Homework 8 - Math 300D - Autumn 2014 - Dr. Matthew Conroy
Relevant reading: Velleman 6.1, 6.2, 7.1, 7.2

1. Find the smallest $k \in \mathbb{Z}$ such that $n!>n^{4}$ for all $n \geq k$. Prove the result using induction.
2. Use induction to prove that

$$
15 \mid 3^{4 n}+2^{12 n+1}-8
$$

for all n in $\mathbb{Z}_{\geq 1}$.
3. Let n be a positive odd integer.

Use induction to prove that the sum of all positive odd integers less than or equal to n is $\left(\frac{n+1}{2}\right)^{2}$.
4. If A and B are finite sets, and $A \cap B=\varnothing$, then $A \cup B$ is finite. In fact, if $|A|=n$ and $|B|=m$ and $A \cap B=\varnothing$, then $|A \cup B|=m+n$.
5. Let A be a finite set. Prove that if $f: A \rightarrow A$ is injective, then f is bijective.
6. Suppose A is an infinite set and B is a finite subset of A. Prove that $A \backslash B$ is infinite.
7. Prove that, if $A \sim B$, then $\mathcal{P}(A) \sim \mathcal{P}(B)$.

