A Table of Isoperimetric Ratios

version November 18, 2023

Matthew M. Conroy

conroy "at" math dot washington dot edu

For a simple closed plane curve, the **isoperimetric ratio** is

$$\frac{P^2}{4}$$

where P is the length of the curve, and A is the area enclosed by the curve. This ratio is a dimensionless constant that is invariant under scaling: changing the size of the shape does not change this ratio.

The table below gives this ratio for a variety of shapes.

One can prove that the circle is the plane curve with the smallest (and hence, smallest possible) isoperimetric ratio, and so the table begins with the circle.

I started this table as a result of a homework problem in our precalculus class at the University of Washington. The problem asks the student to consider a situation in which we have a piece of wire of known length; we want to cut the wire and bend one resulting piece into a circle and the other piece into a square. The question is: where should we cut the wire so that the area of the circle plus the area of the square is minimized?

When writing exam questions of a similar flavor, the relative "efficiencies" of different planar shapes come under consideration.

For any wire length, if the two shapes have isoperimetric ratios r_1 and r_2 , then the wire should be cut into two pieces with lengths in the ratio $r_1 : r_2$ if we wish to minimize the total area.

Cited by

This table is cited in the following paper:

Hirvonen, Petri & Boissonière, Gabriel & Fan, Zheyong & Achim, Cristian & Provatas, Nikolas & Elder, Ken & Ala-Nissila, Tapio. (2018). Grain extraction and microstructural analysis method for two-dimensional poly and quasicrystalline solids. Physical Review Materials. 2. 10.1103/PhysRevMaterials.2.103603.

circle	$4\pi\approx 12.56637061$
regular 12-gon	$96 - 48\sqrt{3} \approx 12.86156124$
	≈ 12.87612775
regular 11-gon	$44 \tan \frac{\pi}{11} \approx 12.91956568$
square with quarter circle rounded corners (radius of corners is one-third of overall width)	$\frac{(4+2\pi)^2}{5+\pi} \approx 12.98810988$
regular 10-gon	$40 \tan \frac{\pi}{10} \approx 12.99678784$
regular 9-gon	$36 \tan \frac{\pi}{9} \approx 13.10292843$

optimum region bounded by symmetric parabolic arcs (parabolas are approximately $y = 0.97300151x^2$ on the interval $(-0.97300151, 0.97300151)$	≈ 13.11934320
three-quarter truncated circular arc	≈ 13.14170265
regular octagon (equivalent to square augmented by four optimal isosceles triangles)	$32(\sqrt{2}-1) \approx 13.25483399$
	≈ 13.28104122
square with hacked off corners (horizontal and vertical edges are one- third overall width)	$\frac{(4+4\sqrt{2})^2}{7} \approx 13.32211914$
ellipse, 3:2	≈ 13.35374554
regular septagon	$28 \tan \frac{\pi}{7} \approx 13.48408932$

cardioid	$\frac{128}{3\pi} \approx 13.58122181$
	≈ 13.61890282
semicircle with optimal adjoined isosceles triangle	≈ 13.71361987
square with three optimal adjoined isosceles triangles	≈ 13.75752837
16 pointed star	≈ 13.77927647
equilateral triangle with three adjoined semicircles	≈ 13.78342300
regular hexagon	$\frac{24}{\sqrt{3}} \approx 13.85640646$
semicircle with ad- joined right isosceles triangle	$\frac{2(2\sqrt{2}+\pi)^2}{\pi+2} \approx 13.86385058$

regular	pentagon
regular	permagon

$$\frac{100}{\sqrt{25+10\sqrt{5}}}\approx 14.53085056$$

optimal region bounded by $\frac{1}{x^2+1}$, the x-axis, and $x=\pm a$, where $a\approx 0.5181167$

$$\approx 14.695335322$$

square with two adjoined semicircles

$$\frac{4(2+\pi)^2}{4+\pi}\approx 14.80676722$$

12 pointed star

$$\approx 14.85125168$$

ellipse, 2:1

$$\approx 14.93924249$$

square with three adjoined semicircles

$$\frac{2(2+3\pi)^2}{8+3\pi}\approx 14.98160283$$

rectangle, 2:1, with four adjoined semicircles

$$\frac{36\pi^2}{8+5\pi} \approx 14.98676855$$

square with adjoined semicircle

$$\frac{2(6+\pi)^2}{8+\pi} \approx 15.00121550$$

square with optimal adjoined isosceles triangle	≈ 15.07344594
square with single op- timally rounded corner (radius is one half the side length)	$12 + \pi \approx 15.14159265$
square with four adjoined semicircles	$\frac{8\pi^2}{2+\pi} \approx 15.35649370$
11 pointed star	≈ 15.35751730
equilateral triangle with adjoined semicir- cle	$\frac{2(4+\pi)^2}{\pi+2\sqrt{3}}\approx 15.44193344$
square	16
circular sector, two ra- dians (optimal circular sector)	16
10 pointed star	≈ 16.06491327

circular sector, $3\pi/4$ radians

$$\frac{(8+3\pi)^2}{6\pi} \approx 16.10769443$$

quarter circular sector

$$\frac{4(2+\frac{\pi}{2})^2}{\pi} \approx 16.23455083$$

optimal parabolic chunk (2 by ~ 1.7685879 ; region bounded by y=1 and $y\approx 3.127903x^2$)

$$\approx 16.48263518$$

parabolic chunk: region bounded by $y=x^2$ and y=3

$$\approx 16.48509413$$

parabolic chunk: region bounded by $y=x^2$ and y=4

$$\approx 16.56740039$$

rectangle, 3:2 sides

$$\frac{50}{3} = 16.\overline{6}$$

regular pentagon with adjoined semicircles

$$\frac{50\pi^2}{5\pi + 2\sqrt{25 + 10\sqrt{5}}} \approx 16.74415928$$

semicircle augmented by two semicircles, I

$$\frac{16}{3}\pi \approx 16.75516081$$

9 pointed star	≈ 17.10465828
square with adjoined equilateral triangle	$\frac{100}{4+\sqrt{3}} \approx 17.44576302$
regular hexagon with adjoined semicircles	$\frac{12\pi^2}{\pi + 2\sqrt{3}} \approx 17.92926648$
rectangle, 2:1	18
circular sector, one radian	18
circular sector, four radians	18
rectangle, 2:1, with one adjoined semicircle	$\frac{2(10+\pi)^2}{16+\pi} \approx 18.044627800654$
rectangle, 2:1, with two adjoined semicircles	$\frac{4(4+\pi)^2}{8+\pi} \approx 18.31061221$

parabolic chunk: region bounded by $y = x^2$ and $y = 10$	≈ 18.38876821
parabolic chunk: region bounded by $y = x^2$ and $y = 1$	≈ 18.43547307
8 pointed star	$64 - 4^{11/4} \approx 18.74516600$
regular septagon with adjoined semicircles	≈ 18.94192830
ellipse, 3:1	≈ 18.95220996
three-quarter circular sector	$\frac{(4+3\pi)^2}{3\pi} \approx 19.12243068$
quarter circular sector with half-radius quar- ter circular sector re- moved	$\frac{(4+3\pi)^2}{3\pi} \approx 19.12243068$

square	with	an	ad-
joined	semic	ircle	on
each	side's	mi	ddle
third			

$$\frac{8(\pi+4)^2}{18+\pi} \approx 19.29933907$$

isosceles right triangle with optimal adjoined rectangle $(1:\frac{\sqrt{2}}{2})$

$$8 + 8\sqrt{2} \approx 19.31370849$$

isosceles right triangle with adjoined square

$$\frac{2(4+\sqrt{2})^2}{3}\approx 19.54247233$$

square with square adjoined to middle-third of one side

$$\frac{98}{5} = 19.6$$

circular sector, $\pi/4$ radians

$$\frac{(8+\pi)^2}{2\pi}\approx 19.756712684$$

regular octagon with adjoined semicircles

$$\approx 19.81346029$$

parabolic chunk: region bounded by $y=x^2$ and y=15

 ≈ 20.00749094

square with two equilateral triangles adjoined to one side	$\frac{200}{8+\sqrt{3}} \approx 20.55065309$
regular nonagon with adjoined semicircles	≈ 20.569895
equilateral triangle	$\frac{36}{\sqrt{3}} \approx 20.78460969$
regular decagon with adjoined semicircles	≈ 21.231897
two step unit staircase	$\frac{64}{3} = 21.\overline{3}$
square with quarter- sized squares removed from each corner (aka order-2 Aztec diamond)	$\frac{64}{3} = 21.\overline{3}$
rectangle, 3:1	$\frac{64}{3} = 21.\overline{3}$

 $\frac{64}{3} = 21.\bar{3}$

circular sector, 2/3 radi-

ans

circular sector, 6 radi- ans	$\frac{64}{3} = 21.\overline{3}$
parabolic chunk: region bounded by $y=x^2$ and $y=20$	≈ 21.50079173
7 pointed star	≈ 21.62680012
rectangle, 3:1, with one adjoined semicircle	$\frac{2(14+\pi)^2}{24+\pi} \approx 21.65194964$
regular 11-gon with adjoined semicircles	≈ 21.81573534
square with three equilateral triangles adjoined to one side	$\frac{300}{12 + \sqrt{3}} \approx 21.84670041$
rectangle, 3:1, with two adjoined semicircles	$\frac{4(6+\pi)^2}{12+\pi} \approx 22.076598718$

regular 12-gon with adjoined semicircles

 ≈ 22.33427625

optimal "	45 de	gree"
trapezoid	(base=	: 1,
height=	$\frac{1}{\sqrt{2}+1}$)	(aka
optimal		cated
isosceles	right	tri-
angle ak	а ор	timal
rectangle	with	two
adjoined is	osceles	right
traingles)		

 $16\sqrt{2} \approx 22.62741699796$

regular 13-gon with adjoined semicircles

 ≈ 22.79777267

isosceles triangle, 2:1 sides, with adjoined semicircle

$$\frac{2(8+\pi)^2}{\pi+2\sqrt{15}}\approx 22.80310635$$

regular 14-gon with adjoined semicircles

 ≈ 23.21447316

square with squares adjoined to middle third of two sides

 $\frac{256}{11}=23.\overline{27}$

isosceles right triangle

 $2(2+\sqrt{2})^2 \approx 23.31370849$

square with two adjoined isosceles right triangles

 $2(2+\sqrt{2})^2\approx 23.31370849$

square with four adjoined equilateral triangles	$\frac{64}{1+\sqrt{3}} \approx 23.42562584$
regular 15-gon with adjoined semicircles	≈ 23.59107664
equilateral triangle with three adjoined squares	$\frac{324}{12 + \sqrt{3}} \approx 23.59443644$
square with an adjoined equilateral triangles on each side's middle third	$\frac{256}{9+\sqrt{3}} \approx 23.85378196$
regular 16-gon with ad- joined semicircles	≈ 23.93307364
three-step unit staircase	24

24

order-3 Aztec diamond

parabolic chunk: region bounded by $y = x^2$ and $y = 30$	≈ 24.15608124
regular 17-gon with adjoined semicircles	≈ 24.2450034
rectangle, 4:1	25
circular sector, $1/2$ radian	25
regular 20-gon with adjoined semicircles	≈ 25.03530855
square with two equilateral triangles adjoined to two sides	$\frac{144}{4+\sqrt{3}} \approx 25.1218987469293$
semicircle augmented with two semicircles, II	$8\pi\approx25.13274122$
rectangle, 4:1, with one adjoined semicircle	$\frac{2(18+\pi)^2}{32+\pi} \approx 25.43805821$

four-step unit staircase	$\frac{128}{5} = 25.6$
order-4 Aztec diamond	$\frac{128}{5} = 25.6$
regular pentagon with adjoined equilateral triangles	≈ 25.73644244
isosceles triangle, 2:1 sides	$\frac{100}{\sqrt{15}} \approx 25.81988897$
right triangle, 30-60-90	$12 + 8\sqrt{3} \approx 25.85640646$
rectangle, 4:1, with two adjoined semicircles	$\frac{4(8+\pi)^2}{16+\pi} \approx 25.94038836893$
parabolic chunk: region bounded by $y=x^2$ and $y=40$	≈ 26.48326571
order-5 Aztec diamond	$\frac{80}{3} = 26.\overline{6}$

regular 30-gon with adjoined semicircles	≈ 26.71031462
square with squares adjoined to the middle thirds of three sides	27
square with three adjoined right isosceles triangles	$\frac{68 + 48\sqrt{2}}{5} \approx 27.17645019$
right triangle, 2:1 legs	$(3+\sqrt{5})^2 = 14 + 6\sqrt{5} \approx 27.41640786$
order-6 Aztec diamond	$\frac{192}{7} = 27.\overline{428571}$
square with one-third diameter semicircles re- moved from each side	$\frac{2(8+2\pi)^2}{18-\pi} \approx 27.46046434$
semicircle with half- diameter semicircle removed	$\frac{2(3\pi+2)^2}{3\pi}\approx 27.69838228$
6 pointed star (Koch curve, stage 2; regular hexagon with adjoined	$\sqrt{768}\approx 27.71281292$

equilateral triangles)

regular 50-gon with adjoined semicircles

€ Common of the second of the

 ≈ 28.25482853

parabolic chunk: region bounded by $y=x^2$ and y=50

 ≈ 28.57579596

5-square cross

$$\frac{144}{5} = 28.8$$

rectangle, 5:1

$$\frac{144}{5} = 28.8$$

circular sector, 2/5 radian

$$\frac{144}{5} = 28.8$$

regular septagon with adjoined equilateral triangles

 ≈ 29.40734584

rectangle, 5:1, with two adjoined semicircles

$$\frac{4(10+\pi)^2}{20+\pi} \approx 29.851265651086$$

13-square diamond	$\frac{400}{13} \approx 30.76923076$
regular octagon with adjoined equilateral triangles	≈ 30.87116222
5-square cross with four adjoined semicircles	$\frac{8(4+\pi)^2}{\pi+10} \approx 31.04789318$
square with four ad- joined isosceles right triangles	$16 + \frac{32}{3}\sqrt{2} \approx 31.08494466$
25-square diamond	$\frac{784}{25} = 31.36$
regular nonagon with adjoined equilateral triangles	≈ 32.14624235
isosceles triangle, 20° apex angle	≈ 32.21915602

rectangle, 6:1

 $\frac{98}{3} = 32.\bar{6}$

circular s dian	ector,	1/3	ra-
isosceles sides	trianş	gle,	3:1

$$\frac{98}{3} = 32.\overline{6}$$

$$\frac{196}{\sqrt{35}} \approx 33.13004679$$

rectangle, 6:1, with two adjoined semicircles

regular decagon with adjoined equilateral tri-

angles

$$\frac{(24+2\pi)^2}{24+\pi} \approx 33.78841190$$

 ≈ 33.26587053

square with two adjoined equilateral triangles on three sides

$$\frac{450}{8+3\sqrt{3}} \approx 34.10084891$$

regular 11-gon with adjoined equilateral triangles

$$\approx 34.25632027$$

square with two adjoined equilateral triangles on each side

$$\frac{128}{2+\sqrt{3}} \approx 34.29749663$$

regular 12-gon with adjoined equilateral triangles

$$\approx 35.13843876$$

circular sector, $1/4$ radian	$\frac{81}{2} = 40.5$
square with three equilateral triangles adjoined to each side	$\frac{192}{3+\sqrt{3}} = 40.57437416$
isosceles triangle, 4:1 sides	$\frac{324}{\sqrt{63}} \approx 40.82016308$
regular septagon with adjoined squares	≈ 41.471095
regular 30-gon with adjoined equilateral triangles	≈ 42.68026645
Koch curve, stage 3	$\frac{384}{5\sqrt{3}} \approx 44.34050067$
9-square cross	$\frac{400}{9} = 44.\overline{4}$

rectangle, 9:1

 $\frac{400}{9} = 44.\bar{4}$

circular sector, 2/9 radian		$\frac{400}{9} = 44.\overline{4}$
regular octagon with adjoined squares		≈ 44.900282
regular 50-gon with adjoined equilateral triangles	ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ	≈ 45.38596197
5 pointed star		$20\sqrt{10 - 2\sqrt{5}} \approx 47.02282018$
regular nonagon with adjoined squares		≈ 48.017945
rectangle, 10:1		$\frac{242}{5} = 48.4$
circular sector, $1/5$ radian		$\frac{242}{5} = 48.4$
semicircle augmented by two semicircles, III (arbelos)		$16\pi \approx 50.26548245$

regular 20-gon with adjoined squares		≈ 69.80970978
Koch curve, stage 4	La Contraction of the contractio	$\frac{6144}{47\sqrt{3}} \approx 75.47319263$
arbelos, one-fifth and four-fifths arcs		$25\pi\approx78.53981634$
regular 30-gon with adjoined squares	E CONTRACTOR OF THE PARTY OF TH	≈ 79.91496779
region bounded by $y = x^4$, $y = 0$ and $x = 1$		≈ 80.73353354
arbelos, one-sixth and five-sixths arcs		$\frac{144\pi}{5} \approx 90.47786842$
isosceles triangle, 5° apex angle		≈ 99.97197122
Koch curve, stage 5	End Cond Cond Cond Cond Cond Cond Cond Co	$\frac{98304}{431\sqrt{3}} \approx 131.68408553$

arbelos, one-tenth and nine-tenths arcs

400π		120 6	2024010
9	\approx	139.6	2634016

General formulas

Rectangles

For a rectangle with aspect ratio m (i.e., the ratio of non-equal length sides is m:1), the ratio is

$$\frac{(2m+2)^2}{m} = 4m + 8 + \frac{4}{m}.$$

Right triangles

For a right triangle with non-right angle θ , the ratio is

$$\frac{2(1+\sin\theta+\cos\theta)^2}{\sin\theta\cos\theta}.$$

Isosceles triangles

For an isosceles triangle in which the sides with the same length are l times the length of the other side, the ratio is

$$\frac{4(2l+1)^2}{\sqrt{4l^2-1}}$$
.

For an isosceles triangle with an "apex" angle of θ , the ratio is $4\tan\frac{\theta}{2}\left(1+\csc\frac{\theta}{2}\right)^2$.

Rectangle with adjoined semicircles

For a rectangle with aspect ratio m with semicircles adjoined to the "1" sides, the ratio is

$$\frac{(4m+2\pi)^2}{4m+\pi}.$$

For a value of $m \approx 1.637129085772..$, this is equal to the ratio for the m:1 rectangle. If m>1.637129085772.., adjoining the semicircles decreases the ratio, while for smaller m, adjoining semicircles increases the ratio.

Regular polygons

For a regular polygon with n sides, the ratio is $4n \tan \frac{\pi}{n}$.

Circular sectors

For a circular sector with angle θ , the ratio is

$$\frac{2(2+\theta)^2}{\theta}$$

This has a minimum of 16 at $\theta = 2$.

Polygonal Stars

For an n-sided polygonal star with equal side lengths, like the one shown, with inner radius r and outer radius R, the area is $\frac{1}{2}nrR\sin\frac{2\pi}{n}$ and the perimeter is $n\sqrt{r^2+R^2-2rR\cos\frac{2\pi}{n}}$ so the isoperimetric ratio is

$$\frac{2n(r^2 + R^2 - 2rR\cos\frac{2\pi}{n})}{rR\sin\frac{2\pi}{n}}.$$

A special case of this are stars based on a regular polygon with $m \ge 5$ sides by extending the sides of the polygon until they intersect. In this case, we have n = 2m and $R = r(\cos\frac{\pi}{m} + \sin\frac{\pi}{m}\tan\frac{2\pi}{m})$. In the table, such stars are called *n-pointed stars*.

Regular polygons with adjoined equilateral triangles

If we adjoin equilateral triangles to the sides of a regular n-gon, the resulting figure has an isoperimetric ratio of

$$\frac{16n}{\sqrt{3} + \cot \frac{\pi}{n}}.$$

As *n* tends to infinity, this approaches $16\pi = 50.265482...$ from below.

Regular polygons with adjoined squares

If we adjoin squares to the sides of a regular *n*-gon, the resulting figure has an isoperimetric ratio of

$$\frac{36n}{4 + \cot \frac{\pi}{n}}$$

As n tends to infinity, this approaches $36\pi = 113.097...$ from below.

Regular polygons with adjoined semicircles

If we adjoin semicircles to the sides of a regular *n*-gon, the resulting figure has an isoperimetric ratio of

$$\frac{\pi^2 n}{\frac{\pi}{2} + \cot \frac{\pi}{n}}$$

As n tends to infinity, this approaches $\pi^3 \approx 31.0063\dots$ from below.

n-square diamond/cross

The ratio is

$$\frac{(8m+12)^2}{2m^2+6m+5}$$

where m is the order of the diamond (m=0 is the 5-square cross, m=1 is the 13-square diamond, etc.) This approaches 32 from below as m tends to infinity.

Koch curve

The ratio is

$$\frac{180\left(\frac{4}{3}\right)^{2n}}{\sqrt{3}\left(8-3\left(\frac{4}{9}\right)^n\right)}$$

for the n-th iteration (i.e., n = 0 is an equilateral triangle, n = 1 is a six-pointed star, etc.)

Arbelos

The area is $\frac{\pi}{4}q(1-q)$ and the perimeter is π , so the ratio is

$$\frac{4 \pi}{q(1-q)}.$$

Parabolic chunk

For regions bounded by a parabola and a line perpendicular to the parabola's axis, the ratio is

$$\frac{\left(2+\sqrt{1+4a^2}+\frac{1}{2a}\log(2a+\sqrt{1+4a^2})\right)^2}{\frac{4}{3}a}$$

where the parabola is $y=ax^2$ and the bounding line is y=a (we can express all parabolic chunks in this form; note, for instance, that the shape bounded by $y=x^2$ and y=b is the same as the shape bounded by $y=\sqrt{b}x^2$ and $y=\sqrt{b}$).

Aztec diamond

For an n-th order Aztec diamond, which looks like four copies of a set of n steps (of unit width and height) stuck together, the area is 2n(n+1) and the perimeter is 8n, so the ratio is

$$\frac{P^2}{A} = \frac{64n^2}{2n(n+1)} = \frac{32n}{n+1}.$$

Incidentally, this is the same ratio as for a set of n unit steps themselves, as the perimeter is 4n and the area is $\frac{1}{2}n(n+1)$ which yields

$$\frac{P^2}{A} = \frac{(4n)^2}{\frac{1}{2}n(n+1)} = \frac{32n}{n+1}.$$

This is because the "stair" part and the non-stair part have the same length, so putting four of them together exactly doubles the perimeter while quadrupling the area (unlike what happens when you put, say, four quarter-circles together to make a circle).