A Table of Isoperimetric Ratios

version November 18, 2023

Matthew M. Conroy

conroy "at" math dot washington dot edu

For a simple closed plane curve, the isoperimetric ratio is

$$
\frac{P^{2}}{A}
$$

where P is the length of the curve, and A is the area enclosed by the curve. This ratio is a dimensionless constant that is invariant under scaling: changing the size of the shape does not change this ratio.
The table below gives this ratio for a variety of shapes.
One can prove that the circle is the plane curve with the smallest (and hence, smallest possible) isoperimetric ratio, and so the table begins with the circle.

I started this table as a result of a homework problem in our precalculus class at the University of Washington. The problem asks the student to consider a situation in which we have a piece of wire of known length; we want to cut the wire and bend one resulting piece into a circle and the other piece into a square. The question is: where should we cut the wire so that the area of the circle plus the area of the square is minimized?
When writing exam questions of a similar flavor, the relative "efficiencies" of different planar shapes come under consideration.
For any wire length, if the two shapes have isoperimetric ratios r_{1} and r_{2}, then the wire should be cut into two pieces with lengths in the ratio $r_{1}: r_{2}$ if we wish to minimize the total area.

Cited by

This table is cited in the following paper:
Hirvonen, Petri \& Boissonière, Gabriel \& Fan, Zheyong \& Achim, Cristian \& Provatas, Nikolas \& Elder, Ken \& Ala-Nissila, Tapio. (2018). Grain extraction and microstructural analysis method for two-dimensional poly and quasicrystalline solids. Physical Review Materials. 2. 10.1103/PhysRevMaterials.2.103603.
circle

$$
4 \pi \approx 12.56637061
$$

regular 12-gon

ellipse
regular 11-gon

$44 \tan \frac{\pi}{11} \approx 12.91956568$
square with quarter circle rounded corners (radius of corners is one-third of overall width)
regular 10-gon

$\frac{(4+2 \pi)^{2}}{5+\pi} \approx 12.98810988$
$40 \tan \frac{\pi}{10} \approx 12.99678784$
regular 9-gon

optimum region bounded by symmetric parabolic arcs (parabolas are approximately $y=0.97300151 x^{2}$ on the interval (-0.97300151, 0.97300151)
three-quarter truncated circular arc
regular octagon (equivalent to square augmented by four optimal isosceles triangles)
super ellipse $|x|^{4}+|y|^{4}=1$

$$
32(\sqrt{2}-1) \approx 13.25483399
$$

$$
\approx 13.28104122
$$

square with hacked off corners (horizontal and vertical edges are onethird overall width)
ellipse, 3:2

$$
\frac{(4+4 \sqrt{2})^{2}}{7} \approx 13.32211914
$$

$$
\approx 13.35374554
$$

$28 \tan \frac{\pi}{7} \approx 13.48408932$
cardioid

$\frac{128}{3 \pi} \approx 13.58122181$
≈ 13.61890282
$|x|^{5}+|y|^{5}=1$
semicircle with optimal adjoined isosceles triangle
square with three optimal adjoined isosceles triangles

16 pointed star

≈ 13.77927647
equilateral triangle with three adjoined semicircles
regular hexagon

≈ 13.78342300
$\frac{24}{\sqrt{3}} \approx 13.85640646$
semicircle with adjoined right isosceles triangle

$$
\frac{2(2 \sqrt{2}+\pi)^{2}}{\pi+2} \approx 13.86385058
$$

super
$|x|^{6}+|y|^{6}=1$$\quad$ ellipse

15 pointed star

equilateral triangle with two adjoined semicircles

14 pointed star
semicircle with optimal adjoined rectangle
square with two equally, optimally rounded corners (radii are half the side length)
square with two optimal adjoined isosceles triangles

13 pointed star

$$
\frac{4(1+\pi)^{2}}{\pi+\sqrt{3}} \approx 14.07800126
$$

$$
\approx 14.18654408
$$

$$
8+2 \pi \approx 14.2831853071
$$

$$
8+2 \pi \approx 14.2831853071
$$

$\frac{100}{\sqrt{25+10 \sqrt{5}}} \approx 14.53085056$ ≈ 14.695335322
the x-axis, and $x= \pm a$, where $a \approx 0.5181167$
square with two adjoined semicircles

12 pointed star

$$
\approx 14.85125168
$$

≈ 14.93924249
ellipse, 2:1
square with three adjoined semicircles
rectangle, 2:1, with four adjoined semicircles
square with adjoined semicircle

$$
\frac{2(2+3 \pi)^{2}}{8+3 \pi} \approx 14.98160283
$$

$$
\frac{36 \pi^{2}}{8+5 \pi} \approx 14.98676855
$$

$$
\frac{2(6+\pi)^{2}}{8+\pi} \approx 15.00121550
$$

square with optimal adjoined isosceles triangle

square with single optimally rounded corner (radius is one half the side length)
square with four adjoined semicircles

11 pointed star
equilateral triangle with adjoined semicircle
square

circular sector, two radians (optimal circular sector)

10 pointed star

16
≈ 16.06491327
circular sector, $3 \pi / 4$ radians
quarter circular sector

$$
\frac{(8+3 \pi)^{2}}{6 \pi} \approx 16.10769443
$$

$$
\frac{4\left(2+\frac{\pi}{2}\right)^{2}}{\pi} \approx 16.23455083
$$

optimal parabolic chunk (2 by ~ 1.7685879; region bounded by $y=1$ and $y \approx 3.127903 x^{2}$)
parabolic chunk: region bounded by $y=$ x^{2} and $y=3$
parabolic chunk: region bounded by $y=$ x^{2} and $y=4$
rectangle, $3: 2$ sides
regular pentagon with adjoined semicircles
semicircle augmented by two semicircles, I

$$
\approx 16.48263518
$$

≈ 16.48509413

≈ 16.56740039

$$
\frac{50}{3}=16 . \overline{6}
$$

$$
\frac{50 \pi^{2}}{5 \pi+2 \sqrt{25+10 \sqrt{5}}} \approx 16.74415928
$$

$$
\frac{16}{3} \pi \approx 16.75516081
$$

parabolic chunk: region bounded by $y=$ x^{2} and $y=2$

parabolic chunk: region bounded by $y=$ x^{2} and $y=5$
semicircle
golden rectangle (rectangle with side ratio $1: \phi$ where $\phi=\frac{1}{2}(1+$ $\sqrt{5})$
rectangle with side ratio 1:1.63712909...
rectangle with side ratio 1:1.63712909... with adjoined semicircles

≈ 16.99181787
equilateral triangle with adjoined optimal rectangle

$$
4(6-\sqrt{3}) \approx 17.07179676
$$

9 pointed star
square with adjoined equilateral triangle
regular hexagon with adjoined semicircles
rectangle, 2:1
circular sector, one radian

18

$$
\frac{2(10+\pi)^{2}}{16+\pi} \approx 18.044627800654
$$

$$
\frac{4(4+\pi)^{2}}{8+\pi} \approx 18.31061221
$$

parabolic chunk: region bounded by $y=$ x^{2} and $y=10$
parabolic chunk: region bounded by $y=$ x^{2} and $y=1$

8 pointed star
regular septagon with adjoined semicircles
ellipse, 3:1
three-quarter circular sector
quarter circular sector with half-radius quarter circular sector removed

≈ 18.43547307
$64-4^{11 / 4} \approx 18.74516600$
≈ 18.94192830
≈ 18.95220996

$$
\frac{(4+3 \pi)^{2}}{3 \pi} \approx 19.12243068
$$

square with an adjoined semicircle on each side's middle third
isosceles right triangle with optimal adjoined rectangle ($1: \frac{\sqrt{2}}{2}$)
isosceles right triangle with adjoined square
square with square adjoined to middle-third of one side
circular sector, $\pi / 4$ radians
regular octagon with adjoined semicircles
parabolic chunk: region bounded by $y=$ x^{2} and $y=15$

$$
\frac{8(\pi+4)^{2}}{18+\pi} \approx 19.29933907
$$

$$
8+8 \sqrt{2} \approx 19.31370849
$$

$\frac{2(4+\sqrt{2})^{2}}{3} \approx 19.54247233$

$$
\frac{98}{5}=19.6
$$

$$
\frac{(8+\pi)^{2}}{2 \pi} \approx 19.756712684
$$

$$
\approx 19.81346029
$$

$$
\approx 20.00749094
$$

square with two equilateral triangles adjoined to one side
regular nonagon with adjoined semicircles
equilateral triangle

$$
\frac{36}{\sqrt{3}} \approx 20.78460969
$$

$$
\frac{200}{8+\sqrt{3}} \approx 20.55065309
$$

regular decagon with adjoined semicircles
two step unit staircase

$$
\approx 21.231897
$$

$$
\frac{64}{3}=21 . \overline{3}
$$

square with quartersized squares removed from each corner (aka order-2 Aztec diamond)
rectangle, 3:1

$$
\frac{64}{3}=21 . \overline{3}
$$

circular sector, $2 / 3$ radians

circular sector, 6 radians
parabolic chunk: region bounded by $y=$ x^{2} and $y=20$

7 pointed star
rectangle, 3:1, with one adjoined semicircle
regular 11-gon with adjoined semicircles
square with three equilateral triangles adjoined to one side
rectangle, 3:1, with two adjoined semicircles
regular 12-gon with adjoined semicircles

$$
\frac{64}{3}=21 . \overline{3}
$$

≈ 21.62680012

$$
\frac{2(14+\pi)^{2}}{24+\pi} \approx 21.65194964
$$

≈ 21.81573534

$$
\frac{300}{12+\sqrt{3}} \approx 21.84670041
$$

$\frac{4(6+\pi)^{2}}{12+\pi} \approx 22.076598718$
optimal "45 degree" trapezoid (base= 1, height $=\frac{1}{\sqrt{2}+1}$) (aka optimal truncated isosceles right triangle aka optimal rectangle with two adjoined isosceles right traingles)
regular 13-gon with adjoined semicircles
isosceles triangle, 2:1 sides, with adjoined semicircle
regular 14-gon with adjoined semicircles
square with squares adjoined to middle third of two sides
isosceles right triangle

$\frac{2(8+\pi)^{2}}{\pi+2 \sqrt{15}} \approx 22.80310635$

$$
\approx 23.21447316
$$

$$
\frac{256}{11}=23 . \overline{27}
$$

$2(2+\sqrt{2})^{2} \approx 23.31370849$
square with two adjoined isosceles right triangles

square with four adjoined equilateral triangles

$$
\frac{64}{1+\sqrt{3}} \approx 23.42562584
$$

≈ 23.59107664
joined semicircles
equilateral triangle with three adjoined squares
square with an adjoined equilateral triangles on each side's middle third
regular 16-gon with adjoined semicircles
three-step unit staircase
order-3 Aztec diamond

$$
\frac{256}{9+\sqrt{3}} \approx 23.85378196
$$

parabolic chunk: region bounded by $y=$ x^{2} and $y=30$
regular 17-gon with adjoined semicircles

rectangle, 4:1
circular sector, $1 / 2$ radian
regular 20-gon with adjoined semicircles
square with two equilateral triangles adjoined to two sides
semicircle augmented with two semicircles, II
rectangle, 4:1, with one adjoined semicircle

$$
8 \pi \approx 25.13274122
$$

$$
\frac{144}{4+\sqrt{3}} \approx 25.1218987469293
$$

$$
\frac{2(18+\pi)^{2}}{32+\pi} \approx 25.43805821
$$

four-step unit staircase
order-4 Aztec diamond
regular pentagon with adjoined equilateral triangles
isosceles triangle, 2:1 sides
right triangle, 30-60-90

$$
12+8 \sqrt{3} \approx 25.85640646
$$

$$
\frac{4(8+\pi)^{2}}{16+\pi} \approx 25.94038836893
$$

parabolic chunk: region bounded by $y=$ x^{2} and $y=40$
order-5 Aztec diamond

≈ 26.48326571

$$
\frac{80}{3}=26 . \overline{6}
$$

regular 30-gon with adjoined semicircles

square with squares adjoined to the middle thirds of three sides
square with three adjoined right isosceles triangles
right triangle, 2:1 legs
order-6 Aztec diamond
square with one-third diameter semicircles removed from each side
semicircle with halfdiameter semicircle removed

$$
\frac{2(3 \pi+2)^{2}}{3 \pi} \approx 27.69838228
$$

6 pointed star (Koch curve, stage 2; regular hexagon with adjoined equilateral triangles)

order-7 Aztec diamond
regular 50-gon with adjoined semicircles
parabolic chunk: region bounded by $y=$ x^{2} and $y=50$

5-square cross
rectangle, 5:1
circular sector, $2 / 5$ radian
regular septagon with adjoined equilateral triangles
rectangle, 5:1, with two adjoined semicircles

$$
\frac{144}{5}=28.8
$$

$\frac{144}{5}=28.8$
$\frac{144}{5}=28.8$
≈ 29.40734584
regular octagon with adjoined equilateral triangles

5-square cross with four adjoined semicircles
square with four adjoined isosceles right triangles

25-square diamond
regular nonagon with adjoined equilateral triangles
isosceles triangle, 20° apex angle

≈ 32.21915602

$$
\frac{98}{3}=32 . \overline{6}
$$

circular sector, $1 / 3$ radian
isosceles triangle, 3:1 sides
regular decagon with adjoined equilateral triangles
rectangle, 6:1, with two adjoined semicircles
square with two adjoined equilateral triangles on three sides
regular 11-gon with adjoined equilateral triangles
square with two adjoined equilateral triangles on each side
regular 12-gon with adjoined equilateral triangles

$$
\frac{98}{3}=32 . \overline{6}
$$

$$
\frac{196}{\sqrt{35}} \approx 33.13004679
$$

$$
\frac{(24+2 \pi)^{2}}{24+\pi} \approx 33.78841190
$$

$$
\frac{450}{8+3 \sqrt{3}} \approx 34.10084891
$$

$$
\approx 34.25632027
$$

$$
\frac{128}{2+\sqrt{3}} \approx 34.29749663
$$

region bounded by $y=$ $x^{2}, y=0, x=1$

regular 20-gon with adjoined equilateral triangles

$$
\approx 35.13843876
$$

$$
\frac{256}{7} \approx 36.57142857
$$

circular sector, $2 / 7$ radian
three-quarter circular sector with half-radius three-quarter circular sector removed
parabolic chunk: region bounded by $y=$

$$
\approx 36.99450714
$$ x^{2} and $y=100$

regular hexagon with adjoined squares

$$
\frac{256}{7} \approx 36.57142857
$$

$$
\frac{(9 \pi+4)^{2}}{9 \pi} \approx 36.84021812
$$

$$
\approx 37.682848
$$

rectangle, 8:1 \square

$$
\frac{81}{2}=40.5
$$

circular sector, $1 / 4$ radian
square with three equilateral triangles adjoined to each side

$$
\frac{81}{2}=40.5
$$

$$
\frac{192}{3+\sqrt{3}}=40.57437416
$$

$\frac{324}{\sqrt{63}} \approx 40.82016308$
regular septagon with adjoined squares
regular 30-gon with adjoined equilateral triangles

Koch curve, stage 3

≈ 41.471095
≈ 42.68026645
$\frac{384}{5 \sqrt{3}} \approx 44.34050067$
$\frac{400}{9}=44 . \overline{4}$

$$
\frac{400}{9}=44 . \overline{4}
$$

circular sector, $2 / 9$ radian
regular octagon with adjoined squares
regular 50-gon with adjoined equilateral triangles

5 pointed star
regular nonagon with adjoined squares

$$
20 \sqrt{10-2 \sqrt{5}} \approx 47.02282018
$$

$$
\frac{400}{9}=44 . \overline{4}
$$

$$
\approx 48.017945
$$

rectangle, 10:1

$$
\frac{242}{5}=48.4
$$

circular sector, $1 / 5$ radian
semicircle augmented by two semicircles, III (arbelos)

$$
\approx 44.900282
$$

≈ 45.38596197

region bounded by $y=$ $x^{3}, y=0$ and $x=1$

regular decagon with adjoined squares
rectangle, 11:1

$$
\approx 50.864099
$$

$$
\frac{576}{11}=52 . \overline{36}
$$

circular sector, $2 / 11$ radian

$$
\frac{576}{11}=52 . \overline{36}
$$

regular 11-gon with adjoined squares

isosceles triangle, 10° apex angle
arbelos, one-third and two-thirds arcs

arbelos, one-quarter and three-quarter arcs

regular 20-gon with adjoined squares

Koch curve, stage 4

$\frac{6144}{47 \sqrt{3}} \approx 75.47319263$
$25 \pi \approx 78.53981634$
≈ 79.91496779 joined squares
region bounded by $y=$ $x^{4}, y=0$ and $x=1$
arbelos, one-sixth and five-sixths arcs

≈ 80.73353354
$\frac{144 \pi}{5} \approx 90.47786842$
≈ 99.97197122
$\frac{98304}{431 \sqrt{3}} \approx 131.68408553$
arbelos, one-tenth and nine-tenths arcs

General formulas

Rectangles

For a rectangle with aspect ratio m (i.e., the ratio of non-equal length sides is $m: 1$), the ratio is

$$
\frac{(2 m+2)^{2}}{m}=4 m+8+\frac{4}{m} .
$$

Right triangles

For a right triangle with non-right angle θ, the ratio is

$$
\frac{2(1+\sin \theta+\cos \theta)^{2}}{\sin \theta \cos \theta}
$$

Isosceles triangles

For an isosceles triangle in which the sides with the same length are l times the length of the other side, the ratio is

$$
\frac{4(2 l+1)^{2}}{\sqrt{4 l^{2}-1}} .
$$

For an isosceles triangle with an "apex" angle of θ, the ratio is $4 \tan \frac{\theta}{2}\left(1+\csc \frac{\theta}{2}\right)^{2}$.

Rectangle with adjoined semicircles

For a rectangle with aspect ratio m with semicircles adjoined to the " 1 " sides, the ratio is

$$
\frac{(4 m+2 \pi)^{2}}{4 m+\pi} .
$$

For a value of $m \approx 1.637129085772$.., this is equal to the ratio for the $m: 1$ rectangle. If $m>1.637129085772 .$. , adjoining the semicircles decreases the ratio, while for smaller m, adjoining semicircles increases the ratio.

Regular polygons

For a regular polygon with n sides, the ratio is $4 n \tan \frac{\pi}{n}$.

Circular sectors

For a circular sector with angle θ, the ratio is

$$
\frac{2(2+\theta)^{2}}{\theta}
$$

This has a minimum of 16 at $\theta=2$.

Polygonal Stars

For an n-sided polygonal star with equal side lengths, like the one shown, with inner radius r and outer radius R, the area is $\frac{1}{2} n r R \sin \frac{2 \pi}{n}$ and the perimeter is $n \sqrt{r^{2}+R^{2}-2 r R \cos \frac{2 \pi}{n}}$ so the isoperimetric ratio is

$$
\frac{2 n\left(r^{2}+R^{2}-2 r R \cos \frac{2 \pi}{n}\right)}{r R \sin \frac{2 \pi}{n}} .
$$

A special case of this are stars based on a regular polygon with $m \geq 5$ sides by extending the sides of the polygon until they intersect. In this case, we have $n=2 m$ and $R=r\left(\cos \frac{\pi}{m}+\sin \frac{\pi}{m} \tan \frac{2 \pi}{m}\right)$. In the table, such stars are called n-pointed stars.

Regular polygons with adjoined equilateral triangles

If we adjoin equilateral triangles to the sides of a regular n-gon, the resulting figure has an isoperimetric ratio of

$$
\frac{16 n}{\sqrt{3}+\cot \frac{\pi}{n}} .
$$

As n tends to infinity, this approaches $16 \pi=50.265482 \ldots$ from below.

Regular polygons with adjoined squares

If we adjoin squares to the sides of a regular n-gon, the resulting figure has an isoperimetric ratio of

$$
\frac{36 n}{4+\cot \frac{\pi}{n}}
$$

As n tends to infinity, this approaches $36 \pi=113.097 \ldots$ from below.

Regular polygons with adjoined semicircles

If we adjoin semicircles to the sides of a regular n-gon, the resulting figure has an isoperimetric ratio of

$$
\frac{\pi^{2} n}{\frac{\pi}{2}+\cot \frac{\pi}{n}}
$$

As n tends to infinity, this approaches $\pi^{3} \approx 31.0063 \ldots$ from below.
n-square diamond/cross
The ratio is

$$
\frac{(8 m+12)^{2}}{2 m^{2}+6 m+5}
$$

where m is the order of the diamond ($m=0$ is the 5 -square cross, $m=1$ is the 13 -square diamond, etc.) This approaches 32 from below as m tends to infinity.

Koch curve

The ratio is

$$
\frac{180\left(\frac{4}{3}\right)^{2 n}}{\sqrt{3}\left(8-3\left(\frac{4}{9}\right)^{n}\right)}
$$

for the n-th iteration (i.e., $n=0$ is an equilateral triangle, $n=1$ is a six-pointed star, etc.)

Arbelos

The area is $\frac{\pi}{4} q(1-q)$ and the perimeter is π, so the ratio is

$$
\frac{4 \pi}{q(1-q)}
$$

Parabolic chunk

For regions bounded by a parabola and a line perpendicular to the parabola's axis, the ratio is

$$
\frac{\left(2+\sqrt{1+4 a^{2}}+\frac{1}{2 a} \log \left(2 a+\sqrt{1+4 a^{2}}\right)\right)^{2}}{\frac{4}{3} a}
$$

where the parabola is $y=a x^{2}$ and the bounding line is $y=a$ (we can express all parabolic chunks in this form; note, for instance, that the shape bounded by $y=x^{2}$ and $y=b$ is the same as the shape bounded by $y=\sqrt{b} x^{2}$ and $y=\sqrt{b}$).

Aztec diamond

For an n-th order Aztec diamond, which looks like four copies of a set of n steps (of unit width and height) stuck together, the area is $2 n(n+1)$ and the perimeter is $8 n$, so the ratio is

$$
\frac{P^{2}}{A}=\frac{64 n^{2}}{2 n(n+1)}=\frac{32 n}{n+1} .
$$

Incidentally, this is the same ratio as for a set of n unit steps themselves, as the perimeter is $4 n$ and the area is $\frac{1}{2} n(n+1)$ which yields

$$
\frac{P^{2}}{A}=\frac{(4 n)^{2}}{\frac{1}{2} n(n+1)}=\frac{32 n}{n+1} .
$$

This is because the "stair" part and the non-stair part have the same length, so putting four of them together exactly doubles the perimeter while quadrupling the area (unlike what happens when you put, say, four quartercircles together to make a circle).

