Homework 8 - Math 300D - Autumn 2014 - Dr. Matthew Conroy

Relevant reading: Velleman 6.1, 6.2, 7.1, 7.2

- 1. Find the smallest $k \in \mathbb{Z}$ such that $n! > n^4$ for all $n \ge k$. Prove the result using induction.
- 2. Use induction to prove that

$$15 \mid 3^{4n} + 2^{12n+1} - 8$$

for all n in $\mathbb{Z}_{>1}$.

3. Let n be a positive odd integer.

Use induction to prove that the sum of all positive odd integers less than or equal to n is $\left(\frac{n+1}{2}\right)^2$.

- 4. If A and B are finite sets, and $A \cap B = \emptyset$, then $A \cup B$ is finite. In fact, if |A| = n and |B| = m and $A \cap B = \emptyset$, then $|A \cup B| = m + n$.
- 5. Let *A* be a finite set. Prove that if $f: A \to A$ is injective, then *f* is bijective.
- 6. Suppose *A* is an infinite set and *B* is a finite subset of *A*. Prove that $A \setminus B$ is infinite.
- 7. Prove that, if $A \sim B$, then $\mathcal{P}(A) \sim \mathcal{P}(B)$.