Math 300 D - Autumn 2014 - Homework 6
Problems on functions
Relevant reading: Velleman, 4.6, 5.1, 5.2, 5.3

1. Suppose $f: A \rightarrow C$ and $g: B \rightarrow C$. Prove that if $A \cap B=\varnothing$, then $f \cup g:(A \cup B) \rightarrow C$.
2. Suppose R is a relation on a set A. Is it possible that R is both a function and an equivalence relation? Answer this question by completing and proving the statement " R is a function and an equivalence relation iff ...".
3. Let S and T be sets and $f: S \rightarrow T$. Define a relation R on S by

$$
(a, b) \in R \Leftrightarrow f(a)=f(b)
$$

Prove that R is an equivalence relation.
4. Define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)=\left\{\begin{array}{cl}
2 x & \text { if } x \in \mathbb{Q} \\
-3 x & \text { if } x \notin \mathbb{Q}
\end{array}\right.
$$

Is f one-to-one? Is f onto? Is f^{-1} a function? State and prove a theorem.
5. Let A, B and C be sets. Let $f: A \rightarrow B$ and $g: B \rightarrow C$.
(a) Prove that if f and g are onto, then $g \circ f$ is onto.
(b) Prove that if $g \circ f$ is onto, then g is onto.
(c) If $g \circ f$ is onto, is f necessarily onto? Prove your answer.
6. Let A be the set of subsets of \mathbb{R}. Define a function $f: \mathbb{R} \rightarrow A$ by

$$
f(x)=\{z \in \mathbb{R}:|z|>x\}
$$

Is f one-to-one? Is f onto?
7. Let A and B be sets, and $f: A \rightarrow B$. Suppose f is one-to-one. Prove that there exists a subset $C \subseteq B$ such that $f^{-1}: C \rightarrow A$.

