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Abstract. We prove that a smooth complete intersection of two quadrics of dimension at
least 2 over a number field has index dividing 2, i.e., that it possesses a rational 0-cycle of
degree 2.

1. Introduction

The index of a variety over a field k is the greatest common divisor of the degrees [k(x) : k]
ranging over the residue fields k(x) of the (zero-dimensional) closed points x of the variety.
Equivalently, the index is the smallest positive degree of a k-rational 0-cycle.

Let X ⊂ Pnk be a smooth complete intersection of two quadrics over a field k of character-
istic not equal to 2. Then the index of X necessarily divides 4, because intersecting with a
plane yields a 0-cycle of degree 4. In general, this is the best possible bound. Indeed, there
are examples with index 4 over local and global fields when n = 3 [LT58, Theorem 7] and
over fields of characteristic 0 when n = 4, as we show in Theorem 7.6.

Our main result is the following sharp bound on the index when n ≥ 4 and k is a number
field or a local field.

Theorem 1.1. Let X be a smooth complete intersection of two quadrics in Pnk with n ≥ 4
and assume that k is either a number field or a local field of characteristic not equal to 2.
Then the index of X divides 2.

This result allows us to complete the list of integers which occur as the index of a del
Pezzo surface over a local field or a number field (See Section 7.4). It also allows us to deduce
nontrivial index bounds for other interesting classes of varieties. If C/k is a genus 2 curve
over a number field with a rational Weierstrass point, then it follows from the result above
that any torsor of period 2 under the Jacobian of C has index dividing 8 (see Theorem 7.7)
and the corresponding Kummer variety, which is an intersection of 3 quadrics in P5, has
index dividing 4. Again, these results do not hold over arbitrary fields (see Remark 7.8).

Theorems of Amer, Brumer and Springer [Ame76,Bru78,Spr56] show that, for X as above,
index 1 is equivalent to the existence of a k-rational point. Analogously one can ask if index
2 implies the existence of a closed point of degree 2. Colliot-Thélène has recently sketched
an argument that if X is a smooth complete intersections of two quadrics in P4 over a field
of characteristic 0 and X has index 2, then X has a closed point of degree 14, 6 or 2. In this
direction we prove the following.

Theorem 1.2. Let n ≥ 4 and let X ⊂ Pnk be a smooth complete intersection of two quadrics
over a field k of characteristic not equal to 2. In any of the following cases there is a quadratic
extension K/k such that X(K) 6= ∅:

(1) k is a local field;
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(2) k is a number field and Schinzel’s hypothesis holds or k is a global field and Brauer-
Manin is the only obstruction to the Hasse principle for del Pezzo surfaces of degree
4 over quadratic extensions of k, and one of the following holds:
(a) n ≥ 5;
(b) n = 4, and for any quadratic field extension L/k and rank 4 quadric Q ⊂ P4

L

such that X = ∩σ∈Gal(L/k)σ(Q) and NormL/k (disc(Q)) ∈ k×2, we have that Q
fails to have smooth local points at an even number of places of L.

When n = 4, there are exactly five rank 4 quadrics in the pencil of quadrics containing X,
so the second condition in case (2b) holds generically and can be easily checked. In particular,
it is satisfied whenever there is no pair of Galois conjugate rank 4 quadrics in the pencil or
if X has points everywhere locally. For further details of the cases not covered in case (2b)
see Remark 6.2 and Section 7.1. Even assuming standard conjectures, our theorem does
not rule out the possibility that there exists a smooth complete intersection of two quadrics
in P4

k over a global field k which does not possess a point over any quadratic extension.
Nevertheless, based on our results and extensive numerical computations we expect that the
following question has positive answer.

Question 1.3. Does every complete intersection of 2 quadrics X ⊂ P4
k over a number field

k possess a K-rational point for some quadratic extension K/k?

1.1. Obstructions to index 1 over local and global fields. Over local and global fields,
necessary and sufficient conditions for an intersection of two quadrics to have index 1 (equiv-
alently, to have a rational point) have been well studied. When k is a local field and n ≤ 7
there are examples with X(k) = ∅ (which necessarily have index greater than 1), while for
n ≥ 8 and k a p-adic field, X(k) 6= ∅ [Dem56]. For k a number field, recent work of Heath-
Brown [HB18], building on [CTSSD87a, CTSSD87b], shows that the Hasse principle holds
when n ≥ 7. Hence for n ≥ 8 the only obstruction to the existence of a rational point is at
the archimedean primes. Heath-Brown’s result gives positive evidence for the conjecture of
Colliot-Thélène, Sansuc and Swinnerton-Dyer that X satisfies the Hasse principle as soon
as n ≥ 5 [CTSSD87b, §16].

When n = 4 (in which case X is a del Pezzo surface of degree 4), the Hasse principle
can fail [BSD75]. Colliot-Thélène and Sansuc have conjectured that this failure is always
explained by the Brauer-Manin obstruction [CTS80]. In fact, this conjecture for n = 4
implies the Hasse principle for n ≥ 5. Some cases of the n = 4 conjecture have been proven
conditionally on Schinzel’s hypothesis and the finiteness of Tate-Shafarevich groups of elliptic
curves by Wittenberg [Wit07], thereby giving a conditional proof of the Hasse principle when
n ≥ 5.

1.2. Outline of the proof of Theorems 1.1 and 1.2. Using an argument of Wittenberg
[Wit07] (which we review in Section 6.2), we can reduce to the case n = 4, when X is a del
Pezzo surface of degree 4. In Section 4 we prove that any del Pezzo surface of degree 4 over
a local field of characteristic not equal to 2 must have points over some quadratic extension,
which proves Theorem 1.2(1). Over a global field, this shows that after base change to a
suitable quadratic extension X becomes everywhere locally soluble. While it is also true that
the Brauer group of X becomes constant after a suitable quadratic extension, one cannot
deduce Theorem 1.2(2) directly from case (1) in this way because, in general, there is no
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quadratic extension K/k for which XK is locally soluble and the Brauer group of XK is
trivial modulo constant algebras (See Example 6.4).

To obtain our results when k is a global field we study the arithmetic of the symmetric
square of X, which is birational to the variety G parameterizing lines on the quadrics in
the pencil of quadrics in P4

k containing X (see Section 3 for more details). In Section 5, we
develop the main tools for studying the arithmetic of G over a global field. We determine
explicit central simple algberas over the function field of G representing the Brauer group of G
modulo constant algebras and then proceed to develop techniques to calculate the evaluation
maps of these central simple algebras at several types of local points.

These results are used in Section 6 to show further that there is always an adelic 0-cycle of
degree 1 on G orthogonal to the Brauer group and, under the hypothesis of (2b), that there
is an adelic point on G orthogonal to the Brauer group. This is perhaps surprising given
that (even assuming (2b)) the Brauer group of G can contain nonconstant algebras and in
general can obstruct weak approximation on G (see Corollary 6.3 and Example 6.4).

The variety of lines on a smooth quadric 3-fold is a Severi-Brauer 3-fold, so the arithmetic
of G is amenable to the fibration method, as first observed in [CTS82]. Results of [CTSD94]
show that, in the number field case, the vanishing of the Brauer-Manin obstruction on G
implies the existence of a 0-cycle of degree 1 on G and, conditionally on Schinzel’s hypothesis,
a k-rational point on G. This yields a 0-cycle of degree 2 on X and a quadratic point on X if
we assume Schinzel’s hypothesis. One can ask whether index(G) = 1 always implies that G
has a rational point (when k is a global field this is equivalent to Question 1.3). Our results
do not answer this question, but they do show that a stronger condition on 0-cycles does
not hold. Namely, G can contain 0-cycles of degree 1 that are not rationally equivalent to a
rational point (See Remark 7.4(1)).

To deduce the results in case (2) of Theorem 1.2 assuming that Brauer-Manin is the
only obstruction to the Hasse principle for del Pezzo surfaces of degree 4 (without assuming
Schinzel), we make use of Proposition 2.6 below, which may be of interest in its own right.
It relates the Brauer-Manin obstruction on the symmetric square of a variety to the Brauer-
Manin obstruction over quadratic extensions. In a similar spirit, we answer a question posed
in [CTP00] concerning Brauer-Manin obstructions over extensions (see Remarks 7.4(2)) and
give an example of a del Pezzo surface of degree 4 defined over Q which, for any finite
extension k/Q, has a Brauer-Manin obstruction to the existence of k-points if and only if k
is of odd degree over Q (See Section 7.2).

Notation. For a field k we use k to denote a separable closure and use Gk := Gal(k/k) to
denote the absolute Galois group of k. For k-schemes Y → Spec(k) and S → Spec(k) we
define YS := Y ×Spec(k) S and Y = Y ×Spec k Spec(k). When S = Spec(A) is the spectrum of
a k-algebra A, we use the notation YA := YSpec(A). A quadratic point on Y is a morphism of
k-schemes Spec(K)→ Y , where K is an étale k-algebra of degree 2. In particular, K = k×k
is allowed in which case ZK ' Z × Z for any k-subscheme Z ⊂ Y .

The Brauer group of a scheme Y is the étale cohomology group Br(Y ) := H2
ét(Y,Gm); when

Y = Spec(R) is the spectrum of a ring R we define Br(R) := Br(SpecR). If sY : Y → Spec(k)
is a k-scheme, then Br0(Y ) ⊂ Br(Y ) is the image of the pullback map s∗Y : Br(k)→ Br(Y ).
An element β ∈ Br(Y ) may be evaluated at a k-point y : Spec(k) → Y by pulling back
along y to obtain β(y) := y∗β ∈ Br(k). For a finite locally free morphism of schemes Y → Z
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we use CorY/Z : Br(Y ) → Br(Z) to denote the corestriction map. When Y = Spec(A) and
Z = Spec(B) are affine schemes this is also denoted by CorA/B : Br(A)→ Br(B).

If Y is an integral k-scheme, k(Y ) denotes its function field. More generally, if Y is a
finite union of integral k-schemes Yi, then k(Y ) :=

∏
k(Yi) is the ring of global sections

of the sheaf of total quotient rings. In particular, if a finite dimensional étale k-algebra A
decomposes as a product A '

∏
kj of finite field extensions of k, then k(YA) '

∏
k(Ykj),

and Cork(YA)/k(Y ) =
∑

Cork(Ykj )/k(Y ).

A variety over k is a separated scheme of finite type over k. A variety is called nice if
it is smooth, projective and geometrically integral and is called split if it contains an open
subscheme that is geometrically integral.

For a global field k, we use Ωk to denote the set of primes of k. For a prime v ∈ Ωk we
use kv to denote the corresponding completion and for a k-scheme Y we set Yv := Ykv . We
use Ak to denote the adele ring of k. For a subgroup B ⊂ Br(Y ), Y (Ak)

B ⊂ Y (Ak) denotes
the set of adelic points orthogonal to B, i.e.,

Y (Ak)
B = {(yv) ∈ Y (Ak) : ∀ β ∈ B ,

∑
v∈Ωk

invv(β(yv)) = 0 } .

We define Y (Ak)
Br := Y (Ak)

Br(Y ).
If Q is a quadratic form on a vector space V over a field F then (by definition) the mapping

BQ : V × V → F given by BQ(x, y) = Q(x + y) − Q(x) − Q(y) is bilinear. We say that
Q is regular if the set {x ∈ V ; ∀ y ∈ BQ(x, y) = 0 and Q(x) = 0} contains only the zero
vector in V . (If the characteristic of F is not 2, then the condition Q(x) = 0 is superfluous.)
Then Q is regular if and only if the quadric Q in P(V ) defined by the vanishing of Q is
regular (see [EKM08, Proposition 22.1]). We define the rank r(Q) of Q to be the largest
integer m such that there is a subspace W ⊂ V of dimension m such that the restriction of
Q to W is geometrically regular, i.e., such that the intersection of Q with the linear space
corresponding to W is smooth. The rank of a quadric in Pn is defined to be the rank of any
quadratic form defining it.
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2. Brauer-Manin obstructions over extensions

In this section, we prove some general results relating the Brauer-Manin obstruction on a
nice variety Y to the Brauer-Manin obstruction over an extension. Moreover, for quadratic
extensions, we relate the Brauer-Manin obstruction on (a desingularization of) the symmetric
square to the Brauer-Manin obstruction over quadratic extensions.

Lemma 2.1. Let Y/k be a nice variety over a global field k, let K/k be a finite extension,
and let B be a subset of Br(YK). Then Y (Ak)

CorK/k(B) ⊂ Y (AK)B. In particular,

(1) if Y (Ak)
Br 6= ∅, then YK(AK)Br 6= ∅, and

(2) for any d | [K : k], Y (Ak) ⊂ YK(AK)ResK/k Br(Y )[d].

Proof. By [CTS21, Prop. 3.8.1], for any α ∈ Br(YK) and for any local point Pv ∈ Y (kv), we
have (CorYK/Y (α))(Pv) = CorKv/kv(α(Pv)), where Kv = K ⊗k kv. Thus, for (Pv) ∈ Y (Ak),∑

v∈Ωk

invv
(
CorYK/Y (α)(Pv)

)
=
∑
v∈Ωk

invv
(
CorKv/kv(α(Pv))

)
=
∑
v∈Ωk

∑
w∈ΩK ,w|v

invw(α(Pv))

(where the last equality follows from the equality of maps invw = invv ◦CorKw/kv for any

place w|v), and so Y (Ak)
CorK/k(α) ⊂ Y (AK)α. The general statement follows by considering

the intersection of Y (AK)α for all α ∈ B.
It remains to prove statements (1) and (2). The first follows from taking B = Br(YK)

and observing that Y (Ak)
Br(Y ) ⊂ Y (Ak)

CorK/k(Br(YK)), and the second follows from taking
B = ResK/k Br(Y )[d] and using that CorK/k ◦ResK/k = [K : k]. �

Remark 2.2. Yang Cao has given an alternative proof of Lemma 2.1(1) which also yields a
similar statement for the étale-Brauer obstruction. This will appear in forthcoming work of
Yang Cao and Yongqi Liang.

Lemma 2.3. Let Y be a nice variety over a global field k. Assume:

(1) Pic(Y ) is finitely generated and torsion free,
(2) Br(Y ) is finite, and
(3) Br(Y )→ Br(Y )Gk is surjective.

Then there is a finite Galois extension k1/k such that for all extensions K/k linearly disjoint
from k1 the map ResK/k : Br(Y )/Br0(Y )→ Br(YK)/Br0(YK) is surjective.

Proof. Assumption (1) implies that H1(k,Pic(Y )) ' H1(k0/k,Pic(Y )) for some finite Ga-
lois extension k0/k. By assumption (2) there is a finite Galois extension k1/k0 such that
Resk/k1 : Br(Yk1) → Br(Y ) is surjective. Now suppose K/k is linearly disjoint from k1. In

particular, K is linearly disjoint from k0, so ResK/k : Br1(Y )/Br0(Y ) ' H1(k,Pic(Y )) →
H1(K,Pic(Y )) ' Br1(YK)/Br0(YK) is an isomorphism. So it will suffice to show that Br(Y )
and Br(YK) have the same image in Br(Y ). Since Br(Yk1)→ Br(Y ) is surjective, the image
of Br(YK) → Br(Y ) is contained in Br(Y )GK ∩ Br(Y )Gk1 , which is equal to Br(Y )Gk , since
k1 and K are linearly disjoint. Thus, by assumption (3), Br(Y ) and Br(YK) have the same
image in Br(Y ). �

From Lemmas 2.1(2) and 2.3, we can immediately deduce the following corollary.
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Corollary 2.4. If Y is locally soluble and Br(Y )/Br0(Y ) is generated by the image of
Br(Y )[d], then for any extension K/k of degree d, YK(AK)ResK/k(Br(Y )) 6= ∅. Moreover, if
Y satisfies the conditions of Lemma 2.3, then there is a finite extension k1/k such that for
any degree d extension K/k which is linearly disjoint from k1 we have YK(AK)Br 6= ∅. �

Remark 2.5. If Y is a locally soluble del Pezzo surface of degree 4 the corollary applies
with d = 2. This gives a proof of the n = 4 case of Theorem 1.2(2) under the additional
hypothesis of local solubility. Note that local solubility is used here in two distinct ways.
First it ensures that Br(Y )/Br0(Y ) is generated by the image of Br(Y )[2] (which is not the
case in general even though Br(Y )/Br0(Y ) is 2-torsion). Second, it implies that the canonical
maps Br(k)→ Br0(Y ) are isomorphisms, locally and globally. This is used implicitly in the
proof of Lemma 2.1. In general, Br(k)→ Br0(Y ) need not be injective (see Lemma 5.8 for a
description of the kernel when Y is a del Pezzo surface of degree 4) and so ResK/k does not
necessarily annihilate [K : k]-torsion elements of Br0(Y ). Consequently, the exact sequence

0→ Br(k)→
⊕

Br(kv)→ Q/Z→ 0

of global class field theory has no analogue for Br0(Y ).

The following proposition relates the Brauer-Manin obstruction over quadratic extensions
to the Brauer-Manin obstruction on the symmetric square. Note that while the symmetric
square is singular if Y has dimension at least 2, there exist smooth projective models over
any field, e.g., Hilb2(Y ) [Che98, Theorem 3.0.1 and equation (0.2.1)].

Proposition 2.6. Let Y be a nice variety of dimension at least 2 over a field k and let Y (2)

be a smooth projective model of the symmetric square of Y over k.

(1) There is an injective map

Cor ◦π∗1 :
Br(Y )

Br0(Y )
↪→ Br(Y (2))

Br0(Y (2))
,

where the map π∗1 : Br(Y )→ Br(Y 2) is induced by projection onto the first factor and
the map Cor: Br(Y 2)→ Br(Y (2)) is the corestriction map corresponding to the field
extension k(Y (2)) = k(Sym2(Y )) ↪→ k(Y 2) induced by the canonical rational map
Y 2 99K Sym2(Y ).

(2) Let α ∈ Br(Y ) and β = Cor ◦π∗1(α) ∈ Br(Y (2)). For any y ∈ Y (2) that corresponds to
a quadratic point ỹ : Spec(K) → Y for some étale k(y)-algebra K of degree 2 over
k(y), we have β(y) = CorK/k(y) (α(ỹ)).

(3) Suppose k is a global field of characteristic not equal to 2 and let B ⊂ Br(Y (2))/Br0(Y (2))
denote the image of the map in (1). If there exists a quadratic extension K/k such
that YK(AK)Br(YK) 6= ∅, then Y (2)(Ak)

B 6= ∅.
(4) Suppose k is a global field of characteristic not equal to 2. Let B ⊂ Br(Y (2))/Br0(Y (2))

denote the image of the map in (1). Suppose that Y (2)(Ak)
B 6= ∅ and that Y satisfies

the hypotheses of Lemma 2.3. Then there exists a finite set S ⊂ Ωk, degree 2 étale
kv-algebras Kw/kv for v ∈ S and a finite extension k1/k such that for any quadratic
extension K/k that is linearly disjoint from k1 and such that K ⊗ kv ' Kw for v ∈ S
we have YK(AK)Br 6= ∅. In particular, there are infinitely many quadratic extensions
K/k such that YK(AK)Br 6= ∅.
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Proof. (1): Let U ⊂ Y 2 be the complement of the diagonal in Y 2. The restriction of
f : Y 2 99K Sym2(Y ) to U gives a dominant morphism f : U → Sym2(Y ) whose image is the
regular locus Sym2(Y )reg of Sym2(Y ). Since k(Y 2) = k(U) is Galois over k(Sym2(Y )reg)
with Galois group generated by the involution σ interchanging the factors of Y × Y , by
[GS06, Chapter 3, Exercise 3], the composition

ResU/ Sym2(Y )reg ◦CorU/Sym2(Y )reg : Br(k(U))→ Br
(
k(Sym2(Y )reg)

)
is given by x 7→ x + σ(x). We may then deduce that the same formula holds for the com-
position ResU/ Sym2(Y )reg ◦CorU/Sym2(Y )reg : Br(U)→ Br(Sym2(Y )reg) by evaluating at generic
points.

Note that Y 2 − U is isomorphic to Y , and so has codimension dim(Y ) ≥ 2 in Y 2.
Therefore, Br(Y 2) = Br(U) as subgroups of Br(k(Y 2)). Similarly, we obtain Br(Y (2)) =
Br(Sym2(Y )reg). So, we have a map Cor ◦π∗1 : Br(Y ) → Br(Y (2)) which, when composed
with Res : Br(Y (2)) = Br(Sym2(Y )reg) → Br(U) = Br(Y 2) is equal to the diagonal map
Br(Y )→ Br(Y )⊕ Br(Y )→ Br(Y 2) sending α to π∗1α+ σ(π∗1α) = π∗1α+ π∗2α. The kernel of
this is equal to Br0(Y )[2], so Res ◦Cor ◦π∗1 and, consequently, Cor ◦π∗1 induce injective maps
on Br(Y )/Br0(Y ).

(2): The points y and ỹ fit into a commutative diagram displayed on the left below. This
induces the diagram displayed on the right. Commutativity of the later gives the result.

Spec(k(y))
y
// Y (2) Br(k(y)) Br(Y (2))

y∗
oo

f−1(y)

OO

// Y × Y

f

OO

π1

��

⇒ Br(f−1(y))

Cor

OO

Br(Y × Y )

Cor

OO

oo

Spec(K)
ỹ

// Y Br(K) Br(Y )

π∗1

OO

ỹ∗
oo

(3): Suppose that K/k is a quadratic extension, (xw)w∈ΩK ∈ YK(AK)Br 6= ∅ and that
β = Cor(π∗1α) ∈ Br(Y (2)) represents a class in B that is the image of α ∈ Br(Y ). For v ∈ Ωk

that split in K, let yv ∈ Y (2)(kv) be the point corresponding to the pair {xw : w | v}. For
v ∈ Ωk with a unique w ∈ ΩK dividing v, let yv ∈ Y (2)(kv) be the point corresponding to xw
and its Kw/kv-conjugate. Note that in each case we may perturb the xw if needed to ensure
we are considering yv corresponding to a distinct pair of points on Y . This determines an
adelic point y = (yv) ∈ Y (2)(Ak). For any v ∈ Ωk, (2) gives β(yv) =

∑
w|v CorKw/kv (α(xw))

and consequently, invv(β(yv)) =
∑

w|v invw(α(xw)). Since (xw)w∈ΩK ∈ YK(AK)Br 6= ∅ we see

that y ∈ Y (2)(Ak)
B 6= ∅.

(4): Suppose (yv)v∈Ωk ∈ Y (2)(Ak)
B 6= ∅. Perturbing yv if needed we may assume that yv

lies in Sym2(Y )reg and hence corresponds to a quadratic point ỹv : Spec(Kw) → Y , where
Kw is an étale kv-algebra of degree 2. Moreover, by (2) if α ∈ Br(Y ) and β = Cor(π∗1(α)),
then β(yv) = CorKw/kv(α(ỹv)). By assumption

∑
v∈Ωk

invv β(yv) = 0, so (ỹv)v∈Ωk is an
effective adelic 0-cycle of degree 2 on Y which is orthogonal to the Brauer group of Y .
Under the additional hypotheses of (4), Br(Y )/Br0(Y ) is finite and, by Lemma 2.3, there is
an extension k1/k such that for K/k linearly disjoint from k1, ResK/k : Br(Y ) → Br(YK) is
surjective. Moreover, for any set α1, . . . , αn ∈ Br(Y ) of representatives for Br(Y )/Br0(Y ),
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there is a finite set S ⊂ Ωk such that for all i = 1, . . . , n and all v 6∈ S the evaluation maps
invv ◦αi : Y (kv)→ Q/Z are constant (see [CTS13, Lemma 1.2 & Theorem 3.1]). Let K/k be
a quadratic extension linearly disjoint from k1 and such that K ⊗ kv ' Kw for v ∈ S. Then
any any adelic point (xw)w∈Ω ∈ YK(AK) such that ỹv =

∑
w|v xw for v ∈ S will be orthogonal

to Br(YK). By the Grunwald-Wang theorem the map k×/k×2 →
∏

v∈S k
×
v /k

×2
v is surjective,

so such extensions K/k do in fact exist. �

3. Pencils of quadrics in P4 and associated objects

Let Q ⊂ P4×P1 be a pencil of quadrics over a field k of characteristic different from 2. It
will often be convenient to work with a bihomogeneous polynomial Q of degree (2, 1) whose
vanishing defines Q. If the projection map Q → P1 is generically smooth, then we may
naturally associate three objects. First, we may consider the base locus X = XQ ⊂ P4 of
the pencil of quadrics, i.e., ∩t∈P1Qt, where Qt ⊂ P4 denotes the fiber over t ∈ P1. This is a
degree 4 projective surface. Second, we may consider the subscheme S ⊂ P1 parameterizing
the singular quadrics in the pencil, which is given by the vanishing of det(MQ), where MQ

denotes the symmetric matrix corresponding to Q considered as a quadratic form whose
coefficients are linear polynomials in the homogeneous coordinate ring of P1. Since Q → P1

is generically smooth, S ⊂ P1 is a degree 5 subscheme. Third, we may consider the fourfold
G = GQ → P1 that parametrizes lines on quadrics in the pencil; the generic fiber of G is a
Severi-Brauer variety with index dividing 4 and order dividing 2 [EKM08, Ex. 85.4].

Each of these objects has been well-studied, and their conditions for smoothness are known
to be closely related.

Proposition 3.1. Let Q ⊂ P4×P1 be a pencil of quadrics. Then the following are equivalent:

(1) The base locus X is smooth and purely of dimension 2, in which case X is a del Pezzo
surface of degree 4;

(2) The degree 5 subscheme S ⊂ P1 is reduced;
(3) For every s ∈ S, the fiber Qs is rank 4 and the vertex of Qs does not lie on any other

quadric in the pencil; and
(4) The fourfold G is smooth, the map G → P1 is smooth away from S, and above S the

fibers are geometrically reducible.

Proof. The equivalence of conditions (1), (2), and (3) is given by [Rei72, Prop. 2.1]. The
equivalence of (4) with any (equivalently all) of the others is given by [Rei72, Thm. 1.10]. �

Definition 3.2. A pencil of quadrics Q satisfies (†) if any of the above conditions hold.
Given a pencil Q satisfying (†), we define εS ∈ k(S)/k(S)×2 to be the discriminant of a
smooth hyperplane section of QS; note that the square class of the discriminant does not
depend on the choice of hyperplane, nor on the choice of a defining equation for QS.

Given a pencil of quadrics satisfying (†), there are even stronger connections among these
three objects.

Proposition 3.3. Let Q be a pencil of quadrics satisfying (†). Let X = XQ,G = GQ, and
(S, εS) = (SQ, εSQ).

(1) The variety G is birational to the symmetric square Sym2(X) of X. Hence, G(k) 6= ∅
if and only if X(K) 6= ∅ for some quadratic extension K/k.
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(2) The residues of the Brauer class [Gk(P1)] ∈ Br k(P1) are

εS ∈ k(S)×/k(S)×2 ' H1
(
k(S), 1

2
Z/Z

)
⊂

⊕
t∈(P1)(1)

H1(k(t),Q/Z).

In particular, Normk(S)/k(εS) ∈ k×2.
(3) Given a pair (S′, εS′) where S′ ⊂ P1 is a reduced degree 5 subscheme and a class

εS′ ∈ k(S′)×/k(S′)×2 of square norm, there exists a unique (up to isomorphism) pencil
of quadrics Q such that (S′, εS′) = (SQ, εSQ). Thus, for any t ∈ P1−S, [Gt] ∈ Br(k(t))
is determined by (S, εS).

Remark 3.4. The second statement of Part (2) provides an alternate proof of a proposition
by Wittenberg [Wit07, Prop. 3.39].

Proof. (1): Consider a point (x, x′) ∈ X × X − ∆, where ∆ denotes the diagonal image
of X, and let `{x,x′} be the line joining them. Since `{x,x′} ∩ X contains the two points
x, x′, the line `{x,x′} must lie on a quadric in the pencil containing X. If `{x,x′} is not
contained in X, then this quadric must be unique. Indeed, the line is contained in Qt for
t = t{x,x′} := [B0(x, x′) : −B∞(x, x′)] ∈ P1

k(k), where Bs denotes the symmetric bilinear form
associated to Qs. This gives a dominant rational map

f : X ×X 99K G , (x, x′) 7→ (t{x,x′}, `{x,x′}) ,

that is generically of degree 2 and factors through the symmetric square of X. Thus, the
induced map Sym2X 99K G is birational.

If G(k) 6= ∅, then the Lang-Nishimura Theorem (see, e.g., [Poo17, Theorem 3.6.11]) (which
applies since G is smooth) implies that Sym2(X)(k) 6= ∅ and, consequently, that there is a
quadratic point on X. In particular, there is a quadratic extension K/k with X(K) 6=
∅. Conversely, if X(K) 6= ∅ for some quadratic extension K/k, then X(K) is infinite by
[SS91, Theorem (0.1)]. The line through any Galois stable pair of distinct points gives a
k-rational point on G.

(2): Let t ∈ P1. By [Rei72, Thms. 1.2 and 1.8], the fiber Gt is smooth and geometrically
irreducible exactly when Qt has rank 5. Thus, for all t ∈ P1− S, the class [Gk(P1)] has trivial
residue at t. By Proposition 3.1 and assumption (†), if t ∈ S, then Qt has rank 4. If Qt
is rank 4 and has square discriminant, then by [Rei72, Thm. 1.8] the fiber Gt is reducible
and split over k(t). If Qt is rank 4 and has nonsquare discriminant, then the same result of
Reid says that Gt is irreducible and non-split over k(t), but becomes split over the quadratic
discriminant extension. Thus, the residue of [Gk(P1)] at t is the discriminant of Qt. By
definition of εS, this gives the first statement. The second statement now follows from the
Faddeev exact sequence for Br k(P1) (see [GS06, Thm 6.4.5] or (5.4)).

(3): The first statement is a theorem of Flynn [Fly09] which was expanded upon by
Skorobogatov [Sko10]. The second statement follows from the first together with the Faddeev
exact sequence for Br(k(P1)) (see [GS06, Thm 6.4.5] or (5.4)). �

3.1. Notation. Throughout the paper, we will consider only pencils of quadrics that satisfy
(†) and we will move freely between the objects Q, X = XQ,G = GQ, and (S, εS) = (SQ, εSQ).
We will assume that S ⊂ A1 = P1 −∞. This can be arranged by an automorphism of P1,
provided k has at least 5 elements. We will write k[T ] for the coordinate ring of A1 and let
f(T ) be the unique monic polynomial whose vanishing defines S.
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Let QA1 ∈ k(T )[x0, . . . , x4] be a quadratic form whose coefficients are linear polynomials
in k[T ] and whose vanishing defines QA1 on A1 ⊂ P1. While QA1 is only defined up to
multiplication by an element of k×, none of our results depend on this choice. For a (possibly
reducible) subscheme T ⊂ A1 = Spec(k[T ]), the canonical map k[T ]→ k(T) can be applied
to the coefficients of QA1 to obtain a quadratic form QT over the k-algebra k(T) whose
vanishing defines QT = Q×P1 T. In particular, for a ∈ k = A1(k), the form Qa is obtained
by evaluating the coefficients of QA1 at a. We define Q∞ = Q1−Q0, so that QA1 = Q0+TQ∞.

We will write θ for the image of T in k(S) = k[T ]/〈f(T )〉. For a subscheme T ⊂ S we

use εT ∈ k(T)×

k(T)×2 ⊂ k(S)×

k(S)×2 to denote the discriminant corresponding to QT. We will use N to

denote any map induced in an obvious way by the norm map Normk(S)/k : k(S) → k. Note
that Normk(T)/k(εT) = Normk(S)/k(εT) = N(εT).

4. Quadratic points on del Pezzo surfaces of degree 4 over local fields

In this section we prove the following theorem.

Theorem 4.1. Let X/k be a del Pezzo surface of degree 4 over a local field of characteristic
not equal to 2. There is a quadratic extension K/k such that X(K) 6= ∅.

Applying Proposition 3.3(1) yields the following.

Corollary 4.2. Assume k is a local field of characteristic not equal to 2. For any pencil of
quadric threefolds Q → P1 satisfying (†), GQ(k) 6= ∅. �

The proof of Theorem 4.1 will require the following lemma.

Lemma 4.3. Suppose Q and Q̃ are quadratic forms of rank r(Q) and r(Q̃), respectively,
over a field F . Then r(Q ⊥ Q̃) = r(Q) + r(Q̃) except when char(F ) = 2 and r(Q) and r(Q̃)
are both odd, in which case r(Q ⊥ Q̃) = r(Q) + r(Q̃)− 1.

Proof. For char(F ) 6= 2 see [EKM08, Lemma 7.20]. For char(F ) = 2 this follows from
[EKM08, Corollary 7.31 and Lemma 7.21] and the fact that an orthogonal direct sum of
rank 1 forms has rank 1 (cf. [EKM08, Remark 7.24]). �

Proof of Theorem 4.1. If k is archimedean, then [k : k] ≤ 2 so the result is immediate.
Henceforth we assume that k is nonarchimedean, and we write O for the valuation ring of
k and F for the residue field of k. By [Tia17, Theorem 2.7], there is a linear change of
coordinates on P4

k such that the integral model X ⊂ P4
O of X is semistable. In particular,

by [Tia17, Lemma 2.22(4)], the special fiber of X is reduced.
If the special fiber is split, i.e., it contains an open subscheme that is geometrically integral,

then the special fiber has a smooth F′-point for a sufficiently large extension F′/F of odd
degree. Thus, by Hensel’s Lemma, X has a k′-point for k′/k an unramified extension of odd
degree, which by the theorems of Amer, Brumer and Springer [Ame76, Bru78, Spr56] show
that X(k) 6= ∅. More generally, the same argument shows that X(k) 6= ∅ if the special fiber
is split over an odd degree extension F′/F.

Now assume that the special fiber is not split over any odd degree extension. Since an
intersection of 2 quadrics has at most 4 irreducible components the Galois action on the
geometrically irreducible components must factor through a group of order 2 or 4. If the
Galois action factors through a group of order 2, then over a sufficiently large extension F′/F
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of degree congruent to 2 modulo 4, there will be a smooth F′/F point. Arguing as in the
previous case, we obtain a point on X over the unique unramified quadratic extension k′/k.

It remains to consider the case when the special fiber has four geometrically irreducible
components, i.e., when it is geometrically the union of four planes, permuted cyclically by
the absolute Galois group of F. By Lemma 4.4 below, then the special fiber is a cone over
an intersection of quadrics in P2 or is geometrically isomorphic to V (x0x1, x2x3).

Let us first assume that the special fiber is geometrically isomorphic to V (x0x1, x2x3).
Another way to characterize this configuration of four planes is that the intersection of
quadrics is a cone over an intersection of quadrics in P3, and that the pencil of quadrics in
P3 contains exactly two degenerate quadrics, each of which have rank 2. Since the planes are
cyclically permuted by Galois, the two rank 2 quadrics in the pencil must also be permuted by
Galois. In particular, any F-rational member of the pencil has rank 4. This characterization
implies that over O, X must be given by equations of the form

Q(x0, x1, x2, x3) + πrx4`(x0, x1, x2, x3), and Q̃(x0, x1, x2, x3) + πmx2
4 + πnx4

˜̀(x0, x1, x2, x3),

for positive integers r,m, n and any choice of uniformizer π. Since we have assumed that X is
semistable (see [Tia17, Section 2]), the stability condition for the weight vector (1, 1, 1, 1, 0)
implies that m = 1.

Consider a ramified quadratic extension k′/k and let $ is a uniformizer of k′. Over k′ we
may absorb a $ into x4 and obtain the model X′/O′ (where O′ is the valuation ring of k′):

Q(x0, . . . , x3) + ur$2r−1x4`(x0, . . . , x3), and Q̃(x0, . . . , x3) + ux2
4 + un$2n−1x4

˜̀(x0, . . . , x3),

where u is the unit such that u$2 = π. Since Q, Q̃ are rank 4 modulo $, Lemma 4.3 gives
that Q̃ + u1x

2
4 is rank 5 modulo $, and every geometric member of the pencil modulo $

must have rank at least 3. Thus, by [HB18, Lemma 3.2], the special fiber of X′ is split, so,
by the same argument above, X′ has a k′-point.

Now assume that the special fiber is a cone over a reduced intersection of quadrics in P2.
Then, up to a change of variables, X must be given by quadratic forms of the form

g(x0, x1, x2) + πmh(x3, x4) + πax3`3(x0, x1, x2) + πbx4`4(x0, x1, x2), and

g̃(x0, x1, x2) + πm̃h̃(x3, x4) + πcx3
˜̀
3(x0, x1, x2) + πdx4

˜̀
4(x0, x1, x2),

where a, b, c, d,m, and m̃ are positive integers. Since X is semistable for the weight vector
(1, 1, 1, 0, 0), m and m̃ must be equal to 1. Furthermore, since X is semistable for the weight

vector (1, 1, 1, 1, 0), h and h̃ must be relatively prime.
Over a ramified quadratic extension k′/k with uniformizer $, we may absorb a $ into x3

and x4 and obtain the model X′/O given by

g(x0, x1, x2) + uh(x3, x4) + ua$2a−1x3`3(x0, x1, x2) + ub$2b−1x4`4(x0, x1, x2), and

g̃(x0, x1, x2) + uh̃(x3, x4) + uc$2c−1x3
˜̀
3(x0, x1, x2) + ud$2d−1x4

˜̀
4(x0, x1, x2),

where u is the unit such that u$2 = π. Every member of the pencil modulo $ is an
orthogonal direct sum of a linear combination of g and g̃ with a linear combination of h and
h̃. Since every linear combination of g and g̃ has rank at least 2, Lemma 4.3 implies that
every geometric member of the pencil has rank at least 3 modulo $. Furthermore, if the
residue characteristic of k′ is different from 2 or if either h or h̃ have rank 2, then Lemma 4.3
shows that there is some geometric member of the pencil that has rank at least 5 modulo
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$. In these cases [HB18, Lemma 3.2] shows that the special fiber of X′ is split, so X has a
k′-point, by our argument above.

It remains to consider the case when k′ has residue characteristic 2 and h and h̃ are both
rank 1. After a change of coordinates, the special fiber of X′ is defined by the vanishing of

g(x0, x1, x2) + ux2
3, and g̃(x0, x1, x2) + ũx2

4. (4.1)

Since the characteristic is 2, Lemma 4.3 shows that every quadric in this pencil modulo $
has rank exactly 3. By [HB18, Proof of Lemma 3.2], the special fiber of X′ does not contain
a quadric of codimension 2. Hence, if the special fiber of X′ is nonsplit, then it must be
the union of 4 planes. By Lemma 4.4, a pencil of quadrics whose base locus is a union of 4
planes must always contain a rank 2 quadric. Since the defining pencil (4.1) of X′ modulo
$ does not contain any rank 2 quadrics, the special fiber of X′ must be split, and hence
X(k′) 6= ∅. �

Lemma 4.4. Let X ⊂ P4 be a complete intersection of quadrics over an algebraically closed
field. If X is the union of 4 distinct planes with a Z/4Z-action inducing a transitive action
on the irreducible components of X, then, up to an automorphism of P4, X is either a cone
over a reduced intersection of quadrics in P2 or X = V (x0x1, x2x3) ⊂ P4.

Proof. Let P1, P2, P3, P4 be the four components of X. First let us consider the case that
two of the planes meet only in a point. So without loss of generality, we may assume that
P1 = V (x0, x2) and P2 = V (x1, x3). Thus the defining quadrics of X must be contained
in 〈x0, x2〉〈x1, x3〉 = 〈x0x1, x1x2, x2x3, x3x0〉. Hence, the defining equations for P3 and P4

must contain two linearly independent linear combinations of x0x1, x1x2, x2x3, and x3x0. In
particular, P3 and P4 must contain the point of intersection P1 ∩ P2. Thus, X is the cone
over an intersection of quadrics in P3, which is a curve Z of arithmetic genus 1. Since by
assumption X is a union of 4 planes, two of which meet only in a point, Z must be the
union of 4 lines, two of which must be skew. Thus, by genus considerations together with
the Z/4Z-action, Z must be a 4-gon, i.e., a cycle of rational curves, where each curve meets
exactly two of the others.

After a change of coordinates, we may assume that the intersections are

P1∩P3 = V (x0, x1, x2), P1∩P4 = V (x0, x2, x3), P2∩P3 = V (x0, x1, x3), P1∩P4 = V (x1, x2, x3),

so X = V (x0x1, x2x3).
Now assume that all pairs of planes meet in a line. If this line is the same for all pairs,

then X is a cone over a reduced intersection of quadrics in P2. If exactly three of the planes
meet in a common line, then without loss of generality the planes must be

V (x0, x1), V (x0, x2), V (x1, x2), V (x3 − `(x0, x1, x2), ˜̀(x0, x1, x2)).

However, there is no intersection of two quadrics that results in these four planes, so this
configuration of planes is not possible.

It remains to consider the case when all pairs of planes meet in a line, but no three planes
meet in a line. In this case, every triple of planes meets in a point, and these four points
must span a 3-dimensional space. Then, after a possible change of coordinates, the planes
must be

V (x0, x1), V (x0, x2), V (x0, x3), V (x0, x4),

which again contradicts that X is an intersection of 2 quadrics. �
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The following provides an alternative proof of the theorem in the case of odd residue
characteristic.

Proposition 4.5. Let X ⊂ P4
k be del Pezzo surface of degree 4 over a local field k of

characteristic not equal to 2. Then X has index dividing 2. If the residue characteristic of
k is odd, then there is a quadratic extension K/k such that X has a K-point.

Proof. First let us prove that X has a quadratic point assuming that s ∈ S(k) 6= ∅. After a
change of coordinates on the P1 parametrizing the pencil and a change of coordinates on P4,
we may assume that s = 0, that Q0 = Q0(x0, x1, x2, x3), and that Q∞ = Q̃∞(x0, x1, x2, x3) +
x2

4. If Q0 contains a smooth k-point, then the line joining the vertex of Q0 and this point
will intersect X in a degree 2 subscheme, which shows that X has a quadratic point. Thus,
we may restrict to the case that Q0 has no smooth k-points.

Projection away from the vertex of Q0 ⊂ P4
k gives a double cover X → Y := Q0 ∩ V (x4)

onto the quadric surface Y . Since Q0 has no smooth k-points, Y (k) = ∅. We will prove that,
in this case, the branch curve C of the double cover X → Y has a quadratic point. Note that
by definition of the double cover, C = X ∩ V (x4) and so is a degree 4 genus 1 curve that is
the base locus of the pencil of quadric surfaces Q′ → P1 with Q′t = Qt∩V (x4). Moreover, C
is a 2-covering of the degree 2 genus one curve C ′ given by the equation y2 = det(M) where
M is the 4 × 4 symmetric matrix with entries in H0(OP1(1)) corresponding to a defining
equation for Q′ (see [AKM+01]).

Consider the fiber of C ′ → P1 above 0. By definition of Q′, this is given by the equation
y2 = disc(Q0 ∩ V (x4)). By assumption, Q0 ∩ V (x4) has no k-points. Since there is (up
to isomorphism) a unique rank 4 quadric over the local field k that is anisotropic and it
has square discriminant, we conclude that disc(Q0 ∩ V (x4)) is a square and so C ′(k) 6= ∅.
Consequently, C ′ ' Jac(C) and so the order of C in H1(k, Jac(C)) divides 2. By a result of
Lichtenbaum [Lic69] it follows that C has a point defined over some quadratic extension of
the local field k.

Now we can deduce the statement in the proposition. The scheme S ⊂ P1
k parameterizing

singular quadrics in the pencil has degree 5, so there is an odd degree extension k′/k such
that S(k′) 6= ∅. By what we have shown above, X has a K-rational point for some quadratic
extension K/k′. It follows that X has index at most 2. If the residue characteristic is odd,
then the inclusion k ⊂ k′ induces an isomorphism k×/k×2 ' k′×/k′×2, so K contains a
quadratic extension k2/k as an odd index subfield. By the theorems of Amer, Brumer and
Springer [Ame76,Bru78,Spr56], we have X(K) 6= ∅ ⇒ X(k2) 6= ∅, so X has a k2-point. �

Remark 4.6. The preceding proof can be adapted to give an easy proof that a locally soluble
del Pezzo surface of degree 4 over a global field must have index dividing 2. Indeed, over
some odd degree extension X may be written as a double cover of a quadric surface, which is
known to satisfy the Hasse principle. Hence X obtains a rational point over some extension
of degree 2m with m odd.

5. Arithmetic of the space of lines on the quadrics in the pencil

In this section we develop the main tools to prove Theorems 1.1 and 1.2 over global fields.
Recall the notation defined in Section 3.1. Throughout, we let Q → P1 be a pencil of
quadrics in P4

k over an arbitrary field k of characteristic not equal to 2 which satisfies (†),
and let X = XQ, G = GQ and (εS, S) = (εSQ , SQ).
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In Section 5.1, we compute Br(G)/Br0(G) and construct explicit representatives in Br(G),
denoted by βT, which are determined by subsets T ⊂ S such that N(εT) ∈ k×2. In Section 5.2,
we study the rank 4 quadrics QT corresponding to subsets T ⊂ S such that N(εT) ∈ k×2. We
use Clifford algebras associated to these rank 4 quadrics to define constant Brauer classes
CT ∈ Br(k) and we show how these are related to the kernel of the canonical map Br(k) →
Br(X). The two constructions come together in Sections 5.3 where we show how the CT
arise when evaluating βT at certain local points of G (see Lemmas 5.10 and 5.13). Finally,
in Section 5.4, we deduce consequences for the evaluation of βT at adelic points of G.

5.1. The Brauer group of G. It follows from the Faddeev exact sequence (see [GS06, Thm
6.4.5]) that the homomorphism

γ′ : k(S)× 3 ε 7→ Cork(S)/k(ε, T − θ) ∈ Br(k(P1))

induces an isomorphism

γ : ker

(
N:

k(S)×

k(S)×2
→ k×

k×2

)
' ker

(
Br(P1 − S)[2]

∞∗−→ Br k[2]
)
, (5.1)

where ∞∗ denotes evaluation of the Brauer class at ∞ ∈ P1− S. Recall that N(εS) ∈ k×2 by
Proposition 3.3(2).

Define β = π∗γ : ker
(

N: k(S)×

k(S)×2 → k×

k×2

)
→ Br(k(G)). For T ⊂ S such that N(εT) ∈ k×2,

we set βT := β(εT).

Proposition 5.1. The map β induces a homomorphism

ker

(
N:

⊕
s∈S

〈εs〉 → k×/k×2

)
β→ Br(G), (5.2)

whose image generates Br(G)/Br0(G). Furthermore, βS = [G∞] ∈ Br0(G), and for all T ⊂ S

with N(εT) ∈ k×2 and εT 6= εS ∈ k(S)×/k(S)×2, we have

βT ∈ Br0(G) ⊂ Br(G) ⇐⇒ βT = 0 ∈ Br(G) ⇐⇒ εT ∈ k(T)×2.

Corollary 5.2.

(1) Br(G)/Br0(G) ' (Z/2Z)n for some n ∈ {0, 1, 2}.
(2) Every nontrivial element of Br(G)/Br0(G) is represented by βT for some degree 2

subscheme T ⊂ S with N(εT) ∈ k×2.
(3) If Br(G)/Br0(G) is not cyclic, then every degree 2 subscheme T ⊂ S with N(εT) ∈ k×2

must be reducible.
(4) Let s0 ∈ S(k) be such that there exists an s′ ∈ S(k) with β{s0,s′} ∈ Br(G) − Br0(G).

Then {β{s0,s} : s ∈ S(k), N(ε{s0,s}) ∈ k×2} generates Br(G)/Br0(G).
(5) There is a collection T of degree 2 subschemes of S and an element ε ∈ k×, such that

• N(εT) ∈ k×2 for all T ∈ T;
• {βT : T ∈ T} generates Br(G)/Br0(G);
• for all s ∈ ∪T∈TT, the image of ε in k(s)×/k(s)×2 is equal to εs; and
• for any extension L/k and any s ∈ ∪T∈TT, ε ∈ k(sL)×2 if and only if ε ∈ k(s′L)×2

for all s′ ∈ ∪T∈TT.
(6) Br(G)/Br0(G) ' H1(k,Pic(X)).
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(7) If k is a local or global field, then the injective map Br(X)/Br0(X)→ Br(G)/Br0(G)
given by Proposition 2.6(1) is an isomorphism.

Proof of Corollary 5.2. Statements (1)–(4) follow from a straightforward case by case anal-
ysis of the possible relations on ⊕s∈S〈εs〉. Given this characterization of Br(G)/Br0(G) in
terms of degree 2 subschemes T ⊂ S, (5) can be established using [VAV14, Lemma 3.1] for the
existence of ε ∈ k× and (6) follows from [VAV14, Proof of Theorem 3.4]. Finally, when k is a
local or global field, the injective map Br(X)/Br0(X) → H1(k,Pic(X)) is an isomorphism,
so (6) implies that the injective map Br(X)/Br0(X)→ Br(G)/Br0(G) is also surjective. �

Remark 5.3. If T ⊂ S is a degree 2 subscheme with N(εT) ∈ k×2 such that the quadric QT has
a smooth k(T)-point, then [VAV14, Cor. 3.5] yields a rational map ρ : X 99K P1 such that
ρ∗γ(εT) ∈ Br(X). One can show that the image of ρ∗γ(εT) under the map Br(X)/Br0(X)→
Br(G)/Br0(G) given by Proposition 2.6(1) is equal to the class of βT.

Proof of Proposition 5.1. Let η ∈ P1 be the generic point. Since G is smooth, Br(G) injects
into Br(Gη). Further, by the Hochschild-Serre spectral sequence, we have an exact sequence

0→ Pic(Gη)→
(
Pic(Gη)

)Gk(η) → Br(k(η))→ ker
(
Br(Gη)→ Br(Gη)

)
→ H1

(
Gk(η),Pic(Gη)

)
.

Since Gη is a Severi-Brauer variety, Pic(Gη) ' Z with trivial Galois action, and Br(Gη) = 0.
Hence, the exact sequence simplifies to

Z→ Br(k(η))
π∗→ Br(Gη)→ 0, (5.3)

where the first map sends 1 to [Gη] ∈ Br(k(η)). Thus, to determine Br(G), it suffices to
determine Br(G) ∩ π∗ Br(k(η)).

The projection map π : G → P1 induces the following commutative diagram of exact
sequences where the top row is the Faddeev exact sequence [GS06, Thm 6.4.5].

Br(k) Br(k(η))
⊕

t∈(P1)(1)

H1(k(t),Q/Z) H1(k,Q/Z)

Br(G) Br(Gη)
⊕
t∈P1

⊕
x∈G(1)
π(x)=t

H1(k(x),Q/Z),

π∗

(∂t)

(π∗)Br

∑
t Cork(t)/k

(π∗)H1

(∂x)

(5.4)

If t ∈ P1−S, then the fiber Gt is geometrically irreducible and hence π∗ : H1(k(t),Q/Z)→
H1(k(Gt),Q/Z) is an injection. For t ∈ S, the fiber Gt consists of two split components that
are conjugate over k(t)(

√
εt).

Therefore, for t ∈ S, the kernel of π∗ : H1(k(t),Q/Z) → H1(k(Gt),Q/Z) is the 2-torsion
cyclic subgroup corresponding to the extension k∩k(Gt) = k(t)(

√
εt). Moreover, the residue

of the kernel (∂t (ker(π∗)Br)) = (εt)t∈S = εS ∈ k(S)/k(S)×2. Thus, the commutativity of the
above diagram shows that

ker(π∗)H1

⋂
ker
∑
t

Cork(t)/k ' ker

(
N:

⊕
t∈S

〈εt〉 → k×/k×2

)
.
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In particular, the image of ker
(
N:

⊕
t∈S〈εt〉 → k×/k×2

)
under β is contained inside of Br(G).

Further, since π∗Br is surjective, the image of ker
(
N:

⊕
t∈S〈εt〉 → k×/k×2

)
under β generates

Br(G)/Br0(G).
It remains to understand which subsets T ⊂ S give rise to βT ∈ Br0(G). If βT ∈ Br0(G),

then by definition of Br0(G) there exists A ∈ Br(k) such that γ(εT)−A ∈ ker(π∗)Br. By (5.3),
the kernel of (π∗)Br is generated by [Gη]. Thus, γ(εT) = [Gη] +A or γ(εT) = A, where both
equalities are in Br(P1 − S). The final statement of the proposition follows from these
equalities after computing residues and evaluating at ∞. �

5.2. Clifford algebras and Brauer classes. For a quadratic form F over a field of charac-
teristic not equal to 2 we use Clif(F ) to denote the Clifford algebra of the restriction of F to
a maximal regular subspace, and Clif0(F ) to denote the corresponding even subalgebra. By
Witt’s Theorem [Lam05, Chap. I, Theorems 4.2 and 4.3], these do not depend on the choice
of maximal regular subspace. If F has even rank, then Clif(F ) is a central simple algebra,
which will be identified with its class in the Brauer group. This extends to quadratic forms
over finite étale algebras in the obvious way.

In particular, we will consider Clif(QT) ∈ Br(k(T)) where QT is a quadratic form defining
the quadricQT corresponding to a subscheme T ⊂ S. This depends on the choice of quadratic
form as indicated by the following lemma.

Lemma 5.4. Let s ∈ S and c ∈ k(s)×. Then

Clif(cQs) = Clif(Qs) + (εs, c) ∈ Br(k(s)) .

Proof. This follows from a short calculation using [Lam05, Chap. V, Corollary 2.7]. �

For a rank 4 quadric Qs, s ∈ S with εs ∈ k(s)×2, any quadratic form Qs defining Qs is a
constant multiple of the reduced norm form of a quaternion algebra whose class in Br(k(s)) is
equal to Clif(Qs) [EKM08, Prop. 12.4]. The following lemma gives a description of Clif(Qs)
in cases when εs /∈ k(s)×2.

Lemma 5.5. Assume that k is a field of characteristic different from 2 and that s ∈ S

with εs /∈ k(s)×2 such that Qs has a smooth k(s)-point. Let Qs be a quadratic form whose
vanishing definines Qs. Then for any Gal(k(s))-stable pair {x, x′} ⊂ Qs(k) and any k(s)-
linear form ` defining a hyperplane tangent to Qs at a smooth point with `(x)`(x′) 6= 0 we
have the following equality in Br(k(s)):

Clif(Qs) =

(
εs,−

BQs(x, x
′)

`(x)`(x′)

)
.

Proof. By [VAV14, Lemma 2.1], for any ` = `0 tangent to Qs at a smooth point, the quadric
Qs is defined by the vanishing of Qs = c(`0`1− `2

2 + εs`
2
3), for some linear forms `1, `2, `3 and

some c ∈ k(s)×. In particular, we have `0(x)`1(x) = `2(x)2 − εs`3(x)2 and similarly for x′.
16



Thus, we may compute:

−BQs(x, x
′)

`(x)`(x′)
= −c · `0(x)`1(x′) + `0(x′)`1(x)− 2`2(x)`2(x′) + 2εs`3(x)`3(x′)

`0(x)`0(x′)

= −c
(
`2(x′)2 − εs`3(x′)2

`0(x′)2
+
`2(x)2 − εs`3(x)2

`0(x)2
− 2

`2(x)`2(x′)

`0(x)`0(x′)
+ 2εs

`3(x)`3(x′)

`0(x)`0(x′)

)
= −c

[(
`2(x)

`0(x)
− `2(x′)

`0(x′)

)2

− εs
(
`3(x)

`0(x)
− `3(x′)

`0(x′)

)2
]
,

which shows that
(
εs,−BQs (x,x′)

`(x)`(x′)

)
= (εs,−c). Thus, it remains to relate the quaternion

algebra (εs,−c) to the Clifford algebra of Qs. By [Lam05, Chap. V, Corollary 2.7],

Clif(Qs) ' Clif(Qs|〈`0,`1〉)⊗ Clif(c2 ·Qs|〈`2,`3〉) ' M2(k)⊗ (−c, cεs).

To complete the proof, we observe that (−c, cεs) = (−c, εs) = (εs,−c) ∈ Br(k). �

Definition 5.6. Given T ⊂ S such that N(εT) ∈ k×2, define

CT := Cork(T)/k(Clif(QT)) ∈ Br(k).

Remark 5.7. Even though Clif(QT) may depend on the choice of quadratic form defining the
pencil, the condition N(εT) ∈ k×2 ensures that the class CT does not. Indeed, if one computes
CT using instead a form cQT which differs from QT by c ∈ k×, Lemma 5.4 shows that the
result will differ by Cork(T)/k(εT, c) = (N(εT), c), which is trivial whenever N(εT) is a square.

Lemma 5.8. The kernel of the canonical map Br(k)→ Br(X) is generated by

{Cs : s ∈ S such that εs ∈ k(s)×2}.

Proof. By the exact sequence of low degree terms coming from the Hochschild-Serre spectral
sequence, the kernel of Br(k) → Br(X) is the image of the cokernel Pic(X) → Pic(X)Gk .
By [VAV14, Prop. 2.3] (which relies on results from [KST89]), Pic(X)Gk is freely generated
by the hyperplane section and, for every s ∈ S such that εs ∈ k(s)×2, the divisor class
Normk(s)/k([Cs]) where Cs is obtained by intersecting X with a plane contained in Qs. Since

the hyperplane section is k-rational, the cokernel of Pic(X)→ Pic(X)Gk is generated by{
Normk(s)/k([Cs]) : s ∈ S such that εs ∈ k(s)×2 and Qs contains no k-rational planes

}
.

By definition, the image of [Cs] in Br(k(s)) is the Severi-Brauer variety whose points pa-
rametrize representatives of the class [Cs]. Since εs is a square, by [CTS93, Thm. 2.5],
Qs ∩ H ∼= Zs × Zs for the conic Zs that is a smooth hyperplane section of Qs ∩ H. Since
planes contained in Qs in a fixed ruling are uniquely determined by points on a smooth plane
intersected with Qs, we deduce that [Cs] 7→ Zs ∈ Br(k(s)). By [EKM08, Prop. 12.4] we also
have that Clif(Qs) = Zs ∈ Br(k(s)). Hence, Normk(s)/k([Cs]) = Cork(s)/k(Clif(Qs)) = Cs. �

5.3. Local evaluation maps.

Lemma 5.9. Assume that k is a field of characteristic different from 2. If there exists a
degree 2 subscheme T ⊂ S such that for all t ∈ T, εt ∈ k(t)×2 and Qt has a smooth k-point,
then X(k) 6= ∅.

17



Proof. Let T(k) = {t1, t2}. The assumptions in the lemma imply that there are k(ti)-rational
planes contained in Qti . The intersection of one with X gives a k(ti)-rational conic Ci on X.
After possibly choosing a different plane for t2, we may assume the pair {C1, C2} are Galois
invariant. As computed in [VAV14, Proof of Proposition 2.2] we have C1.C2 = 1. Therefore
the intersection of these divisors produces a k-point on X. �

Lemma 5.10. Assume that k is a local field of chararcteristic different from 2 and let T ⊂ S

be a degree 2 subscheme such that N(εT) ∈ k×2. Then, for any quadratic extension K/k
with εT ∈ k(TK)×2 and K 6= k(T), there exists y ∈ G(k) corresponding to a quadratic point
SpecK → X. Moreover, for such y,

βT(y) =

{
CT if εT /∈ k(T )×2,

0 if εT ∈ k(T )×2.

Proof. If X(k) 6= ∅, then for any nontrivial extension K/k we have X(k) ( X(K) because
k is local (see, e.g., [LL18, Proposition 3.8]). Then any pair of Gal(K/k)-conjugate points
on X will give the required y ∈ G(k). Now we prove the first statement in the case where
X(k) = ∅. Over any local field, there is a unique rank 4 quadric (up to isomorphism) that
fails to have a point, and it has square discriminant. Thus, for any t ∈ T, if εt /∈ k(t)×2,
then Qt(k(t)) contains a smooth point. Hence, Lemma 5.9 gives the existence of K-points
on X for any K such that εT ∈ k(TK)×2.

If εt ∈ k(t)×2 for some (equivalently, for all) t ∈ T, then Qt may not have a smooth
k(t)-point, but it will have a smooth point over any quadratic extension of k(t). If K/k is a
quadratic extension different from k(T)/k, then k(TK) will be a quadratic extension of k(T)
and hence we may again apply Lemma 5.9.

Now suppose y corresponds to the line joining the K/k-conjugate points x, x′ ∈ X(K),
with K satisfying the conditions of the lemma. By continuity of the evaluation map, we may
reduce to the case where π(y) 6=∞. Then π(y) = −B0(x, x′)/B∞(x, x′), and so

π(y)− θ = −B0(x, x′) + θB∞(x, x′)

B∞(x, x′)
= − BS(x, x

′)

B∞(x, x′)
.

Using this we compute

βT(y) = Cork(S)/k(εT, π(y)− θ) = Cork(S)/k (εT,−BS(x, x
′)/B∞(x, x′))

= Cork(T)/k (εT,−BT(x, x′)) +
(
Nk(T)/k(εT), B∞(x, x′)

)
= Cork(T)/k (εT,−BT(x, x′)) (since N(εT) ∈ k×2 )

= Cork(T)/k [(εT, `T(x)`T(x′)) + Clif(QT)] (by Lemma 5.5)

= Cork(TK)/k(εT, `T(x)) + Cork(T)/k Clif(QT)

= Cork(T)/k Clif(QT) (since εT ∈ k(TK)×2 )

= CT (by Definition 5.6) .�

Lemma 5.11. Assume that k is a local field of characteristic not equal to 2. Suppose
s ∈ S(k) is such that Qs has a smooth k-point and let vs denote the vertex of Qs. For any
t ∈ A1(k)− {s} sufficiently close to s, we have

Gt(k) 6= ∅ ⇐⇒ (εs, t− s) = Clif(Qs) + (εs,−Q∞(vs)) in Br(k) .
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Remark 5.12. Note that by Lemma 5.4, the sum Clif(Qs) + (εs,−Q∞(vs)) appearing on the
right-hand side above does not depend on the choice of quadratic form defining the pencil.

Proof. Since t ∈ A1(k)− {s} is sufficiently close to s and S is closed, we have t /∈ S and Qt

has rank 5. So by [EKM08, Ex. 85.4] the Severi-Brauer variety Gt and the even Clifford
algebra Clif0(Qt) (which is a central simple k-algebra) determine the same class in Br(k). In
particular, Gt(k) 6= ∅ if and only if Clif0(Qt) = 0 in Br(k).

The quadratic forms Qt and Qt|〈vs〉⊥ ⊥ Qt|〈vs〉 are equivalent by [Lam05, Chap. I, Cor
2.5]. Therefore,

Clif0(Qt) = Clif(−Qt(vs) ·Qt|〈vs〉⊥) (by [Lam05, Chap. V, Cor. 2.9])

= Clif(Qt|〈vs〉⊥) + (disc(Qt|〈vs〉⊥),−Qt(vs)) (by Lemma 5.4).

For t sufficiently close to s, the quadratic forms Qt|〈vs〉⊥ and Qs|〈vs〉⊥ will be equivalent. For
such t, Clif(Qt|〈vs〉⊥) = Clif(Qs) ∈ Br(k) and disc(Qt|〈vs〉⊥) = disc(Qs) ∈ k×/k×2. Hence

Clif0(Qt) = Clif(Qs) + (εs,−Qt(vs)) .

To complete the proof, we note that Qt(vs) = Q∞(vs)(t− s). �

Lemma 5.13. Assume that k is a local field and T ⊂ S is a degree 2 subscheme with
N(εT) ∈ k×2 and εT /∈ k(T)×2. Then there exists y ∈ GT(k(T)) such that π(y) = T. Moreover,
for any such y,

Cork(T)/k(βT(y)) = CT + (ε,−∆T N(Q∞(vT))) ∈ Br(k) ,

where ε ∈ k× is an element whose image in k(T)×/k(T)×2 represents εT, ∆T is the discrim-
inant of k(T)/k (which we take to be 1 if T is reducible), and vT is the vertex of QT.

Proof. By Corollary 5.2(5) there exists ε ∈ k× such that ε · εt ∈ k(t)×2 for all t ∈ T. Fix a
closed point s ∈ T, and let s′ be the unique k(s) point in Tk(s) − {s}.

Since εs 6∈ k(s)×2, Qs is a cone over an isotropic quadric and as such contains smooth
k(s)-points and many k(s)-rational lines (passing through the vertex). Hence Gs(k(s)) is
nonempty. By the implicit function theorem, we can find t ∈ (P1 − {s})(k(s)) arbitrarily
close to s such that Gt(k(s)) 6= ∅. In addition, by Lemma 5.11 and the fact that β : G(k(s))→
Br(k(s)) is locally constant, we may choose such a t sufficiently close to s so that

(1) (ε, t− s) = Clif(Qs) + (ε,−Q∞(vs)) ∈ Br(k(s)),
(2) βT(Gs(k(s))) = βT(Gt(k(s))) ∈ Br(k(s)), and
(3) t− s′ and s− s′ represent the same class in k(s)×2.

Then for y1 ∈ Gs(k(s)) and y′1 ∈ Gt(k(s)), we have

βT(y1) = βT(y′1) = (ε, (t− s)(t− s′)) = Clif(Qs) + (ε,−Q∞(vs)(s− s′)) .

If y : Spec(k(T))→ G is such that π(y) = T it follows that

Cork(T)/k(βT(y)) = Cork(T)/k [Clif(QT) + (ε,−Q∞(vT)) + (ε, s− s′)]
= Cork(T)/k (Clif(QT)) + (ε,N(Q∞(vT))) + (ε, (s− s′)(s′ − s))
= CT + (ε,N(Q∞(vT))) + (ε,−∆T) . �
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5.4. Evaluation of Brauer classes on G(Ak).

Definition 5.14. Let k be a global field of characteristic not equal to 2. Given T ⊂ S define

RT := {v ∈ Ωk : εTv ∈ k(Sv)
×2 and CTv 6= 0}.

Theorem 5.15. Assume that k is a global field of characteristic different from 2.

(1) There exists (yv) ∈ G(Ak) such that for all degree 2 subschemes T ⊂ S with N(εT) ∈
k×2, we have

∑
v∈Ωk

invv(βT(yv)) = #RT

2
∈ Q/Z.

(2) For all t ∈ S(k) there exists (yv) ∈ G(Ak) such that for all degree 2 subschemes T ⊂ S

with N(εT) ∈ k×2 and t ∈ T, we have
∑

v∈Ωk
invv(βT(yv)) = #Rt

2
∈ Q/Z.

Proof. (1) It suffices to prove the result for {βT : T ∈ T}, where T is a collection of
degree 2 subschemes of S as in Corollary 5.2(5), with corresponding ε ∈ k× simultaneously
representing the discriminants of all T ∈ T.

We define an adelic point (yv) ∈ G(Ak) as follows. For v ∈ Ωk such that ε ∈ k(Tv)
×2 for

some (equivalently all) T ∈ T, let yv ∈ G(kv) be any point (which exists by Corollary 4.2).
Note that if ε ∈ k(Tv)

×2, then βT ⊗ kv = 0 by Proposition 5.1. For each v ∈ Ωk with
ε /∈ k(Tv)

×2 for some (equivalently all) T ∈ T, let yv ∈ G(kv) be a point corresponding to
a kv(

√
ε)-point on X, as provided by Lemma 5.10. Note that Lemma 5.10 further implies

that for such yv, βT(yv) = CTv for all T ∈ T. Thus, for any T ∈ T we have∑
v∈Ωk

invv(βT(yv)) =
∑

ε/∈k(Tv)×2

invv (CTv) =
∑

ε∈k(Tv)×2

invv (CTv) =
#RT

2
∈ Q/Z ,

where the penultimate equality follows from quadratic reciprocity.
(2) Let t ∈ S(k) and set ε := εt. If t is not contained in any degree 2 subschemes T ⊂ S

with N(εT) ∈ k×2, then we need only show that G(Ak) 6= ∅, which follows from Corollary 4.2.
Thus, we may assume there is some degree 2 subscheme T ⊂ S containing t such that
N(εT) ∈ k×2. For any such T we have εT = (ε, ε) ∈ k(T)×/k(T)×2 ' k×/k×2 × k×/k×2.

We define an adelic point (yv) ∈ G(Ak) as follows. For v ∈ Ωk such that ε ∈ k×2
v , take yv to

be any point of G(kv) (which exists by Corollary 4.2). For v ∈ Ωk such that ε /∈ k×2
v we take

yv ∈ G(kv) to be any point such that π(yv) ∈ P1(kv) is close enough t so that Lemma 5.11
applies (note that Qt is a cone over an isotropic quadric surface so the hypothesis of the
Lemma 5.11 is satisfied) and so that, for all s ∈ S(k)− {t} with εεs ∈ k×2, (π(yv)− s) and
(t− s) have the same class in k×v /k

×2
v .

Suppose T = {s, t} ⊂ S(k) is such that N(εT) ∈ k×2. For v ∈ Ωk such that ε ∈ k×2
v , we

have invv(βT(yv)) = 0. For v ∈ Ωk such that ε /∈ k×2
v we have

invv(βT(yv)) = invv (ε, (π(yv)− t)(π(yv)− s))
= invv (ε, π(yv)− t)) + invv (ε, t− s)
= invv(Clif(Qt)) + invv(ε,−Q∞(vt)) + invv(ε, t− s) (By Lemma 5.11) .

Since (ε,−Q∞(vt)(t− s)) is an element of Br(k), its local invariants sum to 0. Furthermore,
(ε,−Q∞(vt)(t− s)) has trivial invariant at all v ∈ Ωk where ε ∈ k×2

v . Thus,∑
v∈Ωk

invv(βT(yv)) =
∑
ε/∈k×2

v

invv(βT(yv)) =
∑
ε/∈k×2

v

invv(Clif(Qt)) =
∑
ε∈k×2

v

invv(Clif(Qt)).
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where the last equality follows from the fact that the local invariants of Clif(Qt) ∈ Br(k)
sum to 0. For v ∈ Ωk such that εt ∈ k×2

v we have invv(Clif(Qt)) = invv(Ctv). Hence,∑
v∈Ωk

invv(βT(yv)) =
∑
ε∈k×2

v

invv(Clif(Qt)) =
#Rt

2
,∈ Q/Z . �

The following lemma relates the set RT to the condition given in (2b) of Theorem 1.2.

Lemma 5.16. Let k be a global field of characteristic not equal to 2 and T ⊂ S a degree 2
subscheme such that N(εT) ∈ k×2. Then v ∈ RT if and only if there are an odd number of
components of QTv = ∪tv∈TvQtv which have no smooth k(tv)-point.

Proof. Let v ∈ Ωk. First suppose that εTv 6∈ k(Sv)
×2. Then v 6∈ RT by definition. Note also

that for all tv ∈ Tv, εtv 6∈ k(tv)
×2 (a priori this must hold for some tv ∈ Tv; the stronger

conclusion holds because T has degree 2 and N(εT) ∈ k×2). Recall that there is a unique
anisotropic quadratic form of rank 4 over any local field and that it has square discriminant.
Hence, when εTv 6∈ k(tv)

×2, all components Qtv have smooth k(tv)-points.
Now suppose that εTv ∈ k(Sv)

×2. As above εtv ∈ k(tv)
×2, for each tv ∈ Tv. Then

the rank 4 quadratic forms Qtv are equivalent to constant multiples of the norm forms
of the quaternion algebras Clif(Qtv) (see [EKM08, Prop. 12.4]). In particular, Qtv has
a smooth k(tv)-point if and only if Clif(Qtv) = 0 ∈ Br(k(tv)). The corestriction maps
Cork(tv)/kv : Br(k(tv)) → Br(kv) are isomorphisms, so CTv =

∑
tv∈Tv Cork(tv)/kv Clif(Qtv)

is nonzero if and only if there are an odd number of components of QTv with no smooth
k(tv)-points. By definition v ∈ RT if and only if CTv 6= 0. �

Lemma 5.17. Assume that k is a global field of characteristic different from 2 and suppose
T ⊂ S is irreducible of degree 2 such that N(εT) ∈ k×2. For any t ∈ T(k(T)), the cardinalities
of the sets

RT ⊂ Ωk and Rt ⊂ Ωk(T)

have the same parity.

Proof. For a prime v ∈ Ωk, we have εT ∈ k(Tv)
×2 if and only if εt ∈ k(t)×2

w for all (equivalently
some) w ∈ Ωk(T) with w | v. For such v we have

invv(CTv) = invv(Cork(T)/k(Clif(QT))) =
∑
w|v

invw(Clif(Qt)) =
∑
w|v

invw(Ctw).

In particular, CTv 6= 0 if and only if there are an odd number of primes w | v with Ctw 6= 0. �

6. Proofs of the Main Theorems

6.1. Corollaries of Theorem 5.15.

Corollary 6.1. Assume that k is a global field of characteristic different from 2 and that
either of the following conditions hold:

(1) Every nontrivial element of Br(G)/Br0(G) can be represented by βT for some degree
2 subscheme T ⊂ S such that N(εT) ∈ k×2 and #RT even; or

(2) Every nontrivial element of Br(G)/Br0(G) can be represented by βT for some degree
2 subscheme T ⊂ S(k) such that N(εT) ∈ k×2.

Then G(Ak)
Br 6= ∅.
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Proof. If condition (1) holds, then the corollary follows from Theorem 5.15(1). Now assume
condition (2) holds and (1) fails. Then there exists a nontrivial element of Br(G) of the form
β{t,t′} with t, t′ ∈ S(k) such that R{t,t′} has odd cardinality. Note that R{t,t′} is the symmetric
difference of Rt and Rt′ . Thus, interchanging t and t′ if needed we may assume Rt has even
cardinality. Theorem 5.15(2) then gives an adelic point orthogonal to all βT such that T has
degree 2, contains t and N(εT) ∈ k×2. The result follows since Corollary 5.2(4) shows that
such βT generate Br(G)/Br0(G). �

Remark 6.2. If both conditions of Corollary 6.1 fail, then Br(G)/Br0(G) ' Z/2Z and any βT
with T of degree 2 which represents the nontrivial class has T is irreducible. Thus, S must
contain an irreducible degree 2 subscheme T such that

• N(εT) ∈ k×2,
• εT 6∈ k(T)×2,
• if #(S− T)(k) = 3, then εt /∈ k×2 for all t ∈ S− T, and
• #RT is odd, which in particular implies that QT has no smooth k(T)-points.

Corollary 6.3. Assume that k is a global field of characteristic not equal to 2. Suppose
there is a degree 2 subscheme T ⊂ S with N(εT) ∈ k×2 such that RT has odd cardinality.
Then G(Ak)

Br 6= G(Ak) and there exists a quadratic extension K/k such that XK(AK) 6=
XK(AK)Br = ∅. In particular, G does not satisfy weak approximation and X does not satisfy
the Hasse principle over quadratic extensions of k.

Proof. The first statement follows immediately from Theorem 5.15(1). For the second state-
ment we construct K by approximating fixed quadratic extensions of kv for the places
v ∈ S := {v : X(kv) = ∅ or invv ◦βT : G(kv) → Q/Z is nonzero}. (In particular, by
Lemma 5.10 and the definition of CT, we will approximate K at every ramification place
of CT.) For such v, if ε /∈ k×2

v , then we fix Kv := kv(
√
ε). If v is such that ε ∈ k×2

v , then
we let Kv be any quadratic extension such that X(Kv) 6= ∅. Then Lemma 5.10 implies that
for every v ∈ S, there exists a yv ∈ G(kv) corresponding to a quadratic point SpecKv → X
and for all such yv, βT(yv) = CTv if ε 6∈ k×2

v and βT(yv) = 0 otherwise. Furthermore, for
v /∈ S (which necessarily means that CTv = 0), our assumptions imply that X(Kv) 6= ∅ and
that βT(yv) = 0 for all yv ∈ G(kv). Thus, for all (yv) ∈ G(Ak) corresponding to an adelic
quadratic point Spec(AK)→ X we have∑

v

invv βT(yv) =
∑
ε/∈k×2

v

invv βT(yv) =
∑
ε/∈k×2

v

invv CTv =
∑
ε∈k×2

v

invv CTv =
#RT

2
∈ Q/Z.

By Proposition 2.6(2) and Corollary 5.2(7), this implies that XK(AK)Br = ∅. �

Example 6.4. Let G → P1 be the fibration of Severi-Brauer threefolds corresponding to the
pencil containing the quadrics given by the vanishing of the rank 4 forms

Q0 = x0x1 − x2
2 + εx2

3 , and

Q1 = ax2
0 + bx2

1 − abx2
2 − εx2

4

where a, b, ε ∈ k×. Then T = {0, 1} ⊂ S is a degree 2 subscheme with εT = (ε, ε). Hence,
Corollaries 5.2 and 6.1 imply that G(Ak)

Br 6= ∅. Note that Q0 has smooth k-points, so
RT = R1 = {v ∈ Ωk : ε ∈ k×2

v and invv(a, b) 6= 0}. Clearly one can choose a, b, ε so that RT

has odd cardinality (e.g., for k = Q, a = 3, b = 7, ε = 2 we have RT = {7}), in which case G
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has a Brauer-Manin obstruction to weak approximation and the base locus X of the pencil
is a counterexample to the Hasse principle over some quadratic extension by Corollary 6.3.

If 4− ab ∈ k×2
v − k×2 for some prime v ∈ RT (which holds for the values indicated above),

then there exists no quadratic extension K/k such that XK is everywhere locally solvable
and Br(XK) = Br0(XK). To see this first observe that 4 − ab = εt is the discriminant of
the rank 4 quadric Qt = 1

1−ab(Q1 − abQ0) (here t = 1/(1 − ab) ∈ S(k)). Now note that if
a prime v ∈ RT splits in a quadratic extension K, then XK is not locally soluble because
Q1 has no smooth Kw-points for the primes w | v. On the other hand, Proposition 5.1
shows that βT ⊗ K ∈ Br(XK) lies in the subgroup Br0(XK) if and only if ε ∈ K×2 (in
which case K = k(

√
ε) and all primes of RT split in K) or εS−T ∈ k(SK)×2 (in which case

K = k(
√

4− ab) and so some prime of RT splits in K by assumption). We conclude that if
K/k is a quadratic extension such that βT ⊗K ∈ Br0(XK), then XK(AK) = ∅.

Corollary 6.5. Assume that k is a global field of characteristic different from 2. There is
an adelic 0-cycle of degree 1 on G orthogonal to Br(G).

Proof. We may assume that G(Ak)
Br = ∅ (for otherwise the Corollary holds immediately)

and hence, that the hypothesis of Corollary 6.1 fails. As explained in Remark 6.2, this
implies that there is an irreducible degree 2 subscheme T ⊂ S such that N(εT) ∈ k×2,
εT /∈ k(T)×2 and RT has odd cardinality. By Corollary 5.2(3), the existence of such an
irreducible T implies that Br(G)/Br0(G) has order 2. Moreover, if t ∈ T(k(T)) then, by
Lemma 5.17, the set Rt ⊂ Ωk(T) has odd cardinality. Thus, by Theorem 5.15 applied over
k(T) we obtain an effective adelic 0-cycle of degree 2 over k, denote it by (zv), such that∑

v∈Ωk
invv(βT(zv)) = 1/2. If (yv) ∈ G(Ak) is any adelic point (which exists by Corollary 4.2),

then (zv − yv) is an adelic 0-cycle of degree 1 and, since G(Ak)
Br = G(Ak)

βT = ∅, we have∑
v∈Ωk

invv(βT(zv − yv)) =
∑

v∈Ωk
invv(βT(zv))−

∑
v∈Ωk

invv(βT(yv)) = 1/2− 1/2 = 0. �

Remark 6.6. In the cases not already covered by Corollary 6.1, the proof above hinges on
constructing an adelic 0-cycle of degree 2 on G that is not orthogonal to the Brauer group.
Lemma 5.13 can be used to give an alternative construction of such a 0-cycle. See Section 7.1.

6.2. Proof of Theorem 1.1. Let X ′ ⊂ Pnk be a smooth complete intersection of two
quadrics over k. The intersection of X ′ with a suitable linear subspace will yield a smooth
del Pezzo surface X of degree 4. If k is a local field, then the result follows from Theorem 4.1.
It remains to consider the case that k is global. The variety G parameterizing lines on the
quadrics in the pencil of quadrics containing X is birational to the symmetric square of X
by Proposition 3.3. So it suffices to prove that G has index 1. By Corollary 6.5, G has an
adelic 0-cycle of degree 1 orthogonal to the Brauer group. Since G is pencil of Severi-Brauer
varieties, [CTSD94, Theorem 5.1] shows that, when k is a number field, G must have a
0-cycle of degree 1.

6.3. Proof of Theorem 1.2. Let X ′ ⊂ Pnk be a smooth complete intersection of two
quadrics over k. As noted above, X ′ contains a smooth del Pezzo surface of degree 4 over
k. So Theorem 1.2(1) follows from Theorem 4.1. We now assume we are in case (2) of the
theorem. In particular, k is global.

We claim that X ′ contains a smooth del Pezzo surface X of degree 4 such that the cor-
responding Severi-Brauer pencil G has G(Ak)

Br 6= ∅. In case (2a) we have n ≥ 5. Then by
[Wit07, Section 3.5] the intersection of X ′ with an appropriate linear subspace is a smooth
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del Pezzo surface X of degree 4 with Br(X) = Br0(X). Corollary 5.2(7) implies that the
corresponding G has Br(G)/Br0(G) = 0, so G(Ak)

Br 6= ∅ by Corollary 6.1. Now we turn
our attention to (2b). If L/k is a quadratic field extension and Q ⊂ P4 is a rank 4 quadric
such that X = ∩σ∈Gal(L/k)σ(Q), then there exists a degree 2 point T ∈ S with k(T) = L and
{σ(Q)}σ∈Gal(L/k) = {Qs}s∈T(k). Thus, under the assumptions of (2b), for each irreducible

degree 2 subscheme T ⊂ S with N(εT) ∈ k×2, the geometric components of QT (which are
defined over L) each fail to have smooth local points at an even number of places of L. By
Lemma 5.16 this implies that RT has even cardinality. Thus, in either case, we may (as
explained in Remark 6.2) apply Corollary 6.1 and deduce that G(Ak)

Br 6= ∅.
When k is a number field, Serre proved, assuming Schinzel’s hypothesis, that the Brauer-

Manin obstruction is the only obstruction for fibrations of Severi-Brauer varieties (Serre’s
result is unpublished, but a more general result [CTSD94, Theorem 4.2] implies this re-
sult of Serre). Thus, assuming Schinzel’s hypothesis we obtain a k-point on G and, conse-
quently, a quadratic point on X. If we do not assume Schinzel’s hypothesis, it is enough to
find a quadratic extension K/k such that XK(AK)Br 6= ∅. The existence of such a K fol-
lows from Proposition 2.6(4), since as noted in Corollary 5.2(7) the map Br(X)/Br0(X)→
Br(G)/Br0(G) given by Proposition 2.6(1) is an isomorphism.

7. Complements and Remarks

7.1. Remarks on the cases not covered by Theorem 1.2. Suppose X is a smooth del
Pezzo surface of degree 4 with corresponding Severi-Brauer pencil G over a global field k of
characteristic not equal to 2 such that the conditions of Corollary 6.1 are not satisfied. As
noted in Remark 6.2 this implies that Br(G)/Br0(G) is cyclic of order 2, with the nontrivial
class represented by βT for an irreducible subscheme T ⊂ S of degree 2 with N(εT) ∈ k×2 for
which #RT is odd. By Corollary 6.3, βT obstructs weak approximation and so G(Ak)

Br 6= ∅
if and only if there exists a prime v ∈ Ωk such that the evaluation map βT : G(kv)→ Br(kv)
is not constant.

Let C ′T := CT + (ε,−∆T N(Q∞(vT))) ∈ Br(k) be the class appearing in Lemma 5.13 and
define

R′T := {v ∈ Ωk : εT /∈ k(Sv)
×2 and invv(C ′T) 6= 0} .

Since RT has odd cardinality, so too must R′T. In particular, R′T is nonempty. If Tv is reducible
for a prime v ∈ R′T, then Lemma 5.13 shows that the evaluation map βT : G(kv)→ Br(kv) is
nonconstant and so G(Ak)

Br = G(Ak)
βT 6= ∅. If Tv is irreducible at v ∈ R′T, then Lemma 5.13

shows that βT ⊗ k(Tv) : G(k(Tv)) → Br(k(Tv)) is nonconstant. Indeed the lemma gives a
k(Tv)-point where βT⊗k(Tv) takes the nonzero value C ′Tv , but βT⊗k(Tv) takes the value 0 at
any elements in the subset G(kv) ⊂ G(k(Tv)). Unfortunately, this is not enough to conclude
that G(Ak)

Br 6= ∅ because βT : G(kv)→ Br(kv) can still be constant. Using the lemma below
one can check that this occurs at v = 5 for the pencil of quadrics defined by

Q0 = −55x2
1 + 2x1x2 + x2

3 + 5x2
4 and Q∞ = 33x2

0 − 5x2
1 − x2

2 + 10x3x4 .

We note, however, that in this example (and in all others with R′T 6= ∅ that we have con-
sidered) there is some prime w ∈ Ωk (in this case w = 2) for which the evaluation map
βT : G(kw)→ Br(kw) is not constant and, hence, G(Ak)

Br 6= ∅.

Lemma 7.1. If v ∈ R′T is such that Tv is irreducible, kv has odd residue characteristic and
X(k(Tv)) = ∅, then βT : G(kv)→ Br(kv) is constant.
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Proof. Suppose X(k(Tv)) = ∅ and let y ∈ G(kv). Then y corresponds to a quadratic point
Spec(K) → X, with K/kv a quadratic field extension such that K 6= k(Tv). Since kv
has odd residue characteristic, k(TL) is the compositum of all quadratic extensions of kv. In
particular, it must contain a square root of εT (since εT ∈ k×v k(Tv)

×2). Therefore, Lemma 5.10
applies, and its conclusion shows that βT(y) does not depend on y. �

In contrast, the following lemma shows that for X (in place of G) nonconstancy of an
evaluation map over an extension of kv does imply nonconstancy over kv.

Lemma 7.2. Let X be a del Pezzo surface of degree 4 over a local field k such that X(k) 6= ∅.
If α ∈ Br(X) is such that invk ◦α : X(k) → Q/Z is constant, then for all finite extensions
K/k, invK ◦αK : X(K)→ Q/Z is constant and equal to [K : k](invk ◦α).

Remark 7.3. In the case that kv has odd residue characteristic, Tv is irreducible, εTv ∈ k×2
v ,

and invv(C ′T) 6= 0, Lemma 7.2 can be used to prove the converse of Lemma 7.1. Namely, if
βT is constant on kv-points, then X(k(Tv)) must be empty.

Proof. Let P ∈ X(k). By [SS91, Lemma 4.4] (which follows from [CTC79, Theorem C]),
every 0-cycle of degree 0 on X is linearly equivalent to one of the form Q − P for some
Q ∈ X(k). Therefore, for any closed point R on X, there is some Q ∈ X(k) such that R ∼
Q + (deg(R)− 1)P . Since evaluation of Brauer classes factors through rational equivalence
and by assumption α(P ) = α(Q), we see that invK ◦αK = [K : k](invk ◦α) for any extension
K/k. �

Remarks 7.4.

(1) The result of [CTC79] used in the proof above shows that every 0-cycle of degree
1 on a conic bundle with 5 or fewer degenerate fibers is rationally equivalent to
a rational point. The example mentioned just before Lemma 7.1 shows that this
does not extend to more general Severi-Brauer bundles (at least over a p-adic fields).
Indeed, evaluation of Brauer classes factors through rational equivalence and in the
example there is a Brauer class on G which is nonconstant on 0-cycles of degree 1,
but is constant on rational points.

(2) If X/k is a del Pezzo surface of degree 4 over a number field which is a counterexample
to the Hasse principle explained by the Brauer-Manin obstruction, then as shown
in [CTP00, Section 3.5] there exists α ∈ Br(X) such that X(Ak)

α = ∅ (a priori
multiple elements of Br(X) might be required to give the obstruction). An immediate
consequence of Lemma 7.2 is that over any odd degree extension K/k the same Brauer
class will give an obstruction, i.e., XK(AK)αK = ∅. This answers a question posed
in [CTP00, Remark 3, p. 95]. In particular, this shows that the conjecture that
all failures of the Hasse principle for del Pezzo surfaces of degree 4 are explained
by the Brauer-Manin obstruction is compatible with the theorems of Amer, Brumer
and Springer [Ame76,Bru78,Spr56] which imply that an intersection of quadrics with
index 1 has a rational point.

7.2. A degree 4 del Pezzo surface with obstructions only over odd degree exten-
sions.

Proposition 7.5. Let X/Q be the del Pezzo surface of degree 4 given by the vanishing of

Q0 = (x0 + x1)(x0 + 2x1)− x2
2 + 5x2

4 , and Q1 = 2(x0x1 − x2
2 + 5x2

3) .
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For any finite extension K/Q we have XK(AK)Br = ∅ if and only if [K : Q] is odd.

Proof. This surface was considered by Birch and Swinnerton-Dyer [BSD75] who showed that
X is a counterexample to the Hasse principle explained by the Brauer-Manin obstruction.
It follows from Lemma 7.2 that for any K with [K : Q] odd, XK is also a counterexample
to the Hasse principle explained by the Brauer-Manin obstruction.

Since X is locally soluble over Q, Br(X)/Br0(X) is generated by the image of Br(X)[2].

The singular quadrics in the pencil lie above S(Q) = {0,±1, ±4
√

2+5
7
} ⊂ P1 and the corre-

sponding discriminants satisfy ε0 = ε1 = 5, ε−1 = −1 and N(ε(±4
√

2+5)/7) = −1. For any

K/Q linearly disjoint from k1 = Q(
√
−1,
√

2,
√

5), the restriction map induces an isomor-
phism Br(X)/Br0(X) ' Br(XK)/Br0(XK) and so XK(AK)Br 6= ∅ by Lemma 2.1(2). On the
other hand, if K/Q is not linearly disjoint from k1, we can check directly that X(K) 6= ∅.
Indeed, K must contain Q(

√
d) for some d ∈ {−1,±2,±5,±10}. Over these quadratic fields

one can exhibit points:

(1 : 1 : 1 : 0 :
√
−1) , (1 : −2 : 2

√
2 :
√

2 : 1) , (4 : 9 : 6 : 0 : 5
√
−2) , (0 : 0 :

√
5 : 1 : 1) ,

(5 : 0 : 0 : 0 :
√
−5) , (2

√
10 : −

√
10 : 0 : 2 : 0) , (0 :

√
−10 : 0 : 0 : 2) .

�

7.3. A degree 4 del Pezzo surface with index 4.

Theorem 7.6. There exists a del Pezzo surface X of degree 4 over a field k of characteristic
0 such that X has index 4.

Proof. Let k0 be an algebraically closed field of characteristic 0. For i = 1, . . . , 2g, set
ki := ki−1((ti)) and set k := k2g. By a result of Lang and Tate [LT58, p. 678], if A/k0

is an abelian variety of dimension g and n is an integer, then there exists a torsor under
Ak = A ×k0 Spec(k) of period n and index n2g. In particular, if C/k0 is any genus 2 curve,
then there exists a torsor under the Jacobian J = Jac(Ck) of Ck of period 2 and index 16.
Since C is defined over the algebraically closed field k0, it has a rational Weierstrass point
over k. As observed by Flynn [Fly09], and worked out in detail by Skorobogatov [Sko10], if
Jλ is a 2-covering πλ : Jλ → J (i.e., a twist of [2] : J → J corresponding to λ ∈ H1(k, J [2])),
then there are morphisms

Jλ ← J̃λ → Zλ → Xλ ,

where J̃λ → Jλ is the blow up of Jλ at π−1
λ (0J), Zλ is the desingularized Kummer variety

associated to Jλ and Zλ → Xλ is a double cover of a del Pezzo surface of degree 4. In
particular, there is a degree 4 morphism J̃λ → Xλ. So the index of Xλ is at least index(Jλ)/4,
which will equal 4 for suitable choice of λ by the aforementioned result of Lang and Tate. �

Theorem 7.7. Suppose k is a number field and Y is a torsor of period 2 under the Jacobian
of a hyperelliptic curve over k with a rational Weierstrass point. The index of Y divides 8.

Proof. As in the proof of the previous theorem, the index of Y divides 4 index(X) for some
del Pezzo surface X of degree 4. The result follows from Theorem 1.1. �

Remarks 7.8.

(1) The conclusion of Theorem 7.7 was known to hold by work of Clark [Cla, Theorems 2
and 3] when k is a p-adic field and when k is a number field and Y is locally soluble.
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(2) Arguing as in the proof of the theorem we see that the Kummer variety Zλ has index
dividing 4 when k is local or global field. This is lower than one would expect, given
that Zλ is an intersection of 3 quadrics in P5

k.
(3) The result of Lang-Tate quoted in the proof above shows that over general fields of

characteristic 0, there are examples where Zλ and Y have index 8 and 16, respectively.
(4) In response to a preliminary report on this work by the authors, John Ottem sug-

gested the following alternate proof of Theorem 7.6. Let Y be an intersection of two
general (2, 2) divisors in P3×P4 over C, so that, by the Lefschetz hyperplane theorem,

restriction gives an isomorphism H4(P3 × P4,Z)
∼→ H4(Y,Z). Note that the generic

fiber of the first projection is a del Pezzo surface of degree 4 over k(P3). Hence any
threefold V ⊂ Y can be expressed as aH2

1 + bH1H2 + cH2
2 , where Hi denotes the

pullback of O(1) under the projection πi. Then the degree of V → P3 is given by

V.H3
1 = V.H3

1 .X = (aH2
1 + bH1H2 + cH2

2 ).H3
1 .(2H1 + 2H2)2,

which must be divisible by 4. Thus Yk(P3) has index 4.
This construction suggested by Ottem generalizes to arbitrary complete intersec-

tions. Namely, given a sequence of degrees (d1, . . . , dr) and an ambient dimension N ,
one can consider an intersection of general (d1, d1), (d2, d2), . . . , (dr, dr) hypersurfaces
in PM × PN . If M > N − r, then the same argument as above yields a (d1, . . . , dr)
smooth complete intersection Y ⊂ PNk(PM ) with index d1d2 · · · dr.

(5) After viewing an early draft of this paper, Olivier Wittenberg shared a correspondence
of his from 2013 that provides yet another construction that proves Theorem 7.6. Wit-
tenberg uses degenerations to geometrically reducible quadrics to construct complete
intersections of n quadrics with index 2n [Wit13].

7.4. The index of a degree d del Pezzo surface. The following table gives sharp upper
bounds for the indices of degree d del Pezzo surfaces over local fields, number fields and
arbitrary fields of characteristic 0. The entries in the column d = 4 are a consequence of the
results in this paper, while for d 6= 4, they can be deduced fairly easily from known results
as described below.

d 9 8 7 6 5 4 3 2 1

k arbitrary 3 4 1 6 1 4 [Thm. 7.6] 3 2 1
k a number field 3 2 1 6 1 2 [Thm. 1.1] 3 2 1
k a local field 3 2 1 2 or 3 1 2 [Thm. 1.1] 3 2 1

When d = 9, Y is a Severi-Brauer surface and so the index of Y divides 3 and examples
of index 3 exist whenever Br(k) contains an element of order 3.

When d = 8, Y = ResL/k(C) is the restriction of scalars of a conic C/L defined over a
degree 2 étale algebra L/k [Poo17, Prop. 9.4.12]. Since the conic has a point over some
quadratic extension L′/L, the index of Y divides 4 and over general fields there are examples
with index 4. Over local and global fields however, the index must divide 2. Indeed, in
this case C will have a point over a quadratic extension L′/L of the form L′ = k′ ⊗k L for
some quadratic extension k′/k. The universal property of restriction of scalars then gives
Y (k′) 6= ∅, showing that the index divides 2.

When d = 7, Y (k) 6= ∅ over any field k and so the index is always equal to 1. The same
applies to d = 1, 5 (see, e.g., [Poo17, Thm 9.4.8 and Section 9.4.11]).
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For d = 6, Y is determined by a Gal(L/k)-stable triple of geometric points on a Severi-
Brauer surface S/L over a quadratic étale algebra L/k such that if S 6' P2

L then the class of
S in the Brauer group does not lie in the image of Br(k) → Br(L) [Cor05]. If k is a local
field and L is a quadratic field extension, then the map Br(k) → Br(L) is an isomorphism,
so either S = P2

L (in which case Y has index dividing 2) or L = k×k in which case the index
of Y divides 3. One can construct examples of index 6 over number fields, by arranging to
have index 2 at one completion and index 3 at another.

For d = 3 and k local, index 1 implies the existence of a k-rational point [Cor76], and so a
cubic surface without points over some local field has index 3. This gives examples of index
3 over number fields as well.

For d = 2, index 2 examples can be obtained by blowing up a degree 4 del Pezzo surface
of index 2 at a quadratic point. By Theorems 1.1 and 1.2, any del Pezzo surface of degree 4
without points over a local field gives such an example. The surface considered in Section 7.2
gives an example over a number field.

References

[Ame76] M. Amer, Quadratische Formen über Funktionenkörpern (1976). unpublished dissertation. ↑1,
4, 4, 2

[AKM+01] Sang Yook An, Seog Young Kim, David C. Marshall, Susan H. Marshall, William G. McCallum,
and Alexander R. Perlis, Jacobians of genus one curves, J. Number Theory 90 (2001), no. 2,
304–315, DOI 10.1006/jnth.2000.2632. ↑4

[BSD75] B. J. Birch and H. P. F. Swinnerton-Dyer, The Hasse problem for rational surfaces, J. Reine
Angew. Math. 274(275) (1975), 164–174, DOI 10.1515/crll.1975.274-275.164. ↑1.1, 7.2

[Bru78] Armand Brumer, Remarques sur les couples de formes quadratiques, C. R. Acad. Sci. Paris Sér.
A-B 286 (1978), no. 16, A679–A681 (French, with English summary). ↑1, 4, 4, 2

[Che98] Jan Cheah, Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183
(1998), no. 1, 39–90, DOI 10.2140/pjm.1998.183.39. ↑2

[Cla] Pete Clark, The period-index problem in WC-groups II: abelian varieties, available at arXiv:

math/0406135. preprint. ↑1
[CTC79] Jean-Louis Colliot-Thélène and Daniel Coray, L’équivalence rationnelle sur les points fermés

des surfaces rationnelles fibrées en coniques, Compositio Math. 39 (1979), no. 3, 301–332
(French). ↑1.2, 7.1, 1

[CTP00] Jean-Louis Colliot-Thélène and Bjorn Poonen, Algebraic families of nonzero elements of
Shafarevich-Tate groups, J. Amer. Math. Soc. 13 (2000), no. 1, 83–99, DOI 10.1090/S0894-
0347-99-00315-X. ↑1.2, 2

[CTS80] J.-L. Colliot-Thélène and J.-J. Sansuc, La descente sur les variétés rationnelles, Journées de
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