Homework 3 - Math 300 D - Autumn 2014 - Dr. Matthew Conroy
Relevant readings: Velleman, sections 3.1, and 3.2.

1. Let a and b be negative real numbers. Prove that if $a<b$ then $a^{2}>b^{2}$.
2. Let a, b and c be positive integers. Prove that if $a \mid b$ and $b \mid c$, then $a \mid c$.
3. Let a, b, and c be integers, $c \neq 0$. If $a c \mid b c$, then $a \mid b$.
4. One fact we use all the time when writing proofs is that, if $A \rightarrow B$ and $B \rightarrow C$, then $A \rightarrow C$. Prove this is valid by showing that

$$
((A \rightarrow B) \wedge(B \rightarrow C)) \rightarrow(A \rightarrow C)
$$

is a tautology. Do this by using applicable laws, or a truth table, to show that this is equivalent to a statement which we know is a tautology.
5. Now that we know the irrational numbers exist, we should prove a few facts about them. You can use the following useful facts in your proofs. You do not have to prove them.
Fact 1: The sum of rational numbers $x=a / b$ and $y=c / d$ is $(a d+b c) /(b d)$.
Fact 2: If a is rational, then -a is rational; if a is irrational, then -a is irrational.
Prove the following theorems:
(a) The sum of two rational numbers is a rational number.
(b) The sum of a rational number and an irrational number is an irrational number.
(c) The product of an irrational number and a non-zero rational number is an irrational number.
(d) The sum of two irrational numbers may be a rational number.

