) entry, as defined in Section ??.

Inductively, Lemma ?? shows that Fa(x1, . . . , xa−1) is well-defined for each
a = 1, . . . , N , and, if xa > Fa(x1, . . . , xa−1), then detM(a) > 0. Let S be
the set of parameter values x1, x2, . . . , xN such that for each 1 ≤ a ≤ N ,
xa > Fa(x1, x2, . . . , xa−1). An n × n matrix with relations (L1) and (L2)
will also satisfy (L′3) if and only if its parameter values {xa} lie in the set S.
The set S is homeomorphic to (R+)N , as shown by the following Lemma.

Lemma 5.3 Suppose f is a continuous function from D to R+, where D
is homeomorphic to (R+)k. Let E ⊆ Rk+1 be the set E = {x, y} such that
y > f(x). Then E is homeomorphic to (R+)k+1.

The homeomorphism θ is given explicitly by

θ(x, y) = (x, y − f(x))

For each A in L′(n), the matrix [−A] is in L(n). Therefore, L(n) is also
homeomorphic to (R+)N .

5.4 Principal Flow Paths

Suppose Γ = (Gn, γ) is a resistor network whose underlying graph is the
graph Gn constructed in Chapter ??. The boundary vertices are v1, . . . , vn,
where as always v0 = vn. A family of γ-harmonic functions on Γ, will be
constructed as in Section ??. The indexing is slightly different for each of
the congruence classes of n mod 4, so for definiteness, let n = 4m + 1.
According to Lemma ??, boundary values and boundary currents for a γ-
harmonic function u (with boundary current φ) may be specified as follows.

u(v0) = 1

u(vj) = 0 for 2m+ 1 ≤ j ≤ 4m

φ(vj) = (−1)j for 2m+ 1 ≤ j ≤ 4m
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Lemma ?? shows that there is a unique γ-harmonic function u with this
boundary data. Harmonic continuation shows that u will be non-zero and
alternate in sign for the boundary nodes vi for 1 ≤ i ≤ 2m.

(−1)iu(vi) > 0 for 1 ≤ i ≤ 2m

The direction of current flow along every edge in Γ can be determined as
follows. Let P = (v1, v2, . . . , v2m) and Q = (v4m, v4m−1, . . . , v2m+1). Then
(P ;Q) is a circular pair of boundary nodes of Γ, and there is a 2m-connection
α from P to Q through Γ, as described in Chapter 2. Specifically, vj is
connected to vn−j by the path

vj = (m+ 1, j)
η→ (m+ 1− j, j) β→

(m+ 1− j, n− j) η→ (m+ 1, n− j) = vn−j

Here η is the radial path in or out along the ray. For 1 ≤ j ≤ m, β is the
counterclockwise path along the circle, and for m + 1 ≤ j ≤ 2m, β is the
clockwise path along the circle. The process of harmonic continuation shows
that

(1) For odd values of j, the values of u are strictly increasing along αj .
u(vj) < 0 and u(v4m+1−j) = 0.

(2) For even values of j, the values of u are decreasing along αj from vj
to v4m+1−j . u(vj) > 0 and u(v4m+1−j) = 0.

These paths αj for 1 ≤ j ≤ 2m will be called principal flow paths for
f . Every interior edge not on one of these principal flow paths joins a node
on one principal flow path where u has positive sign to a node on another
principal flow path where u has negative sign. These edges are said to be
transverse to the principal flow paths. The direction of the current is known
for every conductor in Γ.

Example 5.2 The principal flow paths for the function u = u0 on the
circular network G7 are illustrated in Figure ??. The edges of the graph
along the principal flow paths are indicated by the solid lines, with the
arrows indicating the direction of flow (decreasing potential). The edges
transverse to the principal flow paths are indicated by the dotted lines. The
boundary currents are indicated by the symbols (±1).
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Figure 5-2:

Proposition 5.4 In this situation,

(1) If pq is any edge along a principal flow path, then |c(pq)| > 1.

(2) Suppose there is a bound B, such that for all 1 ≤ j ≤ n, γ(vjwj) < B.
Then for any interior edge transverse to the principal flow paths,

|u(p)− u(q)| > 2

B

Proof: Suppose pq is an edge along a principal flow path αj . (Assume j
is even; the proof is similar for j odd.) Suppose

αj = r0r1 . . . rh−1rhrh+1 . . . rk

where r0 = vj and rk = vn−j . Suppose the neighbors of rh not on αj are sh
and th. Then

c(rh+1, rh) + c(sh, rh) + c(th, rh) = c(rh, rh−1)

Each of these currents on the left hand side is ≥ 0. By induction along αj ,
c(rh+1, rh) ≥ 1. Therefore c(rh, rh−1) ≥ 1.
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(2) For each boundary node vj , let wj be its interior neighbor. Then

for 2m + 1 ≤ j ≤ 4m, |u(wj)| ≥
1

B
. Therefore for any edge pq with one

endpoint on a principal flow path of positive sign and the other endpoint on

a principal flow path of negative sign, |u(p)− u(q)| > 2

B
.

For any edge in Gn, there is a pattern of boundary data (obtained by a
suitable rotation of Figure ??) that places the chosen edge along a principal
flow path. Similarly, for any edge in Gn, there is a pattern of boundary data
that places the chosen edge transverse to the principal flow paths.

For each value of k with 0 ≤ k ≤ 4m + 1, there is a function uk similar
to the function u = u0, obtained by rotating the graph. The current due to
uk is φk. The boundary conditions for uk will be

uk(vk) = 1

uk(vj+k) = 0 for 2m+ 1 ≤ j ≤ 4m

φk(vj+k) = (−1)j for 2m+ 1 ≤ j ≤ 4m

For each n ≥ 3, there are similar families of functions for the graph Gn.

5.5 Proof of Theorem ??

The proof of Theorem ?? will be given when n is an odd integer. The proof
for n even is similar, but the indexing of the special functions is slightly
different. Throughout the remainder of this section n = 2m + 1 is a fixed
odd integer, and G = Gn is the well-connected critical graph of Chapter ??.
Lemma ?? implies that the set L(n) is homeomorphic to (R+)N and hence
is path-connected. Let A be a matrix in L(n). To prove Theorem ?? it is
necessary to show that there is a conductivity function γ on G such that the
response matrix Λγ = A.

• R(n) will denote the set of all n × n response matrices Λγ for some
conductivity γ on G.

It follows from Theorem ??, Lemma ?? and the open mapping theorem
that R(n) is an open subset of the set of L(n). Let A(t) for 0 ≤ t ≤
1, be a path in L(n) joining A(0) with A(1), where A(0) is the λ-matrix
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corresponding to γ = 1, and where A(1) = A is the given λ-matrix. Each
matrix along this path is in R(n). Suppose the contrary. Since the set of t
for which A(t) is in R(n) is open, there is a least value t0 for which A(t0) is
not in R(n). For each t < t0, let γ(t) be the conductivity corresponding to
A(t). For each edge pq, let µ(pq) be zero, infinity, or a positive real number
such that there is a sequence {t1, t2, . . . , tk, . . .} with limk→∞tk = t0, and
such that limk→∞γ(tk)(pq) = µ(pq). We will write γ(k) for γ(tk) and A(k)

for A(tk).

For each k = 1, 2, . . ., let Γ(k) = (G, γ(k)) be the resistor network which
has conductivity γ(k) on the graph G. We will make use of the principal
flow paths described in Section ??. Let Q = (v1, v2, . . . , vm) and P =
(vm+1, . . . , v2m). For each k, letM (k) = A(k)(P ;Q), and ψ(k) = A(k)(P ; 2m+
1). Let c = c(v1), . . . , c(vm) be the vector of currents c(vj) = (−1)j+1 for
1 ≤ j ≤ m. Let y(k) be the vector with components y(k)(vi) for 1 ≤ j ≤ m,
which is the solution to the linear system.

M (k)y(k) + ψ(k) = c

Let x(k) be the boundary potential given by

(1) x(k)(v2m+1) = 1

(2) x(k)(vj) = y(k)(vi) for 1 ≤ j ≤ m,

(3) x(k)(vj) = 0 for m+ 1 ≤ j ≤ 2m.

Let u(k) be the γ(k)-harmonic function with boundary values x(k)(vj)
for 1 ≤ j ≤ 2m + 1. Thus u(k) is the γ(k)-harmonic function on Γ(k) with
boundary current φ(k), for which

u(k)(v0) = 1

u(k)(vj) = 0 for 1 ≤ j ≤ m
φ(k)(vj) = (−1)j+1 for 1 ≤ j ≤ m

(Recall that, by convention, v0 = v2m+1.)

Lemma 5.5 In this situation, there is an upper bound for the magnitudes
of | u(k)(p) | for all k and all nodes p in G. There is also an upper bound
for the magnitudes of the currents | γ(k)(pq)(u(k)(p)−u(k)(q)) | for all edges
pq in G.
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The proof of Lemma ?? uses two easily proven facts from matrix algebra.

Lemma 5.6 Let B(k) be a sequence of n × n matrices with limk→∞B
(k) =

B. Let v(k) be a sequence of vectors of bounded norms. Then the norms of
B(k)v(k) and the magnitudes of < v(k) , B(k)v(k) > are bounded.

Lemma 5.7 Let B(k) be a sequence of n × n matrices with limk→∞B
(k) =

B. Assume that B and each B(k) is nonsingular. Let c(k) be a sequence of
vectors of bounded norms. For each k = 1, 2, . . ., let v(k) be the vectors with
B(k)v(k) = c(k). Then the norms of v(k) are bounded.

Proof: of Lemma ??. limk→∞A
(k) = A(0) and each of these is a λ-matrix.

It follows from Lemma ?? that for any fixed boundary potential φ, the
magnitudes of < φ ,A(k)(φ) > are bounded. Also, each of the submatrices
A(k)(P ;Q) is non-singular. Lemma ?? shows that there is an upper bound
for the values of | x(k)(vj) | for all boundary nodes vj and all k. By the
maximum principle (Theorem ??), this is also an upper bound for | u(k)(p) |
for all k and all nodes p in G. Lemma ?? implies that there is an upper
bound for the boundary currents for all k. By Theorem ??, There is also an
upper bound for the current along any edge in G.

(i) Assume that for some edge e = pq, µ(pq) = 0. Whether radial or
circular, by a rotation of the figure, assume that pq lies along a principal
flow path αj as in Figure ??. Let γ(k)(pq) = εk, where limk→∞εk = 0. Let
the γ-harmonic functions u(k) be as in Section ??. By Proposition ??, the
current across edge e = pq is at least 1, so

u(k)(p)− u(k)(q) ≥ 1/εk

This would imply that limk→∞u
(k)(p) =∞, contradicting Lemma ??.

(ii) Next assume that µ(ab) = ∞ for some boundary spike ab. By a
rotation of the graph G assume that µ(v0w0) =∞. Refer to Figure ??.

For each positive integer k, let u(k) be the γ(k)-harmonic function on
G as in Section ??. Let Xk = γ(k)(v0w0), where limk→∞Xk = ∞. Then
u(k)(v0) = 1, and u(k)(w0) < 0 This would imply that

c(v0w0) = γ(k)(v0w0)(v(k)(v0)− v(k)(w0))

> γ(k)(v0w0)(1− 0)

> Xk
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which would contradict Lemma ??.
From (i) and (ii), we may assume there are bounds ε and B, such that

ε ≤ γ(k)(ab) ≤ X for each boundary spike vjwj and each k ≥ 0.

(iii) Assume that for some interior edge e = pq, µ(pq) = ∞. Whether
radial or circular, by a rotation of the figure, the edge pq may be assumed to
be transverse to the principal current flow, as in Figure ??. By Proposition
??, this would give a current through pq which is

γ(k)(pq)(u(k)(q)− u(k)(p)) ≥ 2X(k)/B

This has limit ∞, which contradicts Lemma ??.

Thus any n × n matrix A in L(n) has been shown to be of the form
A = Λγ . This completes the proof of Theorem ??.
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Chapter 6

Adjoining Edges

Let Γ = (G, γ) be a circular planar resistor network with n boundary nodes.
There are three ways to adjoin an edge to Γ. The effect of each adjunction
on the matrix Λ will be described.

6.1 Adjoining a Boundary Edge

Suppose p and q are two adjacent boundary nodes of a circular planar graph
G. If a new edge joining p to q is added to the edge set of G, the new graph
is again a circular planar graph with n boundary nodes. This process is
called adjoining a boundary edge and the new graph is called T (G), where
the two boundary nodes must be made clear from the context. If a boundary
edge pq is adjoined to a circular planar resistor network Γ = (G, γ), with
γ(pq) = ξ, the resulting resistor network is denoted T (Γ), or Tξ(Γ) when
it is necessary to indicate the value of the adjoined conductor. Figure ??a
shows a circular planar graph G with 5 boundary nodes and 7 edges. Figure
??b shows the graph T (G) with 8 edges which results when an edge from
v1 to v2 is adjoined to this graph.

Suppose M is an n × n matrix, ξ is a real number, p and q are two
adjacent indices from the index set for M . A new matrix Tξ(M) is defined

99
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Figure 6-1: Adjoining a boundary edge v1v2

as follows.

Tξ(M)(p; p) = M(p; p) + ξ

Tξ(M)(q; q) = M(q; q) + ξ

Tξ(M)(p; q) = M(p; q)− ξ
Tξ(M)(q; p) = M(q; p)− ξ
Tξ(M)(i; j) = M(i; j) otherwise

Clearly, T−ξ ◦ Tξ = identity. It follows immediately from the definition of
the Kirchhoff matrix that

K(Tξ(Γ)) = Tξ(K(Γ))

Suppose Γ = (G, γ) is a resistor network, and a pair of adjacent boundary
nodes p and q, and a real number and ξ are given. From Theorem ??, it
follows that

Λ(Tξ(Γ)) = Tξ(Λ(Γ))

Λ(Γ) = T−ξ(Λ(Tξ(Γ)))

Thus Λ(Γ) uniquely determines Λ(Tξ(Γ)), and Λ(Tξ(Γ)) uniquely determines
Λ(Γ).
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Observation 6.1 Suppose pq is a boundary edge with γ(pq) = ξ, If G′

is the graph with edge pq deleted, then the response matrix Λ′ for G′ is
expressed in terms of Λ as

Λ′ = T−ξ(Λ) (6.1)

Example 6.1 Suppose the conductances of the edges of the graph of Figure
??a are: γ(v1v6) = 18; γ(v2v7) = 1; γ(v3v7) = 1; γ(v4v7) = 3; γ(v4v5) = 1;
γ(v5v6) = 12; γ(v6v7) = 6. The Kirchhoff matrix for this network is

K(Γ) =



18 0 0 0 0 −18 0
0 1 0 0 0 0 −1
0 0 1 0 0 0 −1
0 0 0 4 −1 0 −3
0 0 0 −1 13 12 0

−18 0 0 0 −12 36 −6
0 −1 −1 −3 0 −6 11


The response matrix is the Schur complement of the 2 by 2 matrix in the
lower right corner in K. The result is the matrix Λ:

Λ =


8.1 −.3 −.3 −.9 −6.6
−.3 .9 −.1 −.3 −.2
−.3 −.1 .9 −.3 −.2
−.9 −.3 −.3 3.1 −1.6
−6.6 −.2 −.2 −1.6 8.6


After adjoining an edge joining v1 to v2 with conductance γ(v1v2) = 10, the
response matrix for the network T10(Γ) is

T10(Λ) =


18.1 −10.3 −.3 −.9 −6.6
−10.3 10.9 −.1 −.3 −.2
−.3 −.1 .9 −.3 −.2
−.9 −.3 −.3 3.1 −1.6
−6.6 −.2 −.2 −1.6 8.6


Let P = (v2, v3) and Q = (v1, v5). There is no 2-connection from P to Q
through Γ, which corresponds to the fact that

det Λ(2, 3; 1, 5) =

[
−.3 −.2
−.3 −.2

]
= 0
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After adjoining the edge v1v2,

detT (Λ)(2, 3; 1, 5) =

[
−10.3 −.2
−.3 −.2

]
6= 0

This non-zero determinant shows that there now is a 2-connection from P
to Q through T (Γ). The paths of the connection are

v2 → v1

v3 → v7 → v6 → v5

There is no 2-connection from (v2, v3) to (v4, v5) through either Γ or through
T (Γ). In the two cases,

T (Λ)(2, 3; 4, 5) = Λ(2, 3; 4, 5) =

[
−.3 −.2
−.3 −.2

]
In each case, the determinant is 0.

Example 6.2 The indices 5 and 1 are adjacent in the circular ordering
{5, 1, 2, 3, 4}. For ξ = 6, the operation T−6 on the response matrix Λ of
Figure ?? produces the matrix T−6(Λ) = A, where

A =


2.1 −.3 −.3 −.9 −0.6
−.3 .9 −.1 −.3 −.2
−.3 −.1 .9 −.3 −.2
−.9 −.3 −.3 3.1 −1.6
−0.6 −.2 −.2 −1.6 2.6


This matrix A is the response matrix for the network Γ′ = (G′′, γ′′) of Figure
??b. The network Γ′′ can be obtained from Γ in two steps as follows. First
perform a Y −4 transformation with vertex at v6 on Γ to give the graph
G′ of Figure ??a. The edge v1v5 in G′ has conductance 6. The calculation
of the effect of a Y −4 transformation on the Kirchhoff matrix was made
in Chapter ??, Example ??. If “an edge of conductance −6” is adjoined to
the graph G′ of Figure ??a, the result would be that γ(v1, v5) = 0, indicated
by the dotted line on the graph G′′ of Figure ??b.

Remark 6.1 With the indices v1 and v5, any value more negative than
ξ = −1 would produce a matrix which violates property P (2) of Chapter
??.
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Figure 6-2: Edge deletion

Notice that for the sub-matrix Λ(1, 2; 4, 5)

det Λ(1, 2; 4, 5) =

[
−.9 −6.6
−.3 −.2

]
6= 0.

This corresponds to the fact that there is a 2-connection from (v1, v2) to
(v4, v5). However, for the matrix A = Λ(Γ′′),

detA(1, 2; 4, 5) = det

[
−.9 −0.6
−.3 −.2

]
= 0

This shows that there is no 2-connection from (v1, v2) to (v4, v5) through
G′′.

6.2 Adjoining a Boundary Pendant

There are two closely related ways to adjoin a spike to a boundary node of
Γ. One way increases the number of boundary nodes by one. The second
way leaves the number of boundary nodes the same.

Let Γ = (G, γ) be a circular planar resistor network and let p be a
boundary node. By a cyclic re-labeling of the boundary nodes, we may
assume that p = v1. A new vertex v0 is placed between vn and v1 on the
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Figure 6-3: Adjoining a boundary pendant at v1

boundary circle C, and a new edge v0v1 is adjoined to Γ. The new graph
is a circular planar graph with n+ 1 boundary nodes. We call this process
adjoining a boundary pendant, and the resulting network is denoted P(Γ).
If the new edge has conductance γ(v0v1) = ξ, and we need to refer to the
value of the conductances, the resulting resistor network is denoted Pξ(Γ).

Example 6.3 If a boundary pendant is adjoined to the graph of Figure ??a
at node v1 the result is the graph of Figure ??b.

Suppose M is an n× n matrix, written in block form:

M =

[
M(1; 1) a

b C

]
If ξ a real number, let Pξ(M) be the (n+ 1)× (n+ 1) matrix, with indices
0 ≤ i ≤ n and 0 ≤ j ≤ n. Then

Pξ(M) =

 ξ −ξ 0
−ξ M(1; 1) + ξ a
0 b C


Suppose given the network Γ = (G, γ) a boundary node p, and a real number
ξ. By Theorem ??,

Λ(Pξ(Γ)) = Pξ(Λ(Γ))
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Thus Λ(Γ) uniquely determines Λ(Pξ(Γ)). Also, Λ(Pξ(Γ)) uniquely deter-
mines Λ(Γ).

Example 6.4 Suppose G is the graph of Figure ??a. If a boundary pendant
v0v1 is adjoined at v1, the result is the graph P(G) of Figure ??b. For
the network Γ = (G, γ) with the conductances γ(v1v2) = 1, γ(v1v6) = 3,
γ(v2v6) = 1, γ(v3v6) = 1, γ(v4v6) = 3, γ(v4v5) = 1, γ(v5v6) = 2, the
response matrix for Γ is

Λ(Γ) =


3.1 −1.3 −.3 −.9 −.6
−1.3 1.9 −.1 −.3 −.2
−.3 −.1 .9 −.3 −.2
−.9 −.3 −.3 3.1 −1.6
−.6 −.2 −.2 −1.6 2.6


If an edge with conductance 1 is adjoined at v1, the response matrix for

the network P1(Γ) of Figure ??b is

Λ(P1(Γ)) =



1.0 −1.0 0 0 0 0
−1.0 4.1 −1.3 −.3 −.9 −.6

0 −1.3 1.9 −.1 −.3 −.2
0 −.3 −.1 .9 −.3 −.2
0 −.9 −.3 −.3 3.1 −1.6
0 −.6 −.2 −.2 −1.6 2.6


6.3 Adjoining a Boundary Spike

A spike may be adjoined at a boundary node, leaving the number of bound-
ary nodes unchanged. By a cyclic re-labeling of the boundary nodes, assume
that p = v1. First a boundary pendant sv1 is adjoined to Γ, and then v1 is
declared to be an interior node. The nodes are renumbered so that s takes
the place of v1 as the first boundary node. The new graph is a circular
planar graph with n boundary nodes. This process is called adjoining a
boundary spike. If a boundary spike sv1 is adjoined to Γ, with γ(sv1) = ξ,
the resulting resistor network is denoted Sξ(Γ).

Example 6.5 If a boundary pendant sv1 is adjoined to the graph of Figure
??a, at node v1, and v1 is then made interior and called w, the result is the
graph of Figure ??b. The node s is re-labeled as v1.
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•
v1

• v2

•
v3

•
v4

•v5

•
v6

(a) Graph

•
v1

•
w

• v2

•
v3

•
v4

•v5

•
v6

(b) Graph with spike at v1

Figure 6-4: Adjoining a spike at v1

Suppose M is an n× n matrix, written in block form:

M =

 M(1; 1) a

b C


For any real number ξ, the (n+1)×(n+1) matrix Pξ(M) has been defined in
Section ??. The indexing for the matrix Pξ(M) is 0 ≤ i ≤ n and 0 ≤ j ≤ n.
The (1, 1) entry of Pξ(M) is δ = M(1; 1) + ξ. If δ is not 0, we may take the
Schur complement of this entry in Pξ(M), to obtain the matrix Sξ(M):

Sξ(M) = Pξ/[M(1; 1) + ξ] =

 ξ − ξ2

δ
aξ
δ

bξ
δ C − ba

δ


The indices of Sξ(M) are {1, 2, . . . , n}, with index position 1 corresponding
to the new node (now re-labeled v1). A straightforward calculation shows
that S−ξ ◦ Sξ = identity. From the definition of the Kirchhoff matrix in
Chapter ??, we have:

K(Sξ(Γ)) = K(Pξ(Γ))

Then Λ(Sξ(Γ)) is the Schur complement in Pξ(K(Γ)) of the block corre-
sponding to the enlarged set of interior nodes, which is I ∪ {v1}. From
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Theorem ??, it follows that

Λ(Sξ(Γ)) = Sξ(Λ(Γ))

Λ(Γ) = S−ξ(Λ(Sξ(Γ)))

Suppose given (Γ, γ) and the positive real number ξ. Then Λ(Γ) uniquely
determines Λ(Sξ(Γ)). Also Λ(Sξ(Γ)) uniquely determines Λ(Γ).

Observation 6.2 Suppose Γ = (G, γ) is a resistor network with response
matrix Λ, and pr is a boundary spike with γ(pr) = ξ. If G′ is the graph
with edge pr contracted, then the response matrix Λ′ for G′ is expressed in
terms of Λ as

Λ′ = S−ξ(Λ) (6.2)

Example 6.6 Suppose G is the graph of Figure ??a. If an edge v0v1 of
conductivity 1 is adjoined at v1, and v1 is made interior, the result is the
graph S(G) of Figure ??b. The response matrix for S(G) is the following.

Λ(S(Γ)) =


.7561 −.3171 −.0732 −.2195 −.1463
−.3171 1.4878 −.1951 −.5854 −.3902
−.0732 −.1951 .7780 −.3659 −.2439
−.2195 −.5854 −.3659 2.9024 −1.7317
−.1463 −.3902 −.2439 −1.7317 2.5122


The response matrix Λ(S(G)) may be calculated either by taking the Schur
complement in the Kirchhoff matrix for S(G) of the 2 by 2 matrix corre-
sponding to the two interior nodes, or by taking the Schur complement of
the (1, 1) entry in P(Γ). The (1, 1) entry corresponds to the node which is
made interior.

The boundary spike has been adjoined at v1 for ease of notation. The
constructions of the networks Pξ(Γ) or Sξ(Γ) may be made at any boundary
node. The operations on matrices Pξ(M) or Sξ(M) may be made at any
index. The only restriction on performing Sξ(M) at the index p is that the
value mp,p + ξ must be non-zero. In each case, the location of the nodes (or
indices) where the construction is made will be clear from the context.
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6.4 Recovery of Conductances III

Suppose Γ = (G, γ) is a circular planar resistor network, and G is critical as
a graph. Let Λγ be the response matrix for Γ. The methods of Chapter ??
and this Chapter show that for all edges pq in G, the conductances γ(pq)
may be recovered from Λγ . The following is needed from Chapter ??.

(1) Any critical circular planar graph G has at least one edge that is
either a boundary edge or a boundary spike. In fact, Lemma ?? shows that
it must have at least three such edges.

(2) Suppose that a boundary edge is deleted from, or a boundary spike
is contracted in a critical graph G, resulting in a graph G′. Then G′ is also
critical.

(3) Suppose that a boundary edge is deleted from, or a boundary spike
is contracted in a critical graph G. The endpoints of the geodesics in the
medial graph can be used to find the connection that is broken.

Recall from Chapter ?? that the conductance of a boundary edge can be
calculated by formula ??. Suppose γ(pq) = ξ. Then T−ξ(Λγ) is the response
matrix for the graph G′ with boundary edge pq deleted. Similarly, the
conductance of a boundary spike can be calculated by formula ??. Suppose
γ(pr) = ξ. Then S−ξ(Λγ) is the response matrix for the graph G′ with
boundary spike pr contracted. This is summarized in the following Theorem.

Theorem 6.1 let Γ = (G, γ) be a circular network whose underlying graph
is critical. Then the conductances may be calculated from the response ma-
trix Λγ. The map which sends the conductivity function γ to the response
matrix Λγ is 1 - 1. Let γ and µ be two conductivities on G. If Λγ is suffi-
ciently near to Λµ, then γ will be near to µ.



Chapter 7

Characterization II

The goal of this Chapter is an (algebraic) characterization of the set of all
response matrices for circular planar graphs. Let Ωn be the set of n by n
matrices A which satisfy the following three properties.

(P1) A is symmetric; that is, A(i; j) = A(j; i)

(P2) The sum of the entries in each row is 0.

(P3) For each circular pair (P ;Q) = (p1, . . . , pk; q1, . . . , qk),

(−1)k detA(P ;Q) ≥ 0

The main result is the following.

Theorem 7.1 Let A be an n by n matrix whose entries satisfy the relations
(P1), (P2), and (P3). Then there is a critical circular planar graph G, and
a conductivity function γ on G such that the response matrix Λγ = A.

Condition (P3) for Theorem ?? replaces condition (L3) for Theorem ??.
In this way, non-negative matrices play the same role for arbitrary response
matrices on arbitrary (critical) graphs that positive matrices play for well-
connected (critical) graphs.

7.1 Totally Non-negative Matrices

Though elementary, the matrix algebra in this Section is somewhat intricate.
The important facts to be established are Lemmas ?? and ??. This section

109
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retains the notations of Chapters ?? and ??, except that the positions of
the entries of a matrix A are indicated by subscripts. Thus, if A = {ai,j}
is a matrix, ai,j is the entry at the (i, j) position. If P = (p1, . . . , pk) is an
ordered subset of the rows of A, and Q = (q1, . . . , qm) is an ordered subset
of the columns of A, then

• A(P ;Q) is the k ×m sub-matrix of A formed from rows p1, . . . , pk of
A, and columns q1, . . . , qm of A. Specifically,

A(P ;Q)i,j = api,qj

• A[P ;Q] is the matrix obtained by deleting the rows for which the index
is in P , and deleting the columns for which the index is in Q.

Thus A[1; 1, 2] refers to the matrix obtained by deleting row 1, and
columns 1 and 2 from A. A[ ; 1] refers to the matrix obtained by deleting
the first column of A.

Following [?], a rectangular matrix A is called totally non-negative (ab-
breviation: TNN) if every square sub-matrix has determinant ≥ 0. The
following facts about TNN matrices will be needed in Chapter ??.

Lemma 7.2 Suppose A = {ai,j} is an m × m matrix which is TNN and
non-singular. Then every principal minor of A is non-singular.

Proof: The proof is by induction on m. For m = 1, there is nothing to
prove. Let m > 1. If the entry a1,1 = 0, and the first row of A is not all 0,
and the first column of A is not all 0, there would be a submatrix of A of
the form [

0 a1,j

ai,1 ai,j

]
which would have negative determinant. Thus if a1,1 = 0, then either the
entire first row or the entire first column of A would be 0, contradicting the
assumption that A is non-singular. This shows that the entry a1,1 must be
positive. By the determinantal formula for Schur complements, the Schur
complement A/[a1,1] is non-singular and TNN. Similarly am,m > 0, A/[am,m]
is non-singular and TNN. By the inductive assumption, every principal mi-
nor of A/[a1,1] is non-singular. Let A(P ;P ) be a principal minor of A,
where P = (p1, . . . , pk) is an ordered subset of the index set (1, 2, . . . ,m). If
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1 is in P , A(P ;P )/[a1,1] is a principal minor of A/[a1,1] and hence is non-
singular. Thus detA(P ;P ) 6= 0, so A(P ;P ) is non-singular. Similarly if m
is in P , A(P ;P ) is non-singular. Otherwise, P contains neither 1 nor m,
and k ≤ m− 2. Let Q = (1, p1, . . . , pm). The k+ 1 × k+ 1 matrix A(Q;Q)
is TNN and non-singular. A(P ;P ) is a principal minor of A(Q;Q), so is
non-singular by induction.

Recall that if M is in Ωn, and (P ;Q) is a circular pair of indices, then
the matrix −M(P ;Q) is TNN. We need to see what happens to M(P ;Q)
if we take the Schur complement in M of a diagonal entry mh,h. If the
indexing set for M is {1, . . . , n}, it is convenient to regard the deleted set
(1, . . . , ĥ, . . . , n) as the indexing set for M ′. Let P = (p1, . . . , pk) and
Q = (q1, . . . , qk) be a circular pair of sequences of indices for M ′. Then
h /∈ P ∪ Q. By interchanging P and Q if necessary, and by a cyclic re-
ordering of the indices, we may assume that 1 ≤ h < qk in the circular
order. Figure ?? shows an example (with k = 4, and p2 < h < p3) of the
type of submatrix of M under consideration. The submatrix of Λ consists
of the entries whose locations are marked with an *. The top row lists the
column indices, and the left side lists the row indices that are used to form
the submatrix. Specifically, a matrix M(R;T ) is formed as follows. Let
R = (r1, r2, . . . , rk+1), be the set P ∪ h with the circular ordering, where rs
is the index h and 1 ≤ s ≤ k + 1. Let T = {t1, t2, . . . , tk+1} where t1 = h,
and for each 2 ≤ i ≤ k + 1, ti = qk+2−i. The matrix M(R;T ) has the form
of Figure ??. The entry at position (i, j) of M(R;T ) is given as follows.

• row i of M(R;T ) is taken from row pi of M if 1 ≤ i < s

• row s of M(R;T ) is taken from row h of M

• row i of M(R;T ) is taken from row pi−1 of M if s < i ≤ k + 1

• column 1 of M(R;T ) is taken from column h of M

• column j ofM(R;T ) is taken from column qk+2−j ofM if 1 < j ≤ k+1.

The matrix of interest is A = −M(R;T ). The entry at the (s, 1) position
of A is −mh,h, where mh,h is the diagonal entry of M . In the example shown
in Figures ?? and ??, the entry A3,1 = −mh,h.
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· · · h · · · q4 q3 q2 q1 ·
.
.

p1

p2

h
p3

p4

.

.



· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · ∗ · · · ∗ ∗ ∗ ∗ ·
· · · ∗ · · · ∗ ∗ ∗ ∗ ·
· · · ∗ · · · ∗ ∗ ∗ ∗ ·
· · · ∗ · · · ∗ ∗ ∗ ∗ ·
· · · ∗ · · · ∗ ∗ ∗ ∗ ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·


Figure 7-1:

h q1 q2 q3 q4

p1

p2

h
p4

p5


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗


Figure 7-2:
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Lemma 7.3 Suppose that A = {ai,j} is an m × m matrix. Assume for
some index s with 1 ≤ s ≤ m that

(i) as,1 < 0

(ii) A[ ; 1] is TNN.

(iii) A(s+ 1, . . . ,m; 1, . . . ,m) is TNN.

(iv) A(1, . . . , s− 1; 2, . . . ,m, 1) is TNN.

Then

(1) (−1)s detA ≥ 0.

(2) If it is further assumed that detA[s; 1] > 0, then (−1)s detA > 0.

Proof: By induction on m. The assertion of (1) for m = 2 is immediate.
Suppose m > 2 and first consider the case s = 1, with a1,1 < 0. If all the
cofactors of the entries in the first column are 0, then detA = 0. If the only
non-zero cofactor of an entry in the first column is A[1; 1], then

detA = a1,1 · detA[1; 1] < 0

Otherwise, suppose detA[t; 1] > 0 with t > 1. A[1, t; 1, 2] is a principal minor
of A[t; 1] which is assumed to be TNN, so detA[1, t; 1, 2] > 0 by Lemma ??.
The six-term identity (Lemma ??) gives

detA · detA[1, t; 1, 2] = detA[1; 1] · detA[t; 2]− detA[1; 2] · detA[t; 1]

detA[1; 2] and detA[t; 1] are non-negative by assumption (iii). By the in-
ductive assumption detA[t; 2] ≤ 0. Hence detA ≤ 0.

The case s = m is similar, by considering the matrix

A(1, . . . ,m; 2, . . . ,m, 1). The only negative entry is in the last column. As-
sumption (iv) is used in place of (iii).

This leaves the case when 1 < s < m. First suppose the only non-zero
cofactor of an entry in the first column is A[s; 1]. In this case,

detA = (−1)s+1 · as,1 · detA[s; 1]
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If more than one cofactor is non-zero, assume that detA[s; 1] > 0 and
detA[t; 1] > 0 with 1 < s < t ≤ m. Then A[1, t; 1, 2] is a principal mi-
nor of A[t; 1], so detA[1, t; 1, 2] > 0 by Lemma ??. The six-term identity
gives

detA · detA[1, t; 1, 2] = detA[1; 1] · detA[t; 2]− detA[1; 2] · detA[t; 1]

The factors detA[1; 1] and detA[t; 1] are non-negative. By the inductive
assumption, (−1)s detA[t; 2] ≥ 0 and (−1)s−1 detA[1; 2] ≥ 0. In every case,
(−1)s detA ≥ 0.

The proof of (2) is also by induction on m. For m = 2, the assertion is
immediate. Suppose m > 2. If the only non-zero cofactor of an entry in the
first column is A[s; 1], then

(−1)s detA = −as,1 · detA[s; 1] > 0

If more than one cofactor is non-zero, assume that detA[s; 1] > 0 and
detA[t; 1] > 0 with 1 < s < t ≤ m. Then detA[1, s; 1, 2] > 0 and
detA[1, t; 1, 2] > 0 by Lemma ??. By the inductive assumption,
(−1)s−1 detA[1; 2] > 0, and equation (??) shows that (−1)s detA > 0.

Lemma 7.4 Let M be a matrix in Ωn and suppose that mh,h is a non-zero
diagonal entry. Then the Schur complement M ′ = M/[mh,h] is in Ωn−1.
Furthermore, if (P ;Q) is a circular pair of indices neither of which includes
the index h, for which det(−1)kM(P ;Q) > 0, then det(−1)kM ′(P ;Q) > 0.

Proof: Let (P ;Q) = (p1, . . . , pk; q1, . . . , qk) be a circular pair of indices
for M ′. Then h /∈ P ∪ Q. As in the discussion prior to Lemma ??, R =
(r1, r2, . . . , rk+1) is taken to be the set P ∪ h with the circular ordering,
where rs is the index h, and where 1 ≤ s ≤ k + 1. T = {t1, t2, . . . , tk+1} is
the set t1 = h, and for each 1 ≤ i ≤ k, ti+1 = qi. Thus 1 ≤ r1 < . . . rk+1 <
tk+1 < . . . t1 ≤ n. The matrix A = −M(R;T ) has the form of Figure ??,
and satisfies conditions (i)-(iv) of Lemma ??. Hence (−1)s detA ≥ 0, so

(−1)s+1+k detM(R;T ) ≥ 0

The entry mh,h in M is in the (s, 1) position of A. Taking the Schur com-
plement of mh,h in M , gives:

M ′(P ;Q) = M(R;T )/[mh,h]
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Thus, by Lemma ??, (−1)k detM ′(P ;Q) ≥ 0. If (−1)k detM(P ;Q) > 0,
then part (2) of Lemma ?? shows that (−1)s+1+k detM(R;T ) > 0. Therefore
(−1)k detM ′(P ;Q) > 0.

Notation: Let P = (p1, p2, . . . , pk) be a sequence of distinct indices.

• If p ∈ P , then P − p denotes the sequence obtained by deleting the
index p from P .

• If p /∈ P , then p + P denotes the sequence (p, p1, · · · , pk), and P + p
denotes the sequence (p1, · · · , pk, p).

Lemma 7.5 Suppose M is in Ωn, p and q are adjacent indices, and ξ > 0.
Let Tξ(M) be the matrix constructed in Section ??. Then Tξ(M) is in Ωn.

Proof: The circular determinants in M ′ = Tξ(M) are the same as the
circular determinants in M except for the ones which correspond to circular
pairs (P ;Q) = (p1, . . . , pk; q1, . . . qk) where p = pk and q = qk, or p = p1 and
q = q1. Each of these determinants has the form

detM ′(P ;Q) = det

[
C a
b d− ξ

]

= det

[
C a
b d

]
− ξ det(C)

= detM ′(P ;Q)− ξ detM(P − p;Q− q)

Hence

(−1)k detM ′(P ;Q) =

(−1)k detM(P ;Q)− ξ(−1)k−1 detM(P − p;Q− q) ≥ 0

Observation 7.1 If either (−1)k detM(P ;Q) > 0 or (−1)k−1 detM(P −

p;Q− q) > 0, then (−1)k detM ′(P ;Q) > 0. Otherwise detM ′(P ;Q) = 0.

Lemma 7.6 Suppose M is in Ωn, and ξ > 0. Let Pξ(M) be the matrix
constructed in Section ??. Then Pξ(M) is in Ωn+1.
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Proof: Let M ′ = Pξ(M), and let (P ;Q) = (p1, . . . , pk; q1, . . . , qk) be a
circular pair of indices from the set (0, 1, . . . , n).

(1) If 0 /∈ P ∪Q, then detM ′(P ;Q) = detM(P ;Q).

(2) If 0 is an index in P and 1 /∈ Q, then detM ′(P ;Q) = 0.

(3) If 0 is in P and 1 is in Q, then 0 = pk, 1 = qk, and

detM ′(P ;Q) = −ξ detM(P − pk;Q− qk)

.

(4) The situation is similar if 0 is in Q.

Lemma 7.7 Suppose M is in Ωn, and ξ > 0. Let Sξ(M) be the matrix
constructed in Section ??. Then Sξ(M) is in Ωn.

Proof: Let (P ;Q) = (p1, . . . , pk; q1, . . . , qk) be a circular pair of indices.
Let p be the index where the spike is adjoined. By interchanging P and
Q if necessary, and by a circular re-0 of the indices, we may assume that
1 ≤ p < qk in the circular order. We first note that Sξ(M) is the Schur
complement in Pξ(M) of the entry at the (p, p) position. Hence Sξ(M) is in
Ωn. Also

(1) If p is in P , then the formula for Sξ(M), shows that

detM ′(P ;Q) =

(
ξ

ξ +mp,p

)
detM(P ;Q)

(2) Suppose that p is not in P and (−1)k detM(P ;Q) > 0. Then by
Lemma ??, (−1)kSξ(M)(P ;Q) > 0.

7.2 Characterization of Response Matrices II

Lemma 7.8 Suppose M is in Ωn, with at least one circular determinant
equal to 0. Let ε > 0 be given. Then there is a matrix M ′ in Ωn, with
‖M ′ −M‖∞ < ε, and
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(1) detM ′(P ;Q) 6= 0 whenever detM(P ;Q) 6= 0

(2) For at least one circular pair (P ;Q),

detM(P ;Q) = 0 and

detM ′(P ;Q) 6= 0.

Proof: Let (P ;Q) = (p1, . . . , pk; q1, . . . , qk) be a circular pair of indices for
which detM(P ;Q) = 0, and has minimum order k, and among those, take
a circular pair (P ;Q) for which |qk − pk| is a minimum.

(1) If qk − pk = 1, let M ′ = Tξ(M), where the chosen indices are pk and
qk. By Lemma ??, detM ′(P ;Q) 6= 0. Also by Lemma ??, detM ′(R;S) 6=
0 whenever (R;S) is a circular pair for which detM(R;S) 6= 0. If ξ is
sufficiently small, then ‖M ′ −M‖∞ < ε.

(2) If qk − pk > 1, let p = pk + 1 and M ′ = Sξ(M) where the chosen
index is p. By Lemma ??, detM ′(R;S) 6= 0 whenever (R;S) is a circular
pair for which detM(R;S) 6= 0.

We need to show that det(−1)kM ′(P ;Q) > 0. For simplicity of notation,
N will denote Pξ(M) where the spike is adjoined at index p′ with pk < p′ <
pk + 1 = p. Then M ′ = Sξ(M) will be the Schur complement of the (p, p)
entry in N .

p qk · · · q2 q1

p1

p2

· · ·
pk
p


∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗
· · · · · · ·
∗ ∗ · · · ∗ ∗
∗ ∗ · · · ∗ ∗


The six-term identity of Lemma ?? gives

detN(P + p;Q+ p) · detN(P − pk;Q− qk)
= detN(P − pk + p;Q− qk + p) · detN(P ;Q)

− detN(P − pk + p;Q) · detN(P ;Q− qk + p)
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Using the assumption that detM(P ;Q) = 0 implies detN(P ;Q) = 0. then

detN(P + p;Q+ p) = −detN(P − pk + p;Q) · detN(P ;Q− qk + p)

detN(P − pk;Q− qk)

Each of the factors on the right hand side is non-zero because of the as-
sumption of the minimality of (P ;Q). Therefore detN(P + p;Q + p) 6= 0.
Taking the Schur complement of the (p, p) entry yields detM ′(P ;Q) 6= 0. If
ξ is taken sufficiently large, then ‖M ′ −M‖∞ < ε.

Proof: of Theorem ??. Recall from Section ?? the graph Gn = (V, VB, E),
with n boundary nodes.

Lemma ?? implies that Ωn is the closure of L(n) in the space of n × n
matrices. Thus for any M in Ωn, there is a sequence of matrices Mi in L(n)
which converge to M . Theorem ?? shows that for each integer i, there is
a conductivity γi on Gn with Mi = Λ(Gn, γi). By taking a subsequence if
necessary, assume for each edge e in E that limi→∞ γi(e) is either 0, a finite
non-zero value or ∞.

Let E0 be the subset of E for which lim
i→∞

γi(e) = 0.

Let E1 be the subset of E for which lim
i→∞

γi(e) = γ(e) is a finite non-zero

value.

Let E∞ be the subset of E for which lim
i→∞

γi(e) =∞.

Let Γ = (W,VB, E1) be the graph obtained from Gn = (V, VB, E) by
deleting the edges of E0 and contracting each edge of E∞ to a point. The
vertex set W for Γ is the set of equivalence classes of vertices in V , where
p ∼ q if pq is in E∞. Note that distinct boundary nodes in VB cannot belong
to the same equivalence class, because the Mi are bounded. Thus VB may
be considered as a subset of W . Each edge e in E1 joins a pair of points
of W , so the edge-set of Γ is E1. The restrictions of γi and γ to E1 give
conductivities on Γ. We shall show that M = Λ(Γ, γ).
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Suppose f is a function defined on the boundary nodes of Γ. Let

Q(f) = inf
∑
e∈E1

γ(e)(∆w(e))2

The infimum is taken over all functions w defined on the nodes of Γ which
agree with f on VB, and ∆w(pq) = w(p) − w(q), This infimum is attained
when w = u is the potential function on the resistor network (Γ, γ), with
boundary values f ; that is when w is γ-harmonic at each interior node of Γ.
Similarly, for each integer i, let

Qi(f) = inf
∑
e∈E1

γi(e)(∆w(e))2

This infimum is attained when w = ui is the potential function on (Γ, γi)
with boundary values f . Then limi→∞ ui = u, because the γi and γ are
conductivities (non-zero, and finite) on Γ, with limi→∞ γi = γ. Therefore
Q(f) = limi→∞Qi(f).

For each integer i, let

Si(f) = inf
∑
e∈E

γi(e)(∆w(e))2

where the infimum is taken over all functions w defined on the nodes of
Gn which agree with f on VB. This infimum is attained when w = wi
is the potential function on the resistor network (Gn, γi), with boundary
values f . The maximum principle implies that | wi(p) | ≤ max | f(p) |.
By taking a subsequence if necessary, assume that for each node p, wi(p)
converges to a finite value w(p). The assumption that the Mi converge to
M guarantees that for each function f , the Si(f) are bounded. Thus for
each edge e = pq ∈ E∞, we have w(p) = w(q). Let

Ri(f) =
∑
e∈E1

γi(e)(∆wi(e))
2

and

R(f) = lim
i→∞

Ri(f) =
∑
e∈E1

γ(e)(∆w(e))2
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Let F be the set of functions v = {v(p)} defined for all nodes of Gn, which
agree with f on VB, and for which v(p) = v(q) whenever pq ∈ E∞. Let

Pi(f) = inf
v∈F

∑
e∈E

γi(e)(∆v(e))2

Then
Pi(f) ≥ Si(f) ≥ Ri(f)

and
Qi(f) +

∑
e∈E0

γi(e)(∆ui(e))
2 ≥ Pi(f) ≥ Qi(f)

The maximum principle implies that the | ui(p) | are bounded by
max | f(p) |. For each edge e ∈ E0, we have limi→∞ γi(e) = 0 , so

Q(f) = lim
i→∞

Qi(f) = lim
i→∞

Pi(f) ≥ lim
i→∞

Ri(f) = R(f)

But R(f) ≥ Q(f), so R(f) = Q(f). Thus

lim
i→∞

Si(f) = Q(f) = lim
i→∞

< f,Mi(f) > = < f,M(f) >

If G is a circular planar graph with n boundary nodes, let π(G) be the
set of connections P ↔ Q through G. If π = π(G) for some circular planar
graph with n boundary nodes, let

• Ωn(π) = {n by n matrices M which satisfy (−1)k detM(P ;Q) > 0 for
each circular pair (P ;Q) ∈ π}.

Corollary 7.9 Suppose Γ = (G, γ) is a critical circular planar resistor net-
work with N edges and π = π(Γ). Then the map L which sends γ to Λγ is
a diffeomorphism of (R+)N onto Ω(π).

Ωn is the disjoint union of the sets Ωn(π). Let ω = π(Gn), where Gn is the
well-connected graph of Chapter ??. Then Ω(ω) = L(n). For more details,
see also [?].



Chapter 8

Medial Graphs

8.1 Constructing the Medial Graph

Suppose G is a circular planar graph, with n boundary nodes; G is embedded
in the plane so that the boundary nodes v1, v2, . . . , vn are in clockwise order
around a circle C and the rest of G is in the disc D which is the interior
of C. The construction of the medial graph M is similar to that in [?] (p.
241), and depends on the embedding of G in the disc. For each edge e of G,
let me be its midpoint. Next 2n points t1, t2, . . . t2n are placed on C so that:

t1 < v1 < t2 < t3 < v2 < . . . < t2n−1 < vn < t2n < t1

(1) The vertices of M consist of the points me for all edges e in G, and
the points ti for i = 1, 2, . . . , 2n.

(2) If e and f are edges in G, with a common vertex in G, and which
are incident to the same face in G, the line memf joining the midpoints me

and mf is to be an edge in M, and is called the median. For each point tj
on the boundary circle, there is one edge as follows. The point t2i is joined
by an edge to me where e is the edge of the form e = viw which comes first
after the line vit2i in clockwise order around vi; the point t2i−1 is joined by
an edge to mf where f is the edge of the form f = viw which comes first
after the line vit2i−1 in counter-clockwise order around vi.

The vertices of the formme ofM are in the interior ofD and are 4-valent.
The vertices of the form ti on the bounding circle C are 1-valent.

121
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Example 8.1 Figure ??a shows a graph G with four boundary nodes v1,
v2, v3, v4, two interior nodes v5, v6 and six edges. The edges of G (indicated
by solid lines) are v1v2, v2v6, v3v6, v4v5, v1v5 and v5v6. The midpoint
of each edge vivj , is denoted by mi,j . The points t1, t2, . . . , t8 are placed
on the boundary circle C. The medians are the line segments indicated
by the dotted lines. Figure ??b shows a (topologically equivalent) version
of the medial graph M without the underlying graph G; the corners of
the medial lines have been smoothed, and the geodesics (defined in the
paragraph below) redrawn as solid lines. Other examples of graphs and
their medial graphs will be found throughout Chapters ?? and ??.

If v is a 4-valent vertex ofM, an edge uv ofM has a direct extension vw
if the edges uv and vw separate the other two edges incident to the vertex
v. A path u0u1 . . . uk inM is called a geodesic fragment if each edge ui−1ui
has edge uiui+1 as a direct extension. A geodesic fragment u0u1 . . . uk is
called a geodesic if either of the following conditions holds.

(1) u0 and uk are points on the circle C.

(2) uk = u0 and uk−1uk has u0u1 as direct extension.

Example 8.2 For the graph in Figure ??a the four geodesics are:

σ1 = t1m1,5m5,6m6,3t5

σ2 = t2m1,2m2,6m6,3t6

σ3 = t3m1,2m1,5m4,5t7

σ4 = t4m2,6m6,5m5,4t8

It is necessary to consider graphs that are similar to the graphs of
geodesics that arise as medial graphs of a circular planar graph G, but
are somewhat more general. Let D be the unit disc, with boundary circle
C. An arc is a curve described by a differentiable function α, from [0, 1] to
the disc D, such that:

(1) for 0 < t < 1, α(t) is in the interior of D.

(2a) the endpoints α(0) and α(1) are distinct points on C OR

(2b) α(0) = α(1) and this point is in the interior of D.
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Figure 8-1: Graph and Medial graph
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(3) α has at most a finite number of self-intersection points, each of
which is transversal.

A family of arcs in D is a finite set of arcs A = {αi} such that each
intersection point lies on at most two arcs and each such intersection is
transversal. If α(t1) and α(t2) are two intersection points (not necessarily
adjacent) on an arc α, the set of points α(t) for t1 ≤ t ≤ t2, is called an
arc fragment. If α(t1) and α(t2) are adjacent intersection points on α, the
arc fragment between α(t1) and α(t2) is called an arc segment, or simply a
segment.

Suppose G is a circular planar graph, and the medial graphM =M(G)
is constructed as above. After a small alteration in the geodesics in the
neighborhood of each vertex of the form me the geodesics can be made into
differentiable curves which intersect transversally, and M will be a family
of arcs in D. For example, the geodesics in medial graph of Figure ??a
have been altered to become the family of arcs in Figure ??b. Since they
are topologically equivalent, we may consider either the family of geodesics
formed by the medial lines, or the family of arcs to be the medial graph
M(G) associated to G.

8.2 Coloring the Regions

Let A = {αi} be a family of arcs in D. A family L of closed loops can
be made from A as follows. Suppose the endpoints of the arcs which meet
the circle C are t1, t2, . . . t2n numbered in circular order around C. For each
1 ≤ i ≤ n, place a small curve (a semi-circle will do) from t2i−1 to t2i. This
gives a family of closed loops in the plane, all of whose intersections are
4-valent. By [?], Theorem 6.1.3, the regions of the plane may be 2-colored,
say black and white. For definiteness, let the unbounded region be colored
white. Figure ?? shows a 2-coloring of the regions defined by such a family
of loops. Even if the arcs have no self-intersections, not every family of arcs
A in D is the medial graph of a circular planar graph G, in any natural way,
as shown both in Figure ??.

If A is a family of arcs in the disc D, there is a cell decomposition K of
D obtained by restricting the regions formed by the family of closed loops
L to D. Specifically, the vertices of K are the points of intersection of one
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Figure 8-2: 2-coloring the regions

arc with another (or with itself), together with the points of intersection
of an arc with the boundary circle C. An edge of K is the arc segment
between adjacent vertices, or the segment on C between adjacent vertices.
The complement of the edges of K in the disc D is a finite union of open
connected regions. Each region is the connected component bounded by a
finite number of edges. If R is a region in K, the intersection R∩C is either
empty or R ∩ C consists of a finite number of edges of K. Each edge in
R ∩ C will be called a boundary interval. A region R is called an interior
region if R ∩ C is empty, that is, if R has no boundary intervals.

The 2-coloring of the regions inside the family L of closed loops con-
structed above, restricts to a 2-coloring of the regions of K. The boundary
intervals may be called black intervals or white intervals as the case may be.
The union of the black regions and black (boundary) intervals of K will be
denoted by bl(K). The union of the white regions and white (boundary)
intervals of K will be denoted by wh(K).

If M is the medial graph derived from a circular planar graph G, then
G may be reconstructed from M as follows. The family M defines a cell
decomposition K of the disc D which is 2-colored as above. This 2-coloring
of K can be chosen so that the boundary nodes of G are in the black intervals
of K. For each black region Ri, place a vertex pi in its interior. For each
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Figure 8-3: Reconstructed graph

pair of black regions Ri and Rj which have a common vertex w of K, place
an edge pipj passing through w. The resulting graph is isomorphic to the
original graph. In this case, the white complex wh(K) gives rise to the dual
graph G⊥ also considered as a circular planar graph embedded in D. The
graph G5 of Chapter ?? and its dual G⊥5 are shown in Figure ??, where they
are named D(5, 2) and D(5, 2)⊥ respectively.

Example 8.3 Figure ?? shows a circular planar graph, the medial graph,
the coloring of the black regions and the reconstructed graph which is iso-
morphic to the original graph.

8.3 Switching Arcs

Let A be a family of arcs in the disc D and suppose {f, g, h} are three arcs
in A which intersect at u, v, and w to form a triangle 4(uvw), such that
there are no other vertices of A within a circle containing ∆uvw, as shown
in Figure ??a. The region interior to ∆(u, v, w) is called an empty triangle.
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Figure 8-5: Y −4 Transformation; Switching arcs

A switch of {f, g, h} consists of replacing this configuration with that of
Figure ??b where the arcs have been renamed {f ′, g′, h′} respectively. After
the switch, the region in Figure ??b interior to ∆(u′, v′, w′) is also an empty
triangle. Performing the switch again to the arcs of Figure ??b, the triple
{f ′, g′, h′} will revert to the triple {f, g, h} Figure ??a. A and A′ are said
to be equivalent families of arcs if A′ can be obtained from A by a finite
sequence of switches. Each Y − 4 transformation of G corresponds to a
switch of a triple of arcs in M. Conversely, a switch of a triple of arcs in
M corresponds to a Y −4 transformation of G as illustrated in Figure ??.
The result is stated in the following theorem.
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Theorem 8.1 Two circular planar graphs are Y −4 equivalent if and only
if their medial graphs are equivalent as families of arcs.

8.4 Lenses

Suppose A is a family of arcs in the disc D, which intersect at (distinct)
points p and q. A subgraph L of the graph formed by the family A is called
a lens if the following two conditions are satisfied.

(i) There are two arc fragments a0a1 . . . alb0 and b0b1 . . . bma0. The se-
quence of arc segments

P = a0a1 . . . alb0b1 . . . bma0

is a simple closed path in the interior of D.

(ii) L consists of the vertices and arc segments of P together with all
vertices and arc segments of A in the interior of the bounded component of
the complement of P.

Observation 8.1 (1) The only repeated vertices are a0 and b0, called the
poles of the lens. It can happen that b0 = a0 (that is, there are no points
bi for i > 0). In this case, there is only one pole a0, and the path P is
a0a1 . . . ala0 and P will be called a loop in A. This degenerate case of a lens
is handled in much the same way as a true lens which has two poles.

Example 8.4 Figure ?? illustrates an example of a lens L. The arcs g
and h intersect at p and q which are the poles of L. The closed path is
P = pv3v2v1qu3u2u1p. Arcs g and α1 do not form a lens, nor do h and α1

form a lens. There are fragments of arcs α1, α2 and α3 within the lens L.

This proof of the following lemma is an adaptation to our situation, of a
proof due to Grunbaum. Not only is the statement itself important, but
the method of proof will be used extensively in later arguments. Grunbaum
constructed medial graphs and used them to prove a theorem of Steinitz,
called “The Fundamental Theorem of Convex Types”. In [?], the definition
of lens is slightly more restrictive than that given here, because in the proof
of Steinitz’s Theorem, it is necessary to find a lens for which no edges in the
interior of the lens are incident to the poles. See [?] and [?].
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Figure 8-6: Lens with arcs crossing

Lemma 8.2 Suppose A is a family of arcs which has a lens. Then A is
equivalent to a family of arcs which has an empty lens.

Proof: Suppose that L is a lens for which the number of regions inside L is
minimal. Suppose p and q are the two poles of L and suppose g = pp1 . . . plq
and h = qq1 . . . qmp are two arc fragments which form the closed path P
which is the boundary of L. (The situation is similar if L has only one pole
p. The details of this case are left to the reader.) Any arc that crosses g or
h between p and q must cross both g and h between p and q or there would
be a lens with fewer regions than L. Let F = {αi} be the set of arcs in A
which intersect both g and h between p and q. For each i = 1, . . . ,m, let vi
be the point of intersection of αi with g between p and q. Let wi be first
intersection point of αi with another member of F after vi inside the lens
L. Let W = {wi} be the set of points obtained in this way. If W is empty,
let αi be the arc in F such that vi is closest to p. Then arcs {g, h, αi} form
an empty triangle with p as one vertex. A switch of {g, h, αi} will remove
αi from the lens L. If W is nonempty, each point wi ∈ W is the point of
intersection of two arcs in F . Let w be a point in W for which the number of
regions within the configuration formed by αi, αj and g is a minimum. This
minimum must be one, or else there would be another arc which intersects αi
between vi and w or which intersects αj between vj and w. Then {g, αi, αj}
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form an empty triangle. A switch of {g, αi, αj} will reduce the number of
regions within the lens L. After a finite number of switches, there are no
intersections of any members of F with each other within L. After finitely
many more switches, no member of F crosses into L, and the newly placed
family has an empty lens.

Example 8.5 Refer to Figure ??. The arc fragments g and h are the bound-
ary path P of a lens with six interior regions. Each of the arcs α1, α2 and
α3 intersects both g and h. Arcs α1 and α2 intersect at w. Arcs α1, α2 and
g form an empty triangle ∆w1v1v2. After a switch of {α1, α2, g}, the arc α2

forms an empty triangle with g and h. A switch of {α2, g, h} then produces
in a lens with only two arcs α1 and α3, each of which intersects both g and
h. The (newly placed) arcs α1 and α3 form another empty triangle with g.
After a switch of {α1, α3, g}, the arcs α1 and α3 no longer intersect within
the lens. A switch of {α1, g, h} and then a final switch of {α3, g, h} will
empty the lens.

8.5 Uncrossing Arcs

Suppose A is a family of arcs in D, and f and g are two arcs in A which
intersect at s. An uncrossing of f and g at s, will result in a new family
of arcs A′ as follows. The only arcs affected are f and g, which will be
replaced by arcs f ′ and g′. First make a small circle C1 around s which
contains no portions of arcs other than f and g, and which contains no
intersection points of f and g other than s. Suppose f = x1 . . . a1sb1 . . . y1

where x1, y1 are the endpoints of f ; a1, b1 are the points where f crosses
C1. Similarly, g = x2 . . . a2sb2 . . . y2 where x2, y2 are the endpoints of g; a2,
b2 are the points where g crosses C1. Two crossed arcs f and g are shown in
Figure ??a. To uncross f and g, first eliminate the vertex s, and eliminate
the two arc fragments a1sb1 and a2sb2. Next, place an arc segment from
a1 to b2 and an arc segment from a2 to b1 each inside the circle C1 and in
such a way that these two arc segments don’t cross. The new arc f ′ is the
path x1 . . . a1b2 . . . y2. The new arc g′ is the path from x2 . . . a2b1 . . . y1. The
uncrossed arcs are illustrated in Figure ??b.

There are two possible uncrossings at each intersection point. A choice
can be made by specifying how the points a1, b1, a2, b2 are to be re-joined
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Figure 8-7: Uncrossing two arcs

within C1. If f and g intersect only once, the choice can be made by specify-
ing the endpoints of the new arcs f ′ and g′ in terms of the original endpoints
of f and g. If f and g intersect more than once in A to form a lens (or more
than one lens), f ′ and g′ will still intersect in A′.

Figure ??a shows a graph G, and Figure ??b its medial graph M. The
geodesics in the medial graph will be named by (the indices of) their end-
points. The geodesics in the medial graphM in Figure ??b are (1, 7), (2, 6),
(3, 8), (4, 10) and (5, 9). The intersection of arcs (3, 8) and (4, 10) is the
point s, which corresponds to the edge v7v8 in the original graph G.

(1) Suppose edge v7v8 is contracted to a single node w and the result
is a new graph G′, as shown in Figure ??a. This contraction of v7v8 in
G corresponds to an uncrossing of (3, 8) and (4, 10) producing geodesics
f ′ = (3, 10) and g′ = (4, 8) in the medial graph M′. The medial graph M′
is shown in ??b.

(2) Suppose the edge v7v8 is deleted from the graph G. This corresponds
to the other uncrossing of geodesics f = (3, 8) and g = (4, 10) in M, pro-
ducing new geodesics f ′′ = (3, 4) and g′′ = (8, 10) in M′′. The geodesics
ofM′′ are (1, 7), (2, 6), (3, 4), (5, 9), (8, 10). The figures illustrating this case
are left to the reader.

Example 8.6 Figure ??a shows a graph G with 4 boundary nodes, 3 inte-
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Figure 8-8: Graph and Medial graph



8.5. UNCROSSING ARCS 133

•
v1

•v2

•v3

•
v4

• v5

•v6

•w

(a) Edge contracted

• t1

• t2

•
t3

•
t4

•
t5

•t6

•t7

•
t8

•
t9

• t10

(b) Geodesics uncrossed
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rior nodes, and 7 edges; the edges are indicated by solid lines. The geodesics
of the medial graphM, are indicated by dotted lines. Figure ??b shows the
medial graph, now indicated by solid lines, without the original graph G.
The points t1, . . . , t8 have been placed on the boundary circle according to
Section ??. The geodesics are named by the indices of their endpoints. The
corner in the middle of the geodesic (3, 6) has not been smoothed. The
geodesics (2, 7) and (3, 6) in the medial graph M intersect twice at s and
t to form a lens. In graph G, the corresponding edges v5v6 and v6v7 are in
series, as in Chapter ??, Figure ??. Suppose a modification is made as in
Figure ??, replacing these two edges by a single edge v5v7. The result is
the graph G′ in Figure ??a. In the medial graphM, this corresponds to an
uncrossing of arcs (2, 7) and (3, 6) at one of the intersection points, and the
result is the medial graph M′, shown in Figure ??b. The medial graph M′
no longer has a lens. The corners of the geodesics (2, 6) and (3, 7) M′ have
not been smoothed.

8.6 Families of Chords

An arc which begins and ends on the boundary circle C and has no self-
intersection, is called a chord. If α is a chord, the points α(0) and α(1) are
called the endpoints of α. Since the endpoints uniquely identify the chord,
we can (and will) use (α(0), α(1)) as the name for the chord α. The crossings
of one chord with another are not indicated by their endpoints, so the set
of pairs (αi(0), αi(1)) do not uniquely specify the family A = {αi}.

If A is a family of chords in D, and A does not have a lens, nor a
degenerate lens formed by a loop, we say that A is lensless.

Theorem 8.3 Suppose that A is a family of arcs that has one or more
lenses. Then by a finite sequence of switches and uncrossings of arcs that
form lenses, A can be reduced to a family that is lensless.

Proof: If A has a lens, let L be a lens for which the number of regions
inside L is minimal. Lemma ?? shows that a finite number of switches
will make L empty. Each switch preserves the number of intersections of
arcs. An uncrossing at a pole reduces the number of intersections of arcs by
one. After a finite number of emptying lenses and uncrossings at a pole, the
process must stop, yielding a family that is lensless.
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Suppose A is a family of arcs and {h, g} is a pair of arcs which intersect
at w. Suppose u is an endpoint of h and v is an endpoint of g, and that there
are no other vertices of A in the closed region bounded by the segments ûv
v̂w ŵu as in Figure ??a. Such a configuration is called an empty boundary
triangle. ∆(vxy).

Lemma 8.4 Suppose A is a family of chords, and that h and g are two
chords A which intersect at w in the interior of the disc D. Let x be an
endpoint of h and let y be an endpoint of g. Suppose that F = {f1, . . . , fm}
is the set of chords in A intersects h between w and x. Suppose that for each
1 ≤ i ≤ m, fi also intersects g between w and y. Then a finite sequence of
switches will remove all members of F from the sector xwy.

Proof: Instead of giving the proof of Lemma ??, which closely follows the
proof of ??, and the proof in [?], p. 239, the method will be illustrated by
an example.

Example 8.7 In Figure 9-9b, arcs g and h intersect at w to form a triangle
∆wxy which is not empty. Arcs f1 and f2 intersect at z within triangle
wxy. Arcs h, f1, and f2 form an empty triangle. A switch of arcs {h, f1, f2}
reduces the number of intersections inside triangle wxy by one. Then a
switch of {g, h, f2} reduces the number of arcs that enter the sector. Finally,
a switch of {g, h, f1} makes ∆wxy into an empty triangle.

Lemma 8.5 Suppose A is a family of chords. Suppose f , g and h are three
chords, such that f and g intersect at p, f and h intersect at q, g and h
intersect at r. Let F = {f1, . . . , fm} be the set of chords in A each of which
intersects chord h between r and q. Suppose that for each 1 ≤ i ≤ m, fi also
intersects chord g between p and r. Then a finite sequence of switches will
remove all members of F from the sector qpr. The switches can be chosen
so that chord f is never involved.

Proof: The proof of Lemma ?? is exactly the same as for Lemma ??, with
the boundary circle C replaced by chord f .

Suppose A is a family of chords in D. Suppose f , with endpoints x1 and
y1; and g, with endpoints x2 and y2, are two chords in A which intersect at
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v to form with C an empty boundary triangle ∆x1vy1, An uncrossing of A
at v will result in a new family of chords A′ where f ′ has endpoints x1 and
y2; g′ has endpoints x2 and y1. This will give a new cell complex K ′, with
one less region than K. If a coloring of the cell complex K is chosen, then
K ′ is to be colored consistently with the coloring of K.

The new arc f ′ with endpoints x1 and y2 has no self-intersections, be-
cause the chords f and g in A did not intersect in segment vx1. Every other
chord h is unchanged by the uncrossing, and has no intersection with f be-
tween v and x. Therefore f ′ cannot form a lens with h. Similarly, g′ has no
self-intersections and cannot form a lens with any other chord h. Finally, f ′

and g′ do not form a lens, because they do not intersect at all. The result
of this uncrossing at the vertex v will result in a new family of chords A′
which is also lensless.

Lemma 8.6 Suppose that A a lensless family of chords in D, and assume
that each chord in A intersects at least one other chord in A. Then there
are at least three empty boundary triangles with disjoint interiors.

Proof: This is another (slightly different) use of Grunbaum’s method of
proof. Suppose f and g are two chords which intersect at p. We may assume
that x is an endpoint of f , and y is an endpoint of g and there is no vertex
of f between p and x, as in Figure ??a.

If there is a vertex on arc fragment py, take q to be the vertex on g which
is the closest to y, and let h be the chord in A which crosses g at q. One
endpoint of h must be on the segment x̂y, by the choice of p, and because A
is lensless. Continuing in this way, after a finite number of steps, we find two
chords say h and k which intersect at q to form a boundary triangle ∆quv
within ∆pxy, and such that there are no vertices on qu or qv. If ∆quv is
empty, it is the first of the required empty boundary triangles T . Otherwise,
there must be at least two chords which are entirely within ∆quv, and which
intersect each other. Proceeding as above a triangle is found within ∆quv,
and eventually the first empty boundary triangle T , which is inside ∆pxy.
In Figure ??b, the chords h and k intersect at a vertex q so that T = ∆quv
is the first empty boundary triangle.

One endpoint of h is v; suppose the other endpoint is z. If there are
no vertices of A on arc fragment qz, S = ∆qzu is the second triangle.
Otherwise, suppose that i is the chord which crosses qz at w, with w the
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vertex of A on qz closest to z. Suppose the endpoints of i are s and t, with
s on the arc uz of the boundary circle C. By an argument similar to that
above, a second empty boundary triangle S is found inside ∆zsw.

Finally, consider ∆wzt. Let r be the vertex on wt closest to t. By another
argument similar to the one above, a third empty boundary triangle U is
found within ∆rzt. This is illustrated in Figure 9-12b.

8.7 Standard Arrangements

Let {t1, t2, . . . , t2n} be distinct points in circular order on the circle C. For
notational convenience the point ti will be identified with the number i, and
the set of points {t1, t2, . . . , t2n} will be identified with the set of numbers
{1, 2, . . . , 2n}. Suppose {1, 2, . . . , 2n} is partitioned into a set S consisting
of n pairs of integers. That is, S = {(x1, y1), . . . , (xn, yn)} is a set of n pairs
of integers where each integer from 1 to 2n occurs exactly once. Assume
the indexing is arranged so that for each 1 ≤ i ≤ n, xi < yi, and if xi < xj
then i < j. A family S = {σi} of chords will be placed in the disc D so
that for each 1 ≤ i ≤ n, the endpoints of σi are xi and yi, and the points
of intersection on σi occur in a certain order between the points xi and yi.
A consequence of Theorem ?? (to come) is that any other family of chords
with the same endpoints as S is equivalent (by switches) to S.

Given the set S = {(x1, y1), . . . , (xn, yn)}, the pairs (xi, yi) and (xj , yj)
are said to be interlaced if the numbers xi, yi, xj , yj occur in the order

xi < xj < yi < yj . If (xi, yi) and (xj , yj) are interlaced, the chords σi and σj
must intersect at some point, say p(i, j), in D. The chords will be placed in
D so that the intersection points p(i, j) on each σi occur in a certain order.
Specifically, the order is that if p(i, j) and p(i, k) are two intersection points
on σi with i < j < k, then the point p(i, j) is closer to xi than p(i, k) is
to xi. The result of placing the chords in this way will be a lensless family
S = {σi}, called the standard arrangement of the chords σi determined by
the set S. The placing of the chords is as follows.

(1) A chord σ1 is placed joining x1 to y1.

(2) Assume inductively for each 1 ≤ i < m ≤ n, that the chord σi has
been placed in D. Then the chord σm will be placed in D as follows. If
(xm, ym) interlaces the pair (xi, yi), with i < m, then a point p(i,m) is to
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be put on σi closer to yi than any of the points p(i, j) previously placed on
σi. If (xm, ym) does not interlace (xi, yi), there is to be no point p(i,m).
Now join xm to ym by a chord, which for each 1 ≤ i < m, intersects σi
transversally at p(i,m) and at no other point of σi. The order in which the
points p(i, j) occur on σi will be called the standard order.

Theorem 8.7 Suppose that A = {αi} and B = {βi} are two lensless fam-
ilies of n chords in the disc D, and for each i, the endpoints of αi are the
same as the endpoints of βi. Then A and B are equivalent by switches of
chords.

Proof: Let S = {(x1, y1), . . . , (xn, yn)}, be the set of pairs of endpoints,
which is assumed to be the same for both A and B. Assume that the pairs
in the set S are ordered as above. A will be shown to be equivalent to the
standard family S. For each i and j with i < j, if (xi, yi) interlaces (xj , yj),
let a(i, j) denote the point of intersection of chord αi and chord αj in A.

Start with chord α1. Suppose some intersection point precedes a(1, 2) on
α1; assume that a(1, k) is the immediate predecessor of a(1, 2) on α1. Then
αk must intersect α2 between x2 and a(1, 2). Consider the three chords α2,
αk and α1 in the role of f , g and h of Lemma ??. A finite sequence of
switches, not involving α1, will remove all crossings into the triangle formed
by α2, αk and α1. Then a switch of {α2, αk, α1} will have the result that
a(1, 2) now precedes a(1, k) on α1.

Continuing in this way, make switches so that all of the intersection
points a(1, j) which occur are in standard order on α1. Next, without in-
volving α1, make switches so that all points a(2, j) in standard order on α2.
Continue with α3, α4, etc. until all crossings on all chords are in standard
order. The family A has been shown to be equivalent to the family S in
standard position. Similarly B is equivalent to S so A and B are equivalent.

Example 8.8 Figure ?? shows two examples of families of chords in the
disc, each with 5 chords. The chords will be named by their endpoints. The
5 pairs of endpoints, (the same for each family) is

S = {(1, 6), (2, 8), (3, 7), (4, 10), (5, 9)}
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The family A in Figure ??a is not in standard position, because the inter-
section point of chord (4, 10) and (1, 6) is closer to t1 than the intersection
of (3, 7) and (1, 6). The family B is in standard position. Let f = (1, 6),
g = (3, 7) and h = (4, 10). Chords {f, g, h} form an empty triangle, and a
switch of {f, g, h} will change A to B.

Let

Sn = {(1, n+ 1), (2, n+ 2), . . . , (n, 2n)} (8.1)

and let Sn be the family of arcs in standard position with endpoint set
Sn. A realization of the family S7 is shown in Figure ??, where the points
t1, t2, . . . , t14 are in clockwise order on the boundary “circle” which is indi-
cated by the dashed lines. The complex K is formed from Sn as in Section
??. The 2-coloring of the regions of K is chosen so that

t1 < v1 < t2 < t3 < v2 < t4 < . . . < t2n−1 < vn < t2n < t1

where v1, . . . , vn are in the black intervals. The complex bl(K) gives rise
to a graph Hn as in Section ??. A realization of the graph H7 is shown in
Figure ??.

For n = 2m+ 1 an odd integer, the graph Hn is described as follows.

(1) The nodes of Hn are the integer lattice points (i, j) which satisfy

For each 1 ≤ j ≤ m+ 1, j ≤ i ≤ 2m+ 2− j.

(2) The edges of Hn are the horizontal or vertical line segments of length
1 joining adjacent nodes.

(3) The boundary nodes of Hn are the nodes of the form vi = (i, i)
for 1 = 1, 2, . . . ,m + 1 and the nodes of the form vi = (i, 2m + 2 − i) for
i = m+ 2, . . . , 2m+ 1.

There is a similar graph Hn for each even integer. The details are left to
the reader.

Lemma 8.8 The graph Hn is (1) critical and (2) well-connected.

Proof: (1) The medial graph for Hn is the family of arcs Sn constructed
above, which is lens-free. Anticipating Lemma ??, which will be proven in
Section ??, this implies that Hn is critical.



144 CHAPTER 8. MEDIAL GRAPHS

•
t1

•
t2

•
t3

• t4

•
t5•

t6

•
t7

•
t8

•t9

•
t10

(a) Family of chords

•
t1

•
t2

•
t3

• t4

•
t5•

t6

•
t7

•
t8

•t9

•
t10

(b) Chords in standard position

Figure 8-14: Switching chords into standard position



8.7. STANDARD ARRANGEMENTS 145

•
t1

•
t2

•
t3

•
t4

•
t5

•
t6

•
t7

•
t14

•
t13

•
t12

•
t11

•
t10

•
t9

•
t8

Figure 8-15: Standard family S7

r r r r r r rv1

r r r r rv2

r r rv3

rv4

v5

v6

v7

Figure 8-16: Standard graph H7



146 CHAPTER 8. MEDIAL GRAPHS

(2) Suppose (P ;Q) = (p1, . . . , pk; q1, . . . , qk) is a circular pair of vertices.
By reversing the roles of P and Q and re-indexing, if necessary, assume that
p1 = v1, and pk occurs before vm in the clockwise circular order starting
from v1. Suppose the points in P are pj = (aj , aj), and the points in Q are
qj = (bj , cj). Then pj will be joined to qj by the path αj as follows.

(1) If aj ≤ cj , αj = (aj , aj)→ (bj , aj)→ (bj , cj)

(2) If aj > cj , αj = (aj , aj)→ (aj , cj)→ (bj , cj)

It is easily seen that if i 6= j, then the paths αi and αj do not intersect, so
the set α = {αj} is a connection P ↔ Q.

Corollary 8.9 The graph Gn of Chapter ?? is both critical and well-connected.

Proof: The geodesics for Gn do not form a lens, so Gn is critical by
Lemma ??. The endpoint set for the geodesics of Gn is the set Sn defined
above in Equation ??. Therefore Gn is Y − 4 equivalent to Hn, which is
well-connected.

Observation 8.2 Suppose that n = 2m and (P ;Q) is a circular pair of
boundary nodes of Hn, where P = (p1, . . . , pm) and Q = (q1, . . . , qm). P
(and Q) must consist of a set of m consecutive boundary nodes of Hn.
Assume that P = (v1, v2, . . . , vm). By inspection, the family of paths α =
{αi} described in the proof of Lemma ?? is the only connection P ↔ Q.
The connections in Gn are in 1 − 1 correspondence with the connections
in Hn. Thus if (P ;Q) = (p1, . . . , pm; q1, . . . , qm) is a circular pair in Gn,
there is exactly one connection P ↔ Q. Since a principal flow path gives
a connection, there can be only one principal flow path with the boundary
data as in Section ??.

In the case n = 2m+1 and (P ;Q) = (p1, . . . , pm; q1, . . . , qm) is a circular
pair, then either P or Q must consist of a set of m consecutive boundary
nodes of Hn. By reversing the roles of P and Q, and re-indexing if necessary,
we may assume that P = (v1, v2, . . . , vm). Then, similar to the case of n
even, there is only one family α = {αj} of paths joining P to Q, and there
is only one principal flow path with the boundary data as in Section ??.



Chapter 9

Recovering a Graph

9.1 Connections

Let A be a family of arcs in the disc D, and let K be the cell complex
constructed from A as in Section ??. The regions of K are 2-colored, say
black and white. Suppose e and f are two black intervals on the boundary
circle C. The definition of a path from e to f through bl(K) is similar to
the definition in Chapter ?? of a path from one boundary vertex to another
through a graph G. The notation (e ↔ f) of Chapter ?? will indicate the
existence of a path from e to f .

• A path (e↔ f) from e to f in bl(K) consists of a finite sequence:

(e↔ f) = e,B1, B2, . . . , Bk, f

where

(1) The Bi are regions of bl(K);

(2) There is at least one Bi; no Bi occurs more than once;

(3) For each 1 ≤ i < k, Bi and Bi+1 have a common vertex;

(4) e is a boundary interval of B1; f is a boundary interval of Bk;

(5) Each region Bi other than B1 and Bk is an interior region of bl(K).

Figure ?? shows a family of 7 chords which form a cell complex K in which
there are 8 regions R1, . . . , R8. The regions R1, . . . , R6 are boundary regions;
R7 and R8 are interior regions. There are 7 black intervals e1, . . . , e7.

147
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Figure 9-1:

In Figure ??, there are the following paths between black intervals (and
many others):

(e1 ↔ e7) = e1, R1, R7, R6, e7

(e2 ↔ e3) = e2, R2, R8, R3, e3

(e4 ↔ e5) = e4, R4, R5, e5

(e5 ↔ e6) = e5, R5, e6

It follows from the definition that

(1) If there is a path (e ↔ f), there is a simple continuous curve β(t),
where β(0) ∈ e, β(1) ∈ f , and for all 0 ≤ t ≤ 1, β(t) is in the closure of
the black regions of K.

(2) Let G be a circular planar graph andM be its medial graph. Suppose
vi and vj are boundary nodes of G, and that ei and ej are the black intervals
that correspond to them respectively. If there is a path between vi and
vj through G, there will be a path between ei and ej through blK, and
conversely.
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Suppose that there are two sets of black intervals E = {ei} and F = {fi},
which are in circular order around C:

e1 < e2 < . . . < ek < fk < fk−1 < . . . < f1

The definition of a k-connection through blK is similar to the definition in
Chapter ?? of a k-connection through a graph G. Specifically,

• A k-connection (E ↔ F ) from E to F is a set of paths {(ei ↔ fi)},
for 1 ≤ i ≤ k}, such that all the (necessarily black) regions which occur are
distinct.

A typical k-connection is displayed by the following scheme.

(e1 ↔ f1) = e1, B1,1, B1,2, . . . B1,n1 , f1

(e2 ↔ f2) = e2, B2,1, B2,2, . . . B2,n2 , f2

· · · · · ·
· · · · · ·

(ek ↔ fk) = ek, Bk,1, Bk,2, . . . Bk,nk , fk

For example in the preceding figure, the pair (e1, e2) is 2-connected to the
pair (e7, e4), by the two paths:

(e1 ↔ e7) = e1, R1, R7, R6, e7

(e2 ↔ e4) = e2, R2, R8, R4, e4

Also (e3, e4) is 2-connected to (e7, e6), by the paths:

(e3 ↔ e7) = e3, R8, R7, R6, e7

(e4 ↔ e6) = e4, R4, R5, e6

but there is no 2-connection from (e2, e3) ↔ (e7, e4), because each path
(e2 ↔ e7) and (e3 ↔ e8) would pass through R8.
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9.2 The Cut-point Lemma

Suppose A is a family of chords in the disc D. Let K be the cell complex
constructed in Section ?? and suppose that K is 2-colored black and white.
A pair of points X and Y on the boundary circle C are called cut-points for
A if X and Y are distinct points on C, neither of which is the endpoint of an
arc in A. The cut-points may be in (the interior) of either a black interval or
a white interval in C. A pair of cut-points, X and Y , separate the boundary
circle C into two arcs, where X̂Y is the clockwise open interval from X to
Y , Ŷ X is the clockwise open arc from Y to X. The circle C is the disjoint
union of X, X̂Y , Y , and Ŷ X. Let X and Y be a pair of cut-points for A. A
chord in A is called re-entrant in X̂Y if both of its endpoints are in the open
arc X̂Y . Suppose that there are two sets E = {ei} and F = {fi}, each with
k black intervals, and (e1, . . . , ek, fk, . . . , f1) are in circular order around C.
A k-connection from E to F . is said to respect the cut-points X and Y if
for each 1 ≤ i ≤ k, ei is in the open arc X̂Y and fi is in the open arc Ŷ X.
With these preliminaries, we make the following definitions.

• m(X,Y ) = the maximum integer k such that there is a k-connection
which respects the cut-points X and Y .

• r(X,Y ) = the number of re-entrant chords in X̂Y .

• n(X,Y ) = the number of black intervals which are entirely within X̂Y .

If it is necessary to indicate the familyA, the notationsm(X,Y ;A), r(X,Y ;A)
and n(X,Y ;A) will be used.

Lemma 9.1 Cut-point Lemma Suppose A is a finite family of chords in
the disc, and assume that A is lensless. Let X and Y be a pair of cut-points
for A.With n(X,Y ), m(X,Y ) and r(X,Y ) defined as above,

m(X,Y ) + r(X,Y )− n(X,Y ) = 0

Example 9.1 Refer to Figure ?? with X and Y placed as shown. In this
case, n(X,Y ) = 3, m(X,Y ) = 1 and r(X,Y ) = 2. Lemma ?? implies that
there can be no 2-connection respecting the cutpoints X and Y , and there
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must be at least one 1-connection. There are many 1-connections respecting
the cut-points X and Y , for example,

(e1 ↔ e7) = e1, R1, R7, R6, e7

There are no 2-connections through the graph because every 1-connection
respecting the cut-points X and Y passes through the region R7.

Example 9.2 In Figure ??, with X and Y ′ placed as shown, n(X,Y ′) = 3,
m(X,Y ′) = 2 and r(X,Y ′) = 1. Lemma ?? implies that there can be no
3-connection respecting the cutpoints X and Y ′, and there must be at least
one 2-connection. One 2-connection (e1, e3) to (e7, e4) which respects the
cut-points X and Y ′ is given by:

(e1 ↔ e7) = e1, R1, R7, R6, e7

(e3 ↔ e4) = e3, R3, R8, R4, e4

This is an example where shortening the arc XY to XY ′ has the effect of
increasing the maximum size of a connection. There can be no 3-connection
respecting the cutpoints X and Y ′, because any such connection would need
to use R8 twice.

Proof: (of Lemma ??) The family A will be altered to another lensless
family of chords C in two steps; each step leaves the sum of the terms in the
formula of Lemma ?? unchanged. The first step alters A to another family
B such that there are no intersections in B, so that no chord in B intersects
any other chord in B. The second step alters B to a family C for which there
are no re-entrant chords in X̂Y or Ŷ X. The two steps of this alteration are
as follows.

Step I. If there are any intersections of chords in A, let M be the set of
chords in A that intersect at least one other chord in A, and let N be the
set A−M. If M is empty, go on to Step II. Otherwise, Lemma ?? applies
to the family M, and implies that there are at least three empty boundary
triangles. At least one of the empty boundary triangles has a boundary arc
(defined by the endpoints of M), containing neither X nor Y . Thus there
must be two chords, say f and g in M, which intersect at a point w, which
meet C at u and v respectively, so that ∆uvw an empty boundary triangle
with neither cut-point X nor Y in arc uv. Note: u, v may not be adjacent
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Figure 9-2:

endpoints of arcs of A. The arc uv must be either in arc XY or arc Y X;
suppose the former. If uv is not an arc defined by the endpoints of A, there
must be a chord σ in N with both endpoints in arc uv. Let σ be a chord in
N , which, together with a portion of arc uv, encloses a region with segments
of no other chords inside the region. Such a chord σ is necessarily re-entrant
in arc XY . Removal of σ decreases n(X,Y ) by 1, decreases r(X,Y ) by 1,
and leaves m(X,Y ) unchanged.

After removing a finite number of chords from N , there will be at least
one empty boundary triangle ∆uvw in A, with vertex w the intersection
of chords f and g in A and such that u, v are adjacent endpoints of arcs
of A. An uncrossing of f and g will produce another family of chords A′.
We will show that each k-connection in A which respects the cut-points
gives a k-connection A′ which also respects the cut-points. First consider a
1-connection (e ↔ f). There are two cases, depending on whether uv is a
black interval or a white interval.

(i) uv is a black interval, call it d. Refer to Figure ??a. Suppose that
R is the region in A bounded by uv, vw and wu, and suppose that S is the
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other black region in bl(K) with vertex w. The regions in bl(K ′) are labeled
so that S′ corresponds to the union of S and R Let

(e↔ f) = e,B1, B2, . . . , Bk, f

be any 1-connection in A that respects the cut-points X and Y . If S appears
in the list, say as Bi, then take B′i = S′ and there will be a connection in
A′ of the form

(d↔ f) = d,B′i, Bi+1, . . . , Bk, f

More generally, any k-connection E ↔ F in A that respects the endpoints
and uses the region S will give a k-connection in A′ using S′. Any k-
connection E ↔F that does not use S is unaltered in A′.

(ii) uv is a white interval. Refer to Figure ??a. In this case, the two
boundary intervals tu and vz on either side of uv are both black intervals.
Consideration of the black regions R1 and R2 in the complexes K and K ′,
shows that any connection in A starting from an interval in X̂Y will give a
connection in A′ also starting from an interval in the arc X̂Y .

In either case, the maximum size k of a k-connection will be unchanged.
Since each of the terms m(X,Y ), n(X,Y ) and r(X,Y ), in the sum is un-
changed. A finite number of such uncrossings produces a family of chords
B, in which there are no crossings of chords. There may be some re-entrant
chords as in Figure ??.

Step II Since all the intersections have been removed, each re-entrant chord
h does not intersect any other chord. If there are any re-entrant chords, there
must be at least one which, together with the boundary circle, encloses a
region containing no other segments of chords. The boundary interval of
this region is in either arc XY or arc Y X, suppose the former. Removal
of such a region decreases n(X,Y ) by 1, decreases r(X,Y ) by 1, and leaves
m(X,Y ) unchanged. The new family of chords has one less re-entrant chord.
After a finite number of re-entrant chords have been removed, there will be
a family of chords, C, which has no crossings, and no re-entrant chords in
X̂Y or Ŷ X. For this family,

n(X,Y ) = m(X,Y )

This implies the formula for A.
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Figure 9-5:

Observation 9.1 Suppose A is a family of chords in the disc D, the cell
complex K 2-colored black and white, and X and Y are cut points for A as
in the discussion leading up to the cut-point Lemma ??. Let L be a chord
in the disc D from Y to X, which passes through no intersection point of
A, and which intersects each chord in A at most once. There is a “circle”,
C1 consisting of X, X̂Y , Y , and L in clockwise order. Let D1 be the closed
disc which C1 bounds, and let A1 be the restriction of the chords in A to
the disc D1. Let K1 be the complex in D1 constructed from the family
A1. K1 inherits a 2-coloring from the 2-coloring of K. There are a finite
number of intervals in C1, each colored black or white. Similarly there is a
“circle” C2, a disc D2, a family A2 and a complex K2 inside C2. Appearing
in clockwise order around C2, are Y , Ŷ X, X, and (the reverse of) L. Let k
be the number of black intervals entirely within L. X and Y are a pair of
cutpoints for the family A1. There are no re-entrant chords in L (considered
as a subset of C1). By Lemma ??,

m(Y,X;A1) = k

Thus there is a connection E ↔ F in bl(K1), where E = {e1, . . . , ek} are
the black intervals in L, and F = {f1, . . . , fk} are a set of black intervals in

X̂Y . Similarly

m(X,Y ;A2) = k
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and there is a connection E ↔ G in bl(K2), where G = {g1, . . . , gk} are a

set of black intervals in Ŷ X. Putting these two connections together, there
is a connection F ↔ G in bl(K). There can be no connection in bl(K) of
size greater than k, because any connection must pass through the black
intervals of L. Therefore

m(X,Y ;A) = k

9.3 Recovering a Medial Graph

Let A be a lensless family of chords in the disc D. The equivalence class
of A may be recovered from the set of all k-connections of A. What is
actually needed from the set of all k-connections of A is the set of numbers
{m(X,Y )}, as stated in the following Proposition.

Proposition 9.2 Suppose that A is a lensless family of chords in the disc
D. The equivalence class (under switches) of A may be calculated from the
numbers {m(X,Y )}, as X and Y vary over the possible cut-points for A.

Proof: For each pair of cut-points X and Y , Lemma ?? implies that:

r(X,Y ) = n(X,Y )−m(X,Y )

The numbers r(X,Y ) will be shown sufficient to determine the endpoints
of the chords in A. By Theorem ??, this is sufficient to determine the
equivalence class of A. Suppose that there are n chords, the endpoints
of which are {t1, . . . , t2n}, numbered in circular order around C. The set
{t1, . . . , t2n} is ordered by its indices. For each 1 ≤ i < 2n, place a point
Xi in the open interval (ti−1, ti) on C; the convention is that t0 = t2n and
X0 = X2n. Then {X1, X2, . . . , X2n} is also a set ordered by its indices. The
points ti and Xi appear in the following order around C.

t0 < X1 < t1 < X2 < . . . t2n−1 < X2n < t2n = t0

If it occurs, the point t2n+j is to be identified with the point tj ; point X2n+j

is to be identified with the point Xj .

For each i < j, let R(i, j) = r(Xi, Xj) be the number of re-entrant
geodesics between the cut-points Xi and Xj .
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(1) Let j be the first index greater than 1 for which R(i, j) 6= R(2, j).
Then t1 and tj−1 are the endpoints of a chord in A.

(2) Similarly, for each i = 2, . . . , 2n, let j (which depends on i) be the
first index after i for which R(i, j) 6= R(i + 1, j). Then ti and tj−1 are the
endpoints of a chord in A.

This procedure locates the endpoints of each of the chords in A. Each
chord will occur twice; the second time the endpoints are in reversed or-
der. Any family of chords constructed with these endpoints has the same
endpoints as the original family A, and so, by Theorem ??, is in the same
equivalence class.

9.4 Examples

Suppose Γ = (G, γ) is a circular planar graph, for which G is critical as a
graph. Proposition ?? shows that the ranks of the sub-determinants of the
response matrix Λ are sufficient to calculate the numbers m(X,Y ), which
are sufficient to determine the equivalence class of the medial graph, and
hence the Y −4 equivalence class of Γ.

Example 9.3 Figure ?? shows a graph G with 6 boundary nodes, 4 interior
nodes, and 12 edges.

Suppose the conductivity of each edge e is γ(e) = 1, and let Γ = (G, γ)
denote the resistor network. The Kirchhoff matrix for Γ is:

K =



1 0 0 0 0 0 −1 0 0 0
0 2 −1 0 0 0 0 −1 0 0
0 −1 3 −1 0 0 0 0 −1 0
0 0 −1 2 0 0 0 0 −1 0
0 0 0 0 1 0 0 0 0 −1
0 0 0 0 0 2 −1 0 0 −1
−1 0 0 0 0 −1 3 −1 0 0

0 −1 0 0 0 0 −1 3 −1 0
0 0 −1 −1 0 0 0 −1 4 −1
0 0 0 0 −1 −1 0 0 −1 3


The response matrix Λ is calculated as the Schur complement of K with
respect to the 4 × 4 matrix in the lower right corner. The result is:



158 CHAPTER 9. RECOVERING A GRAPH

•
v1

•v2

•v3

•
v4

•v5

•v6 •v7

•v8

•
v9

•v10

Figure 9-6: Graph G

Λ =



0.6203 −0.1392 −0.0380 −0.0380 −0.0127 −0.3924
−0.1392 1.5823 −1.1139 −0.1139 −0.0380 −0.1772
−0.0380 −1.1139 2.6962 −1.3038 −0.1013 −0.1392
−0.0380 −0.1139 −1.3038 1.6962 −0.1013 −0.1392
−0.0127 −0.0380 −0.1013 −0.1013 0.6329 −0.3797
−0.3924 −0.1772 −0.1392 −0.1392 −0.3797 1.2278


Now suppose that only the 6 × 6 response matrix Λ is given. The

Y − 4 equivalence class of the graph G can be determined by finding the
equivalence class of the medial graphM, following the procedure outlined in
Proposition ??. The ranks of submatrices suitable for use in Proposition ??
can be computed from the matrix Λ. The following table lists the numbers
m(Xi, Xj), for all 1 ≤ i ≤ 12, and all 1 ≤ j ≤ 22. The number at row i,
column j is the value of m(Xi, Xj):
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0 0 1 1 2 2 3 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 2 2 2 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 2 2 2 2 2 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 2 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 2 2 3 2 2 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 2 1 2 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 2 2 3 2 2 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 1 2 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 2 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 3 2 2 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 2 1 1 0

The next table lists the numbers r(Xi, Xj), for all 1 ≤ i ≤ 12, and all
1 ≤ j ≤ 22. These numbers are computed by the formula of Proposition ??:

r(Xi, Xj) = n(Xi, Xj)−m(Xi, Xj)

The number at row i, column j is the value of R(i, j):

0 0 0 0 0 0 0 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 2 3 4 5 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 2 3 4 5 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 4 5 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 2 3 4 5 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 4 5 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 3 4 5 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 4 5

The pairing of the endpoints of the chords of A is found from the list of
numbers r(Xi, Xj ,A). The calculation of the first six pairs goes as follows.

(1) R(1, 8) = 1 6= R(2, 8) = 0, so there is a chord from t1 to t7.

(2) R(2, 10) = 2 6= R(3, 10) = 1, so there is a chord from t2 to t9.
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(3) R(3, 11) = 2 6= R(4, 11) = 1, so there is a chord from t3 to t10.

(4) R(4, 9) = 1 6= R(5, 9) = 1, so there is a chord from t4 to t8.

(5) R(5, 13) = 2 6= R(6, 13) = 1, so there is a chord from t5 to t12.

(6) R(6, 12) = 2 6= R(7, 12) = 1, so there is a chord from t6 to t11.

The pairing of the endpoints is: (1, 7), (2, 9), (3, 10), (4, 8), (5, 12), (6, 11);
the pairing is repeated as (7, 1), (9, 2), (10, 3), (8, 4), (12, 5), (11, 6). Refer
to Figure ?? one way of placing these chords in the disc is shown as A.
A graph H is then obtained by 2-coloring the regions, placing a vertex in
each of the black regions, and placing edges as explained in Section ??. The
graph M shown in Figure ?? is the medial graph for G. The graphs M
and A are equivalent (by switches), and the graphs G and H are Y − 4
equivalent. The switches that change M to A are the following.

(1) The three chords with endpoints (1,7), (3,10), and (5,12) form an
empty triangle, and should be switched.

(2) The three chords with endpoints chord (2,9), (3,10), and (6,11) form
an empty triangle, and should be switched.

The transformations that change G into H are the following.

(1) A Y −4 transformation at vertex v10 of G.

(2) A Y −4 transformation at vertex v8 of G.

Example 9.4 The connections through the graphG (and through the graph
G′) can be found by calculating sub-determinants of Λ. For example,

det Λ(1, 2, 3; 6, 5, 4) = 0.0127

det Λ(2, 3, 4; 5, 6, 1) = 0.0000

det Λ(3, 4, 5; 2, 1, 6) = 0.0127

det Λ(3, 4; 5, 6) = 0.0000

(1) The statement that det Λ(1, 2, 3; 6, 5, 4) 6= 0 shows that there is a
3-connection from (v1, v2, v3) to (v6, v5, v4). This 3-connection in G is
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(v1 ↔ v6) = v1v7v6

(v2 ↔ v5) = v2v8v9v10v5

(v3 ↔ v4) = v1v4

There is a corresponding 3-connection inG′ from (w1, w2, w3) to (w6, w5, w4).

(2) The statement that det Λ(2, 3, 4; 5, 6, 1) = 0 shows that there is no
3-connection from (v2, v3, v4) to (v5, v6, v1).

(3) The statement that det Λ(3, 4, 5; 2, 1, 6) 6= 0 shows that there is a
3-connection from (v3, v4, v5) to (v2, v1, v6).

(4) The statement that det Λ(3, 4; 6, 5) = 0 shows that there is no 2-
connection from (v3, v4) to (v6, v5).

Example 9.5 The connections through a graph can be examined from a
slightly different point of view. Suppose the graph G of Figure ?? is given,
and the medial graphM is constructed as shown in Figure ??. The geodesics
(listed by their endpoints) are:

(1, 7), (2, 9), (3, 10), (4, 8), (5, 12), (6, 11).

Points t1, . . . , t12 = t0 and X1, . . . , X12 are placed on the circle in clockwise
sequence:

t0 < X1 < t1 < X2 < . . . t2n−1 < X2n < t2n = t0

(1) There are no re-entrant chords between the cutpoints X1 and X7,
and there are three black intervals between X1 and X7, corresponding to the
boundary nodes v1, v2, and v3 in G. Lemma ?? implies that there must be a
3-connection from (v1, v2, v3) through G to (v6, v5, v4) and a corresponding
3-connection from (w1, w2, w3) through G′ to (w6, w5, w4). In each case,
there is only one such 3-connection which is listed above in Example ??.

(2) There is one re-entrant chord between X3 and X9, which is the
chord with endpoints (3,8). The number of black intervals between X3 and
X9 is three. Lemma ?? implies that there cannot be a 3-connection from
(v2, v3, v4) to (v1, v6, v5) through G, but there must be a 2-connection from a
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Figure 9-9: Medial graph M

subset of (v2, v3, v4) to a subset of (v1, v6, v5). One such is (v2, v3) to (v5, v4).
This connection, and the corresponding connection in G′ are given by:

(v2 ↔ v5) = v2v8v9v10v5 (w2 ↔ w5) = w2w7w5

(v3 ↔ v4) = v3v4 (w3 ↔ w4) = w3w4

9.5 Critical Graphs

Proposition 9.3 A circular planar graph G is critical if and only if its
medial graph M is lensless.

Proof: (1) If there were a lens in M, then G would be Y −4 equivalent
to a graph G′ which has a pair of edges in series or in parallel, or with an
interior pendant or an interior loop. In each case an edge could be removed
from G without breaking any connection, so G would not be critical.

(2) Suppose M has no lens. Let w be a vertex in M at which an
uncrossing is made, and suppose f and g are the two chords which intersect
at w. We must show that uncrossing f and g at w breaks some connection
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in bl(K). Let C1 be a circle around w small enough so that no chords other
than f or g go through C1, as in Figure ??. Suppose the endpoints of f
are c1 and d1, and that f intersects C1 at a1 and b1, so that c1, a1, b1, d1

appear in order along f . Similarly, the endpoints of g are c2 and d2, and g
intersects C1 at a2 and b2, so that c2, a2, b2, d2 appear in order along g, as
shown in Figure ??. After the uncrossing the points c1, a1, b2 and d2 will
appear in order along f ′; the points c2, a2, b1 and d1 will appear in order
along g′.

Suppose the next endpoint after c1 (in clockwise order) on C, of a chord
in M is t and the next endpoint of a chord in M on C after d1 is u. Place
a point X in segment c1t, and a point Y in segment d1u. Let B be a chord
(not in the family M) joining X to Y . By placing B sufficiently close to
chord f , we may assume that B intersects each chord of M at most once,
and that going from X to Y , B crosses first g and then f within circle C1 as
shown in Figure 9-19a. After the uncrossing, we may assume that B does
not intersect the chord f ′ or the chord g′, as shown in Figure ??. Starting
from Y and going clockwise, the arc Ŷ X followed by the chord B form a
circle C1 which bounds a disc D1. This disc contains a family of chords
N , namely the restrictions of the chords of M to D1. The points X and
Y may be considered as a pair of cut-points for M as well as for N . The
notation m(X,Y ;M) m(X,Y ;N ) will be used to distinguish the numbers
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of connections for the families M and N respectively. By the placing of B,
there are no re-entrant chords in B (considered as an arc of the circle C1).
Let n(X,Y ;N ) be the number of black intervals entirely within B. Before
the uncrossing,

m(Y,X;M) = m(Y,X;N ) = m(X,Y ;N )

After the uncrossing, the number of black intervals within B decreases by
one. Thus the maximum size of a connection through M′ respecting the
cut-points X and Y will be at most m(Y,X;M) − 1. This shows that a
connection must be broken in passing from M to M′. Consequently, a
connection must be broken in passing from G to G′.

Recall that two circular planar graphs G and G′ are electrically equiv-
alent if G can be transformed into G′ by a finite sequence of Y −∆ trans-
formations and trivial modifications. If G is electrically equivalent to G′,
then for any conductivity γ on G there is a conductivity γ′ on Γ′ so that
the response matrix for (G, γ) is the same as the response matrix for (G, γ′).
One consequence of Theorem ?? is the following.

Corollary 9.4 Any circular planar graph G is electrically equivalent to a
critical graph G′, which is unique to within Y − ∆ equivalence. Any two
critical circular planar graphs that are electrically equivalent have the same
number of arcs.
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Theorem 9.5 Suppose G is a circular planar graph which is critical. Then
the Y−4 equivalence class of G may be calculated from the set of connections
through G.

Proof: The medial graph M = M(G) is lens-free, by Lemma ??. By
Proposition ??, the equivalence class of M may be calculated from the set
of its connections, which are the same as the connections in G. By Theorem
??, the equivalence class of G is determined by the equivalence class ofM.

Theorem 9.6 Suppose Λ is a matrix which satisfies conditions (P1), (P2),
(P3) of Section ??. Then there is a circular planar graph G, and there is
a conductivity γ on G so that the response matrix for the resistor network
(G, γ) is Λ.

Proof: The connections in G are determined by the subdeterminants in
Λ. Theorem ?? applies to yield a critical graph G. Theorem ?? of Chapter
?? shows that there is a conductivity γ on G so that the response matrix
for the resistor network (G, γ) is Λ.

Observation 9.2 Suppose Λ is a matrix which satisfies conditions (P1),
(P2), (P3) of Section ??. A resistor network Γ = (G, γ) whose response
matrix is Λ can be found in two steps. The first step is to obtain a graph
G. The second step is to calculate conductivities γ on G.

Step I. A family of chords A is obtainable from Λ, as shown by Propo-
sition ??. A gives rise to a complex K which is 2-colored as in Section ??.
The complex bl(K) gives rise to a graph G. The family A is lens-free, so G
is critical. Figure ?? shows such a family A. The chords in A are the solid
lines (some with corners); the dashed line L = XY is an auxiliary chord to
be added later. The graph G consists of all the solid lines and dotted lines
in Figure ??.

Step II. By Lemma ??, there must be at least one boundary spike
or boundary edge in G. Suppose the former (the other case is similar).
Observation ?? can be used to find the connection that is broken when the
spike is contracted. By re-indexing if necessary, assume the boundary spike
is v1r. Let t1 < v1 < t2 be in clockwise order on the boundary circle and
let σ1 = t1ta and σ2 = t2ta be the chords which intersect at the midpoint of
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v1r. Place cutpoints X and Y on C, with t2n < X < t1 and ta < Y < ta+1

as shown in Figure ??. Place a chord L joining X to Y not passing through
any intersection points of M, intersecting each chord in M at most once,
and close enough to chord t1ta so that any chord which begins in t̂1ta and
crosses σ1, next crosses L before crossing any other chord of M. The the
uncrossing of σ1 and σ2 can be chosen so that the new chords are σ′1 = (t1tb)
and σ′2 = (t2ta), and neither σ′1 nor σ′2 intersects L. Referring to Observation
??, let k be the number of black intervals entirely within L. The number
of black intervals entirely within L after the uncrossing is k − 1. Thus
there is a connection of size k which is broken when v1r is contracted. This
connection can be found as follows. There must be a submatrix of Λ of rank
k whose rows correspond to vertices in t̂1ta and whose columns correspond
to vertices in t̂at1. This submatrix must contain a k by k submatrix Λ(P ;Q)
with det Λ(P ;Q) 6= 0 and with det Λ′(P ;Q) = 0 where Λ′ is the response
matrix for the network Γ′ which is Γ with the spike v1r contracted.

Step III. The calculation of the conductance γ(vr3) will lead us to
another explanation of the boundary spike formula (??) of Chapter ??.
(There is a similar explanation for the boundary edge formula.) According
to Theorem ??, there is a γ-harmonic function u on G, with

(1) u(v1) = 1

(2) u(vi) = 0, if vi /∈ Q

(3) φu(vi) = 0 if vi ∈ P

The algorithm of Section ?? will apply if it can be shown that u(r) = 0.
As in Observation ??, let K1 be the complex in the disc D1, with boundary
circle C1 which is X, X̂Y , Y , and L. This complex K1 may be 2-colored so
that the black regions are the nodes of a graph G1 which is a subgraph of
G.

An example of such a subgraph G1 is shown in Figure ??, where G1 con-
sists of the nodes and vertices below the dashed line XY . The subnetwork
Γ1 = (G1, γ1), where γ1 is the restriction of γ to G1. In this example, k = 3,
and the vertices of G1 along the portion L = Y X of the boundary circle for
G1 are labeled r1, r2, and r3. The boundary circle for G1 passes through
v1, v2, v3, v4, v5, r1, r2 and r3.

• The boundary spike v1r3 in G is a boundary pendant in G1.
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By Theorem ??, there is a unique γ-harmonic function w on G1, with

(1) w(v1) = 1

(2) w(vi) = 0, if vi /∈ R

(3) φw(vi) = 0 if vi ∈ P

The function which is zero on all of G1 except w(v1) = 1 is γ-harmonic, and
satisfies these conditions. The γ-harmonic function u restricts to a gamma-
harmonic function u1 on G1, which must be that same as w on G1. Hence
u(r) = 0. The algorithm of Section ?? applies, with the result that

γ(v1r) = −Λ(1;Q) · Λ(P ;Q)−1 · Λ(P ; 1) + Λ(1; 1)

which is the boundary spike formula (??) of Chapter ??.
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Chapter 10

Layered Networks

The material of this chapter is taken from David Ingerman’s thesis, which is
to appear in [?]. For circular planar networks that have a layered structure,
it is possible to characterize the response matrix by its eigenvalues. The
graphs of these networks will be referred to as discrete discs, denoted D(n, l)
and D(n, l)⊥, where n is the number of rays, and l is the number of layers.
To simplify the exposition, assume that n = 2m+ 1 is an odd integer. The
figures in Figure ?? illustrate the different types. Figure ??a shows a discrete
disc D(5, 2) with 5 rays and 2 layers. The dual of D(5, 2) is the discrete disc
D(5, 2)⊥ in Figure ??b. The vertices are located at the points with polar
coordinates (rj , θk) where

(1) The rj are equally spaced radii, with r0 = 0.

(2) θk =
2πk

n
.

The edges are the segments of radial lines and the circular arcs between
adjacent vertices. The layers of the discs D(n, l) and D(n, l)⊥ are the min-
imal subsets of edges invariant under rotations of the graph through angle
2π

n
. Each layer consists of n edges. A layered network is a discrete disc with

a conductivity function that is constant on layers. Thus the conductivity is
given by l positive real numbers.

Each of the discrete discs D(5, 2) and D(5, 2)⊥ in Figure ?? has 5 rays
and 2 layers. The conductivity is given by two real numbers. Figure ??
shows a discrete disc D(11, 5) with 11 rays and 5 layers. The conductivity
is given by five real numbers.
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(a) D(5, 2)
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•

••

•

(b) D(5, 2)⊥

Figure 10-1: Discrete discs

It is convenient to consider the boundary functions as functions of the
angle θ and the potentials as functions of polar coordinates (r, θ). Thus eikθ

will represent the boundary function with values at the boundary nodes

φk(θj) = e
2ikjπ
n for j = 1, . . . , n

where θj =
2πj

n
.

Lemma 10.1 The solution to the Dirichlet problem on a discrete layered
disc with boundary values given by the function eikθ is of the form

uk = ak(r)e
ikθ

Proof: Let uk be a potential which, when restricted to the boundary, is
eikθ. Since the conductivity is constant on layers, the function

v(r, θ) = uk

(
r, θ +

2π

n

)
− uk(r, θ)

is also a potential. When restricted to the boundary, v is the function

v|∂Dn = eikθ
(
e
i2πk
n − 1

)
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By the uniqueness of the solution to the Dirichlet problem,

uk(r, θ)
(
e
i2πk
n − 1

)
= uk

(
r, θ +

2π

n

)
− uk(r, θ)

Hence

uk(r, θ)
(
e
i2πk
n

)
= uk

(
r, θ +

2π

n

)
and letting θ = θ1 =

2π

n
, we see that

uk(r, θ2) = uk(r, θ1)e−ikθ1 · eikθ2

Similarly,
uk(r, θj) = uk(r, θj)e

−ikθ1 · eikθj

Letting ak(r) = uk(r, θ1)eikθ1 , we see that

uk(r, θ) = ak(r)e
ikθ.

Λ can be compared to a discretization of the differential operator
d2

dθ2
con-

sidered as an operator on boundary functions on the unit disc. The finite

difference approximation to − d2

dθ2
can be represented by the matrix:

[
− d2

dθ2

]
=


2 −1 0 0 0 . . . 0 0 −1
−1 2 −1 0 0 . . . 0 0 0

0 −1 2 −1 0 . . . 0 0 0
0 0 0 0 0 . . . −1 2 −1
−1 0 0 0 0 . . . 0 −1 2


This operator acts on the space of boundary functions defined on ∂Dn,
n = 2m+ 1. A complete set of eigenvectors is given by:

{eikθ : k = −m, . . . ,−1, 0, 1, . . . ,m}

with eigenvalues

|ei
2πk
n − 1|2 =

(
2 sin

πk

n

)2
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Figure 10-2: Discrete disc D(11, 5)

This follows from

2eikθj − eikθj+1 − eikθj−1 = eikθj
[
2− e

ik2π
n − e−

ik2π
n

]
= eikθj

[
2− 2 cos(

2πk

n
)

]
= eikθj · 4 sin2(

πk

n
)

Define

ω
(n)
k = ω

(n)
−k = |e

i2πk
n − 1|

The eigenvalues of Λ will now be computed. For simplicity, consider the case

of D(n, l), with l odd. Let h =
l + 1

2
and let {σ1, µ1, σ2, . . . , µh−1, σh} be the

conductivities on the layers of D(n, l) outward starting from the origin. For
example, the discrete disc D(11, 5) in Figure ?? has 11 rays and 5 layers.
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The conductivity is given by five real numbers, σ1, µ1, σ2, µ2, σ3. Let

uk(r, θ) = ak(r)e
ikθ

be the solution of the Dirichlet problem with boundary values eikθ. Let
k 6= 0. For uk to be well-defined at r = 0, we must have ak(0) = 0. Since
the boundary values are eikθ, we must have ak(1) = 1. Kirchhoff’s Law at
the interior nodes implies that

σj(ak(rj)− ak(rj−1)) + σj+1(ak(rj)− ak(rj+1)) + µj · ak(rj) · (ω
(n)
k )2 = 0

Let λ be a real parameter, and P0(λ), . . . , Ph(λ) denote a sequence of func-
tions. It will be convenient to think of the functions Pj(λ) as functions of
rj , so we write Pj(λ) = P (λ, rj). This sequence of functions is defined by
the following relations.

P (λ, 0) = P0(λ) = 0

P (λ, 1) = Ph(λ) = 1

For 0 < j < h,

σj(Pj(λ)− Pj−1(λ)) + σj+1(Pj(λ)− Pj+1(λ)) + µj · λ2 · Pj(λ) = 0

This is a linear system of equations that is analogous to the Kirchhoff equa-
tions (it is that system in disguise). The matrix of the system has the form:
σ1 + σ2 + λ2µ1 −σ2 0 · 0

−σ2 σ2 + σ3 + λ2µ2 −σ3 · 0
0 −σ3 σ3 + σ4 + λ2µ3 · 0

0 0 0 · σh−1 + σh + λ2µh−1


which is L+D, where

L =


σ1 + σ2 −σ2 0 · · 0
−σ2 σ2 + σ3 −σ3 · · 0

0 −σ3 σ3 + σ4 · · 0

0 0 0 · · σh−1 + σh


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and D = Diag [λ2µ1, λ
2µ2, . . . , λ

2µh−1]. L is the interior matrix of a linear
network of resistors with conductivities σ1, σ2, . . . , σh, and is positive defi-
nite. D is positive definite, so L+D is also positive definite. Thus there is a
unique solution to this linear system of equations. The functions Pj(λ) are

rational functions of λ. The eigenvalue λ
(n)
k corresponding to the eigenvector

eikθ is given by

λ
(n)
k = σh(ak(1)− ak(rh−1))

= σh(P (ω
(n)
k , rh)− P (ω

(n)
k , rh−1))

= σh(Ph(ω
(n)
k )− Ph−1(ω

(n)
k ))

The functions Pj(λ) depend on the number of layers and the conductivities
µ and σ on the layers, but not on k or n. For j = 1, . . . , h, let

Qj(λ) = Q(λ, rj) = σj(P (λ, rj)− P (λ, rj−1))

= σj(Pj(λ)− Pj−1(λ))

Then

λ
(n)
k = Q(ω

(n)
k , 1) =

Q(ω
(n)
k , 1)

P (ω
(n)
k , 1)

and

Pj = Pj−1(λ) +
1

σj
Qj(λ)

Qj = Qj−1(λ) + µj−1λ
2Pj−1(λ)

So

Qj
Pj

=
Qj

Pj−1(λ) + 1
σj
Qj(λ)

=
1

1
σj

+
Pj−1

Qj

=
1

1
σj

+
Pj−1

Qj−1+µj−1λ2Pj−1(λ)

=
1

1
σj

+ 1

µj−1λ2+
Qj−1(λ)

Pj−1(λ)
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Continuing in this way, we get a continued fraction

R(λ) =
1

1
σh

+
1

µh−1λ2 +
1

σh−1 + . . .
1

1
σ2

+ 1
µ1λ2+σ1

Since Q1(λ) = σ1(P1(λ) − P0(λ)) = P1(λ) the eigenvalues λ
(n)
k of ΛΓ are

given by

λ
(n)
k = R(ω

(n)
k )

By introducing the function

β(λ) =
R(λ)

λ
=

1

λ
σh

+
1

µh−1λ+ . . .
1

λ
σ2

+
1

µ1λ+ 1
σ1
λ

we can write

λ
(n)
k = ω

(n)
k β(ω

(n)
k )

If β is considered to be a function of a complex variable λ, then β has the
following properties:

(1) β is rational

(2) If <(λ) > 0, then <(β(λ)) > 0

(3) β is real

(4) β(−λ) = −β(λ); that is, β is para - odd.

These four properties characterize continued fractions of this form; see [?].
Let B be the class of functions satisfying (1), (2), (3), and (4). The following
theorem is due to David Ingerman.
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Theorem 10.2 Let n = 2m + 1. A linear map Λ : Rn → Rn is the re-
sponse map of a discrete layered disc Dn if and only if Λ is diagonal in the
orthogonal basis

{eikθ|∂Dn : k = −m, . . . , 0, . . . ,m}

Λ1 = 0, and there is a function β ∈ B such that for k = 1, . . . ,m,

Λe±ikθ|∂Dn = ω
(n)
k β(ω

(n)
k ) · e±ikθ|∂Dn
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boundary spike formula, 57
breaking a connection, 17

chord, 134
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circular planar graph, 11

conductance, 27
conductivity, 27
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connection, 4, 13
contracting an edge, 16
critical, 4
critical graph, 17
current, 27
cut-points, 152

deleting an edge, 16
Dirichlet form, 37
Dirichlet norm, 35
discrete disc, 173

empty boundary triangle, 137
empty triangle, 126, 130
equivalent families, 127

family of arcs, 124
five-point formula, 60
forward problem, 1
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harmonic continuation, 6, 59, 61
harmonic function, 28
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interior node, 11, 27
interlaced, 140
inverse problem, 1

k-connection, 13, 49, 151
Kirchhoff matrix, 5, 34
Kirchhoff’s Law, 1, 28

layered network, 173
layers, 173
lens, 127, 131
lensless, 134
loop, 128

maximum principle, 31
median, 121

neighbor of a node, 27
network response, 1, 33

Ohm’s Law, 27

path, 4, 11, 149
path through G, 11
pole of a lens, 128
potential, 1, 28
principal flow path, 91

re-entrant, 152
rectangular graph, 59
removing an edge, 16
resistor network, 27
response map, 1
response matrix, 2, 33

Schur complement, 40
six-term identity, 41
standard arrangement, 140, 142
standard order, 142

switch, 142, 158
switching arcs, 127

TNN, 85, 110
totally non-negative, 85, 110
totally positive, 85
TP, 85
transverse edge, 91
trivial modification, 18

uncrossing, 130, 139

well-connected, 4, 20
white interval, 125


