Homework 4 - Math 300 D Autumn 2014 - Dr. Matthew Conroy Relevant readings: Velleman, sections 3.3, 3.4, 3.5, and 3.6.

1. Let a, b, c and d be integers, with $b d \neq 0$. Then $a \sqrt{b}+c \sqrt{d}$ is an algebraic number.
2. Let a and b be integers. Then $a^{2} b+a+b$ is even if and only if a and b are both even.
3. (a) Let n be an integer. Then the remainder when n^{2} is divided by 4 is 0 or 1 .
(b) The numbers in the set $\{99,999,9999, \ldots\}$ cannot be written as the sum of two squared integers, but at least one can be expressed as the sum of three squared integers.
4. Let A and B be sets. Then $A \subseteq B$ iff $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
5. Let A and B be sets. Then $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$, with equality if and only if $A \subseteq B$ or $B \subseteq A$.
6. Suppose \mathcal{R} and \mathcal{S} are families of sets. If $\mathcal{R} \subseteq \mathcal{S}$, then $\cup \mathcal{R} \subseteq \cup \mathcal{S}$.
7. Suppose \mathcal{R} and \mathcal{S} are families of sets, and $\mathcal{R} \neq \varnothing$ and $\mathcal{S} \neq \varnothing$. If $\mathcal{R} \subseteq \mathcal{S}$, then $\cap \mathcal{S} \subseteq \cap \mathcal{R}$.
8. Suppose \mathcal{R} and \mathcal{S} are families of sets. Then $(\cup \mathcal{R}) \backslash(\cup \mathcal{S}) \subseteq \cup(\mathcal{R} \backslash \mathcal{S})$.
