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Abstract. We say a closed point x on a curve C is sporadic if C has only finitely many
closed points of degree at most deg(x) and that x is isolated if it is not in a family of
effective degree d divisors parametrized by P1 or a positive rank abelian variety (see Section 4
for more precise definitions and a proof that sporadic points are isolated). Motivated by
well-known classification problems concerning rational torsion of elliptic curves, we study
sporadic and isolated points on the modular curves X1(N). In particular, we show that
any non-cuspidal non-CM sporadic, respectively isolated, point x ∈ X1(N) maps down to
a sporadic, respectively isolated, point on a modular curve X1(d), where d is bounded by a
constant depending only on j(x). Conditionally, we show that d is bounded by a constant
depending only on the degree of Q(j(x)), so in particular there are only finitely many j-
invariants of bounded degree that give rise to sporadic or isolated points.

1. Introduction

Let E be an elliptic curve over a number field k. It is well-known that the torsion sub-
group E(k)tors is a finite subgroup of (Q/Z)2. In 1996, Merel [Mer96], building on work of
Mazur [Maz77] and Kamienny [Kam92], proved the landmark uniform boundedness theorem:
that for any positive integer d, there exists a constant B = B(d) such that for all number
fields k of degree at most d and all elliptic curves E/k,

#E(k)tors ≤ B(d).

Merel’s theorem can equivalently be phrased as a statement about closed points on modular
curves: that for any positive integer d, there exists a constant B′ = B′(d) such that for
n > B′, the modular curve X1(n)/Q has no non-cuspidal degree d points.

Around the same time as Merel’s work, Frey [Fre94] observed that Faltings’s theorem
implies that an arbitrary curve C over a number field k can have infinitely many points
of degree at most d if and only if these infinitely many points are parametrized by P1

k or
a positive rank subabelian variety of Jac(C).1 From this, Frey deduced that if a curve
C/k has infinitely many degree d-points, then the k-gonality of the curve2 must be at most
2d. Frey’s criterion combined with Abramovich’s lower bound on the gonality of modular
curves [Abr96] immediately shows that there exists a (computable!) constant B′′ = B′′(d)
such that for n > B′′, the modular curve X1(n)/Q has only finitely many degree d points,
or in other words, that for n > B′′ all degree d points on X1(n) are sporadic.3 Thus, the

1While Frey assumes that C has a k-point, an inspection of the proof reveals that this is needed only to obtain
a k-morphism Symd(C) → Jac(C). Since the existence of a degree d point also guarantees the existence of
a suitable such morphism, the hypothesis on the existence of a rational point can be removed.
2The k-gonality of a curve C is the minimal degree of a k-rational map φ : C → P1

k.
3A closed point x on a curve C is sporadic if C has only finitely many points of degree at most deg(x).
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strength of the uniform boundedness theorem is in controlling the existence of sporadic points
of bounded degree on X1(n) as n tends to infinity.

In this paper, we study sporadic points and, more generally, isolated4 points of arbitrary
degree, focusing particularly on such points corresponding to non-CM elliptic curves. We
prove that non-CM non-cuspidal sporadic, respectively isolated, points on X1(n) map to
sporadic, respectively isolated, points on X1(d), for d some bounded divisor of n.

Theorem 1.1. Fix a non-CM elliptic curve E over k, and let m be an integer divisible
by 2, 3 and all primes ` where the `-adic Galois representation of E is not surjective. Let
M = M(E,m) be the level of the m-adic Galois representation of E and let f denote the
natural map X1(n) → X1(gcd(n,M)). If x ∈ X1(n) is sporadic, respectively isolated, with
j(x) = j(E), then f(x) ∈ X1(gcd(n,M)) is sporadic, respectively isolated.

For many elliptic curves, we may take both m and M to be quite small. For instance,
let E be the set of elliptic curves over Q where the `-adic Galois representation is surjective
for all ` > 3 and where the 6-adic Galois representation has level dividing 24. Note that
E contains all Serre curves [Ser72, Proof of Prop. 22] (that is, elliptic curves over Q whose

adelic image is of index 2 in GL2(Ẑ), which is as large as possible) and hence contains almost
all elliptic curves over Q when counted according to height [Jon10, Theorem 4]. For E ∈ E ,
we may apply Theorem 1.1 with m = 6 and M |24.

The curve X1(24) has infinitely many quartic points, but no rational or quadratic points,
nor cubic points corresponding to elliptic curves over Q [Maz77, KM88, Mor19]. Therefore
X1(24) has no sporadic points with Q-rational j-invariant. For M a proper divisor of 24, the
curves X1(M) have genus 0, and so also have no sporadic points. Hence Theorem 1.1 yields
the following corollary.

Corollary 1.2. For all n, there are no sporadic points on X1(n) corresponding to elliptic
curves in E. In particular, there are no sporadic points corresponding to Serre curves.

In addition to giving strong control on sporadic points over a fixed j-invariant, we are
also able to use Theorem 1.1 to derive a uniform version that is conditional on a folklore
conjecture motivated by a question of Serre.

Conjecture 1.3 (Uniformity Conjecture). Fix a number field k. There exists a constant
C = C(k) such that for all non-CM elliptic curves E/k, the mod-` Galois representation of
E is surjective for all ` > C.

Conjecture 1.4 (Strong Uniformity Conjecture). Fix a positive integer d. There exists a
constant C = C(d) such that for all degree d number fields k and all non-CM elliptic curves
E/k, the mod-` Galois representation of E is surjective for all ` > C.

Remark 1.5. Conjecture 1.3 when k = Q, or equivalently Conjecture 1.4 when d = 1, is
the case originally considered by Serre [Ser72, §4.3]. In this case, Serre asked whether C
could be taken to be 37 [Ser81, p.399]. The choice C = 37 has been formally conjectured by
Zywina [Zyw, Conj. 1.12] and Sutherland [Sut16, Conj. 1.1].

Theorem 1.6. Assume Conjecture 1.3. Then for any number field k, there exists a positive
integer M = M(k) such that if x ∈ X1(n) is a non-cuspidal, non-CM sporadic, respectively

4A closed point x on a curve C is isolated if it is not contained in a family of effective degree d divisors
parametrized by P1 or a positive rank abelian variety. See Definition 4.1 for more details.
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isolated, point with j(x) ∈ k, then π(x) ∈ X1(gcd(n,M)) is a sporadic, respectively isolated,
point. Moreover, if the stronger Conjecture 1.4 holds, then M depends only on [k : Q].

We call a point in j ∈ X1(1) ∼= P1 an isolated j-invariant if it is the image of an isolated
point on X1(n), for some positive integer n . Since any curve only has finitely many isolated
points (see Theorem 4.2(2)) and there are only finitely many CM j-invariants of bounded
degree, we immediately obtain the following corollary.

Corollary 1.7. Fix a number field k.

a) Assume Conjecture 1.3. There are finitely many k-rational isolated j-invariants.
b) Assume Conjecture 1.4. There are finitely many isolated j-invariants of bounded degree.

The integer M in Theorem 1.6 depends on the constant C(k) or C(d) from Conjecture 1.3
or Conjecture 1.4, respectively, and also depends on a uniform bound for the level of the
`-adic Galois representation for all ` ≤ C(k), respectively C(d). The existence of this latter
bound depends on Faltings’s Theorem and as such is ineffective. However, in the case when
k = Q, it is possible to make a reasonable guess for M . This is discussed more in Section 8.

1.1. Prior work. CM elliptic curves provide a natural class of examples of sporadic points
due to fundamental constraints on the image of the associated Galois representation. Indeed,
Clark, Cook, Rice, and Stankewicz show that there exist sporadic points corresponding to
CM elliptic curves on X1(`) for all sufficiently large primes ` [CCS13]. Sutherland has
extended this argument to include composite integers [Sut].

In the non-CM case, all known results on sporadic points have arisen from explicit versions
of Merel’s theorem for low degree. For instance, in studying cubic points on ∪n∈NX1(n),
Najman identified two degree 3 sporadic points on X1(21) all corresponding to the same non-
CM elliptic curve with rational j-invariant [Naj16]. Derickx, Etropolski, van Hoeij, Morrow,
and Zureick-Brown are currently classifying all degree 3 non-cuspidal non-CM sporadic points
on X1(n), and preliminary results suggest that these examples of Najman are the only
examples [DEvH+]. Work of van Hoeij [vH], Derickx–van Hoeij [DvH14], and Derickx–
Sutherland [DS17] show that there are additional sporadic points, e.g., degree 5 points on
X1(28) and X1(30) and a degree 6 point on X1(37).

There are also examples of isolated points that are not sporadic. Derickx and van Hoeij
[DvH14] have shown X1(25) has a (nonempty) finite collection of points of degree d = 6 and
d = 7. These points are isolated by Theorem 4.2, but not sporadic since the Q-gonality of
X1(25) is 5. In general, having infinitely points on a curve of degree d does not preclude the
existence of isolated points of degree d: see [Sik09,BN15,GM,Box] for some examples.

1.2. Outline. We set notation and review relevant background in Section 2. In Section 3
we record results about subgroups of GL2(Ẑ) that will be useful in later proofs; in particular,
Proposition 3.7 is useful for determining the level of an m-adic Galois representation from
information about the `-adic representations. In Section 4, we prove a general criterion for
the images of sporadic or isolated points to remain sporadic or isolated (Theorem 4.3); this
result is likely of independent interest. In Section 5, we study isolated points on modular
curves over a fixed non-CM j-invariant and prove Theorem 1.1. This is then used in Section 6
to prove Theorem 1.6.

Theorem 1.6 implies that, assuming Conjecture 1.4, there are finitely many isolated j-
invariants of bounded degree. This raises two interesting questions:
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(1) Are there finitely many isolated points lying over j-invariants of bounded degree, or
can there be infinitely many isolated points over a single j-invariant?

(2) In the case of degree 1, when there is strong evidence for Conjecture 1.4, can we come
up with a candidate list for the rational isolated j-invariants?

Question 1 is the focus of Section 7, where we show that any CM j-invariant has infinitely
many isolated (and in fact, sporadic!) points lying over it. Section 8 focuses on Question 2;
there we provide a candidate list of levels from which the rational isolated j-invariants can
be found.
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2. Background and notation

2.1. Conventions. Throughout, k denotes a number field, Q denotes a fixed algebraic clo-
sure of Q, and Galk denotes the absolute Galois group Gal(Q/k).

We use ` to denote a prime number and Z` to denote the `-adic integers. For any positive
integer m, we write Supp(m) for the set of prime divisors of m and write Zm :=

∏
`∈Supp(m) Z`.

We use S to denote a set of primes, typically finite; when S is finite, we write mS :=
∏

`∈S `.

For any subgroup G of GL2(Ẑ) and any positive integer n, we write Gn and Gn∞ , respec-
tively for the images of G under the projections

GL2(Ẑ)→ GL2(Z/nZ) and GL2(Ẑ)→ GL2(Zn).

In addition, for any positive integer m relatively prime to n we write Gn·m∞ for the image
of G under the projection

GL2(Ẑ)→ GL2(Z/nZ)×GL2(Zm).

Throughout, we will abuse notation and use π to denote any natural projection map among
the groups G,Gn∞ , and Gn.

By curve we mean a projective nonsingular geometrically integral 1-dimensional scheme
over a field. For a curve C, we write k(C) for the function field of C and PicC for the Picard
scheme of C. For any non-negative integer d, we write PicdC for the connected component of
PicC consisting of divisor classes of degree d and SymdC for the dth symmetric product of
C, i.e., Cd/Sd. If C is defined over the field K, we use gonK(C) to denote the K-gonality of
C, which is the minimum degree of a dominant morphism C → P1

K . If x is a closed point
of C, we denote the residue field of x by k(x) and define the degree of x to be the degree

4



of the residue field k(x) over K. A point x on a curve C/K is sporadic if there are only
finitely many points y ∈ C with deg(y) ≤ deg(x). We also consider other related properties
of a closed point on a curve: isolated, P1-isolated, and AV-isolated; these terms are defined in
Section 4.

We use E to denote an elliptic curve, i.e., a curve of genus 1 with a specified point O.
Unless stated otherwise, we will consider only elliptic curves defined over number fields. We
say that an elliptic curve E over a field K has complex multiplication, or CM, if the geometric
endomorphism ring is strictly larger than Z. Given an elliptic curve E over a number field
k, an affine model of E is given by a short Weierstrasss equation y2 = x3 +Ax+B for some
A,B ∈ k. Then the j-invariant of E is j(E) := 1728 4A3

4A3+27B2 and uniquely determines the
geometric isomorphism class of E. For a positive integer n, we write E[n] for the subgroup
of E consisting of points of order at most n.

2.2. Modular Curves. For a positive integer n, let

Γ1(n) := {( a bc d ) ∈ SL2(Z) : c ≡ 0 (mod n), a ≡ d ≡ 1 (mod n)} .

The group Γ1(n) acts on the upper half plane H via linear fractional transformations, and
the points of the Riemann surface

Y1(n) := H/Γ1(n)

correspond to C-isomorphism classes of elliptic curves with a distinguished point of order n.
That is, a point in Y1(n) corresponds to an equivalence class of pairs [(E,P )], where E is an
elliptic curve over C and P ∈ E is a point of order n, and where (E,P ) ∼ (E ′, P ′) if there
exists an isomorphism ϕ : E → E ′ such that ϕ(P ) = P ′. By adjoining a finite number of
cusps to Y1(n), we obtain the smooth projective curve X1(n). Concretely, we may define the
extended upper half plane H∗ := H ∪ Q ∪ {∞}. Then X1(n) corresponds to the extended
quotient H∗/Γ1(n). In fact, we may view X1(n) as an algebraic curve defined over Q (see
[DS05, Section 7.7] or [DR73] for more details).

2.2.1. Degrees of non-cuspidal algebraic points. If x = [(E,P )] ∈ X1(n)(Q) is a non-cuspidal
point, then the moduli definition implies that deg(x) = [Q(j(E), h(P )) : Q], where h : E →
E/Aut(E) ∼= P1 is a Weber function for E. From this we deduce the following lemma:

Lemma 2.1. Let E be a non-CM elliptic curve defined over the number field k = Q(j(E)),
let P ∈ E be a point of order n, and let x = [(E,P )] ∈ X1(n). Then

deg(x) = cx[k(P ) : Q],

where cx = 1/2 if 2P 6= O and there exists σ ∈ Galk such that σ(P ) = −P and cx = 1
otherwise.

Proof. Let E be a non-CM elliptic curve defined over k = Q(j(E)) and let h be a Weber
function for E. If σ ∈ Galk(h(P )), then σ(P ) = ξ(P ) for some ξ ∈ Aut(E). Thus in the case
where Aut(E) = {±1},

[k(P ) : k(h(P ))] = 1 or 2.

If there exists σ ∈ Galk such that σ(P ) = −P , then [k(P ) : k(h(P ))] = 2 and cx = 1/2.
Otherwise k(P ) = k(h(P )) and cx = 1. �
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2.2.2. Maps between modular curves.

Proposition 2.2. For positive integers a and b, there is a natural Q-rational map f : X1(ab)→
X1(a) with

deg(f) = cf · b2
∏
p|b, p-a

(
1− 1

p2

)
,

where cf = 1/2 if a ≤ 2 and ab > 2 and cf = 1 otherwise.

Proof. Since Γ1(ab) ⊂ Γ1(a), we have a natural map X1(ab) → X1(a) that complex ana-
lytically is induced by Γ1(ab)τ 7→ Γ1(a)τ for τ ∈ H∗. On non-cuspidal points, this map
has the moduli interpretation [(E,P )] 7→ [(E, bP )], which shows that it is Q-rational.
Since −I ∈ Γ1(n) if and only if n|2, the degree computation then follows from the for-
mula [DS05, p.66], which states

deg(f) =

{
[Γ1(a) : Γ1(ab)]/2 if − I ∈ Γ1(a) and − I 6∈ Γ1(ab)

[Γ1(a) : Γ1(ab)] otherwise.
�

2.3. Galois Representations of Elliptic Curves. Let E be an elliptic curve over a num-
ber field k. Let n be a positive integer. After fixing two generators for E(k)[n], we obtain a
Galois representation

ρE,n : Galk → GL2(Z/nZ).

Note that the conjugacy class of the image of ρE,n is independent of the choice of generators.
After choosing compatible generators for each n, we obtain a Galois representation

ρE : Galk → GL2(Ẑ) ∼=
∏
`

GL2(Z`),

which agrees with ρE,n after reduction modulo n. For any positive integer n we also define

ρE,n∞ : Galk → GL2(Zn)

to be the composition of ρE with the projection onto the `-adic factors for `|n. Note that
ρE,n∞ depends only on the support of n. We refer to ρE,n, ρE,n∞ , and ρE as the mod n
Galois representation of E, the n-adic Galois representation of E, and the adelic Galois
representation of E, respectively.

If E/k does not have complex multiplication, then Serre’s Open Image Theorem [Ser72]

states that ρE(Galk) is open—and hence of finite index—in GL2(Ẑ). Since the kernels of

the natural projection maps GL2(Ẑ) → GL2(Z/nZ) form a fundamental system of open

neighborhoods of the identity in GL2(Ẑ) [RZ10, Lemma 2.1.1], it follows that for any open

subgroup G of GL2(Ẑ) there exists m ∈ Z+ such that G = π−1(G mod m). Thus Serre’s
Open Image Theorem can be rephrased in the following way: for any non-CM elliptic curve
E/k, there exists a positive integer M such that

im ρE = π−1(im ρE,M).

We call the smallest such M the level and denote it ME. Similarly, for any finite set of
primes S, we let ME(S) be the least positive integer such that im ρE,m∞S = π−1(im ρE,ME(S))
and we say that ME(S) is the level of the mS-adic Galois representation.

We also define

SE = SE/k := {2, 3} ∪ {` : ρE,`∞(Galk) 6⊃ SL2(Z`)} ∪ {5, if ρE,5∞(Galk) 6= GL2(Z5)} ; (2.1)
6



by Serre’s Open Image Theorem, this is a finite set.
For any elliptic curve E/Q with discriminant ∆E,5 Serre observed that the field Q(

√
∆E)

is contained in the 2-division field Q(E[2]) as well as a cyclotomic field Q(µn) for some n,
which in turn is contained in the n-division field Q(E[n]). Thus if ` > 2 is a prime that
divides the squarefree part of ∆E, then 2` must divide the level ME (see [Ser72, Proof of
Prop. 22] for more details). In particular, the level of an elliptic curve can be arbitrarily
large. In contrast, for a fixed prime `, the level of the `-adic Galois representation is bounded
depending only on the degree of the field of definition.

Theorem 2.3 ([CT13, Theorem 1.1], see also [CP18, Theorem 2.3]). Let d be a positive
integer and let ` be a prime number. There exists a constant C = C(d, `) such that for all
number fields k of degree d and all non-CM elliptic curves E/k,

[GL2(Z`) : im ρE,`∞ ] < C.

3. Subgroups of GL2(Ẑ)

The proofs in this paper involve a detailed study of the mod-n, `-adic and adelic Galois
representations associated to elliptic curves. As such, we use a number of properties of
closed subgroups of GL2(Ẑ) and subgroups of GL(Z/nZ) that we record here. Throughout

G denotes a subgroup of GL2(Ẑ).
In Section 3.1, we state Goursat’s lemma. In Section 3.2 we show that if ` = 5 and

G5 = GL2(Z/5Z) or if ` > 5 is a prime such that G` ⊃ SL2(Z/`Z), then for any integer
n relatively prime to `, the kernel of the projection G`sn → Gn is large, in particular, it
contains SL2(Z/`sZ). This proof relies on a classification of subquotients of GL2(Z/nZ): that
GL2(Z/nZ) can contain a subquotient isomorphic to PGL2(Z/5Z) or PSL2(Z/`Z) for ` > 5
only if 5|n or `|n respectively. This result is known in the case ` > 5 (see [Coj05, Appendix,
Corollary 11]), but we are not aware of a reference in the case ` = 5. In Section 3.3 we review
results of Lang and Trotter that show that the level of a finite index subgroup of GL2(Z`)
can be bounded by its index. Finally in Section 3.4 we show how to obtain the m-adic level
of a group from information of its `-adic components.

3.1. Goursat’s Lemma.

Lemma 3.1 (Goursat’s Lemma, see e.g., [Lan02, pg75] or [Gou89]). Let G,G′ be groups and
let H be a subgroup of G×G′ such that the two projection maps

ρ : H → G and ρ′ : H → G′

are surjective. Let N := ker(ρ) and N ′ := ker(ρ′); one can identify N as a normal subgroup
of G′ and N ′ as a normal subgroup of G. Then the image of H in G/N ′×G′/N is the graph
of an isomorphism

G/N ′ ' G′/N.

5While the discriminant depends on a Weierstrass model, the class of ∆E ∈ Q×/Q×2 is independent of
the choice of model. Since we are concerned only with ∆E mod squares, we allow ourselves this abuse of
notation.
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3.2. Kernels of reduction maps.

Proposition 3.2. Let ` ≥ 5 be a prime. Assume that G` ⊃ SL2(Z/`Z) when ` > 5 and
G` = GL2(Z/`Z) when ` = 5. Then SL2(Z/`sZ) ⊂ ker(G`sn → Gn) for any positive integer
n with ` - n.

For ` > 5, a key ingredient in the proof is a classification result that implies that
PSL2(Z/`Z) cannot appear as a subquotient of Gn [Coj05, Appendix, Corollary 11]. This is
false when ` = 5 (for instance, there is a subquotient of GL2(Z/11Z) that is isomorphic to
PSL2(Z/5Z)). However, we prove that PGL2(Z/5Z) cannot be isomorphic to a subquotient
of Gn unless 5|n.

Lemma 3.3. Let n be a positive integer. If GL2(Z/nZ) has a subquotient that is isomorphic
to PGL2(Z/5Z), then 5 | n.

Remark 3.4. Throughout the proof, we freely use the isomorphism PGL2(Z/5Z) ∼= S5 and
PSL2(Z/5Z) ∼= A5 to deduce information about subgroups and subquotients contained in
these groups.

Proof. The lemma is a straightforward consequence of the following 3 claims (Claim (2) is
applied to the set T = Supp(n)).

(1) The projection

GL2(Z/nZ)→
∏

p∈Supp(n)

PGL2(Z/pZ)

is an injection when restricted to any subquotient isomorphic to PGL2(Z/5Z).
(2) Let ∅ 6= S ( T be finite sets of primes. If

∏
p∈T PGL2(Z/pZ) has a subquotient

isomorphic to PGL2(Z/5Z) then so does at least one of∏
p∈S

PGL2(Z/pZ) or
∏

p∈T−S

PGL2(Z/pZ).

Hence, by induction, if
∏

p∈T PGL2(Z/pZ) has a subquotient isomorphic to PGL2(Z/5Z)

then PGL2(Z/pZ) has a subquotient isomorphic to PGL2(Z/5Z) for some p ∈ T .
(3) If p is a prime and PGL2(Z/pZ) has a subquotient isomorphic to PGL2(Z/5Z), then

p = 5.

Proof of Claim 1: LetN C G < GL2(Z/nZ) be subgroups and let π denote the surjective
map

π : GL2(Z/nZ)→
∏

p∈Supp(n)

PGL2(Z/pZ).

Using the isomorphism theorems, we obtain the following

π(G)

π(N)
∼=
G/(G ∩ kerπ)

N/(N ∩ kerπ)
∼=

G

N · (G ∩ kerπ)
∼=

G/N

(G ∩ kerπ)/(N ∩ kerπ)
. (3.1)

For each prime p, the kernel of GL2(Z/pmZ) → GL2(Z/pZ) is a p-group and the kernel of
GL2(Z/pZ)→ PGL2(Z/pZ) is a cyclic group, so kerπ is a direct product of solvable groups.
Hence kerπ is solvable and so is (G ∩ kerπ)/(N ∩ kerπ) for any N C G < GL2(Z/nZ).
Since the only solvable normal subgroup of PGL2(Z/5Z) is the trivial group, if G/N ∼=
PGL2(Z/5Z), then π(G)/π(N) ∼= G/N .
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Proof of Claim 2: Let N C G <
∏

p∈T PGL2(Z/pZ) be subgroups such that G/N ∼=
PGL2(Z/5Z). LetH be the normal subgroup ofG containingN such thatH/N ∼= PSL2(Z/5Z).
Consider the following two maps

πS :
∏
p∈T

PGL2(Z/pZ)→
∏
p∈S

PGL2(Z/pZ) and πSc :
∏
p∈T

PGL2(Z/pZ)→
∏

p∈T−S

PGL2(Z/pZ).

Since the only quotient of PGL2(Z/5Z) that contains a subgroup isomorphic to PSL2(Z/5Z)
is PGL2(Z/5Z) itself, by (3.1) it suffices to show that either πS(H)/πS(N) or πSc(H)/πSc(N)
is isomorphic to PSL2(Z/5Z). Furthermore, since PSL2(Z/5Z) is simple, it suffices to rule out
the case where πS(H) = πS(N) and πSc(H) = πSc(N), which by the isomorphism theorems
are equivalent, respectively, to the conditions that

H ∩ kerπS
N ∩ kerπS

∼= PSL2(Z/5Z) and
H ∩ kerπSc

N ∩ kerπSc

∼= PSL2(Z/5Z).

Let

HS :=(H ∩ kerπS) · (H ∩ kerπSc) ∼= (H ∩ kerπS)× (H ∩ kerπSc),

NS :=(N ∩ kerπS) · (N ∩ kerπSc) ∼= (N ∩ kerπS)× (N ∩ kerπSc).

Assume by way of contradiction that HS/NS
∼= H∩kerπS

N∩kerπS
× H∩kerπSc

N∩kerπSc
∼= (PSL2(Z/5Z))2, and

consider the normal subgroup (HS ∩N)/NS. The isomorphism theorems yield an inclusion

HS/NS

(HS ∩N)/NS

∼= HS/(HS ∩N) ∼= HSN/N ↪→ H/N ∼= PSL2(Z/5Z),

so (HS ∩N)/NS must be a nontrivial normal subgroup of HS/NS. However, the only proper
nontrivial normal subgroups of (PSL2(Z/5Z))2 are PSL2(Z/5Z)×{1} or {1}×PSL2(Z/5Z),
so NS must contain either H ∩ kerπS or H ∩ kerπSc , which results in a contradiction.

Proof of Claim 3: Let G < PGL2(Z/pZ) be a subgroup that has a quotient isomorphic
to PGL2(Z/5Z). If p - #G, then by [Ser72, Section 2.5], G must be isomorphic to a cyclic
group, a dihedral group, A4, S4 or A5

∼= PSL2(Z/5Z), so has no quotient isomorphic to
PGL2(Z/5Z). Thus, p must divide #G. Then G ∩ PSL2(Z/pZ) is also of order divisible
by p and so by [Suz82, Theorem 6.25, Chapter 3], G ∩ PSL2(Z/pZ) is solvable or equal to
PSL2(Z/pZ). Since G has a quotient isomorphic to PGL2(Z/5Z), G ∩ PSL2(Z/pZ) cannot
be solvable and hence G = PGL2(Z/pZ) and p = 5. �

Proof of Proposition 3.2. Since we have G`sn < GL2(Z/`snZ) ' GL2(Z/`sZ)×GL2(Z/nZ),
there are natural surjective projection maps

πs : G`sn → G`s and $s : G`sn → Gn.

Observe that kerπs and ker$s can be identified as normal subgroups of Gn and G`s respec-
tively, and by Goursat’s Lemma (see Lemma 3.1), we have

G`s/ ker$s
∼= Gn/ kerπs. (3.2)

We first prove the proposition for the case when s = 1. By [Art57, Theorem 4.9], ker$1 either
contains SL2(Z/`Z) or is a subgroup of the center Z(GL2(Z/`Z)) of GL2(Z/`Z). If ker$1 ⊆
Z(GL2(Z/`Z)) and ` = 5, then the left-hand side of (3.2) has a quotient PGL2(Z/5Z), which
contradicts Lemma 3.3 since the right-hand side cannot have such a quotient. Similarly, if
ker$1 ⊆ Z(GL2(Z/`Z)) and ` > 5, then the left-hand side of (3.2) has a subquotient
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PSL2(Z/`Z), which is impossible by [Coj05, Appendix, Corollary 11]. Therefore, ker$1

must contain SL2(Z/`Z).
For s > 1, since $s is surjective and factors through

G`sn ⊂ GL2(Z/`snZ)→ GL2(Z/`nZ)→ GL2(Z/nZ),

ker$s ⊂ GL2(Z/`sZ) maps surjectively onto ker$1 ⊂ GL2(Z/`Z). Then the proposition
follows from [Coj05, Appendix, Lemma 12]. �

3.3. Bounding the level from the index.

Proposition 3.5 ([LT76, Part I, §6, Lemmas 2 & 3]). Let ` be a prime and let G be a closed
subgroup of GL2(Z`). Set s0 = 1 if ` is odd and s0 = 2 otherwise. If

ker(G mod `s+1 → G mod `s) = I + M2(`
sZ/`s+1Z)

for some s ≥ s0, then

ker(G→ G mod `s) = I + `s M2(Z`).

Remark 3.6. This proof follows the one given by Lang and Trotter. We repeat it here for
the reader’s convenience and to show that the proof does give the lemma as stated, even
though the statement of [LT76, Part I, §6, Lemmas 2 & 3] is slightly weaker.

Proof. For any positive integer n, let Un := ker(G→ G mod `n) and let Vn := I+ `n M2(Z`).
Note that for all n, Un ⊂ Vn and Un = U1 ∩ Vn.

Observe that for s ≥ s0, raising to the `th power gives the following maps

Vs/Vs+1
∼→ Vs+1/Vs+2, and Us/Us+1 ↪→ Us+1/Us+2.

By assumption, the natural inclusion Us/Us+1 ⊂ Vs/Vs+1 is an isomorphism for some s ≥ s0.
Combining these facts, we get the following commutative diagram for any positive k:

Us/Us+1 Vs/Vs+1

Us+k/Us+k+1 Vs+k/Vs+k+1,

∼

∼

where the vertical maps are raising to the (`k)th power and the horizontal maps are the
natural inclusions. Hence, Us+k/Us+k+1 = Vs+k/Vs+k+1 for all k ≥ 0 and so Us = Vs. �

3.4. Determining m-adic level from level of `-adic components.

Proposition 3.7. Let `1, . . . , `q be distinct primes and let m :=
∏q

i=1 `i. For i = 1, . . . , q,

let ti ≥ 1 be positive integers and let mi :=
∏

j 6=i `j. If G is a closed subgroup of GL2(Ẑ) such

that Gmi·`i∞ = π−1(Gmi`i
ti ) for each i, then Gm∞ = π−1(GM) for M =

∏q
i=1 `i

ti.

Proof. For any 1 ≤ i ≤ q and ri ≥ 0, consider the following commutative diagram of natural
reduction maps.

GM`i
ri

// //

����

GM

����
Gmi`i

ri+ti
// // Gmi`i

ti

10



The kernel of the top horizontal map is a subgroup of I + M2(MZ/M`rii Z), so its order is a
power of `i. Similarly, the order of the kernel of the lower horizontal map is a power of `i,
while the order of the kernels of the vertical maps are coprime to `i. Since # ker(GMi`

ri
i
→

GM) · # ker(GM → G
mi`

ti
i

) is equal to # ker(GMi`
ri
i
→ Gmi`

ri
i

) · # ker(Gmi`
ri
i
→ G

mi`
ti
i

), the

kernels of horizontal maps must be isomorphic, and hence GM`i
ri is the full preimage of GM ,

by assumption.
To complete the proof, it remains to show that for any collection of positive integers
{ri}qi=1, GM

∏q
i=1 `

ri
i

is the full preimage of GM . We do so with an inductive argument. Let

1 ≤ q′ ≤ q and let {ri}q
′

i=1 be a collection of positive integers. Consider the following
commutative diagram of natural reduction maps.

G
M

∏q′
i=1 `i

ri
// //

����

G
M

∏q′−1
i=1 `i

ri

����
GM`q′

rq′
// // GM

Again the kernels of the horizontal maps and the kernels of the vertical maps have coprime
orders and so, by the induction hypothesis, the kernels of all maps are as large as possible. �

4. Images of isolated points

Let C be a curve over a number field F and consider the morphism

φd : SymdC → PicdC

that sends an unordered tuple of points to the sum of their divisor classes. Let W d be the
image of SymdC in PicdC . Note that if there is a degree d point on C then PicdC

∼= Pic0C and
in particular is an abelian variety.

Definition 4.1.

(1) A degree d point x ∈ C is P1-isolated if there is no other point x′ ∈ (SymdC)(F ) such
that φd(x) = φd(x

′).
(2) A degree d point x ∈ C is AV-isolated if there is no positive rank subabelian variety

A ⊂ Pic0C such that φd(x) + A ⊂ W d.
(3) A degree d point x ∈ C is isolated if it is P1-isolated and AV-isolated.
(4) A degree d point x ∈ C is sporadic if there are only finitely many closed points y ∈ C

with deg(y) ≤ deg(x).

Faltings’s theorem [Fal94] on rational points on subvarieties of abelian varieties implies
the following two results on isolated and sporadic points.

Theorem 4.2. Let C be a curve over a number field.

(1) There are infinitely many degree d points on C if and only if there is a degree d point
on C that is not isolated. In particular, sporadic points are isolated.

(2) There are only finitely many isolated points on C.

We provide the details of the proof in Section 4.1.
In this section, we consider an arbitrary morphism of curves, and give a criterion for when

images of isolated points remain isolated. Our main result is the following.
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Theorem 4.3. Let f : C → D be a finite map of curves, let x ∈ C be a closed point, and let
y = f(x) ∈ D. Assume that deg(x) = deg(y) · deg(f).

(1) If x is P1-isolated, then y is P1-isolated.
(2) If x is AV-isolated, then y is AV-isolated.
(3) If x is sporadic, then y is sporadic.

Proof. Let d = deg(y) and let e = deg(f). Then by assumption de = deg(x).
(1) Assume that y is not P1-isolated, so there exists a point y′ ∈ (SymdC)(F ), different

from y, such that φd(y) = φd(y
′), or, in other words such that there exists a function

g ∈ k(D)× such that div(g) = y − y′. Since y is a degree d point (and not just an effective
degree d divisor), the assumption that y 6= y′ implies that y and y′ have distinct support.
Therefore the map g : D → P1 has degree d, and hence g ◦f gives a degree de map. Then for
any z ∈ P1(F ) different from g(f(x)), the fiber (g ◦ f)−1(z) gives a point of (SymdeC)(F ),
distinct from x, such that φde(x) = φde((g ◦ f)−1(z)). In particular, x is not P1-isolated.

(2) Assume that y is not AV-isolated, so there exists a subabelian variety A ⊂ Pic0D such
that φd(y) + A ⊂ W d. The morphism f induces a commutative diagram

SymdD
φd //

��

PicdD

f∗

��

SymdeC
φde // PicdeC ,

where the left vertical arrow sends y to x. Therefore, φde(x) + f ∗A ⊂ W de. Since f ∗A is a
positive rank subabelian variety of Pic0C, the point x is not AV-isolated.

(3) Assume that y is not sporadic, i.e., that there are infinitely many closed points y′ ∈ D
with deg(y′) ≤ deg(y) = d. For each of these points y′, there is a closed point x′ ∈ f−1(y′)
such that

deg(x′) ≤ deg(y′)e ≤ deg(y)e = de = deg(x).

Hence, the point x is not sporadic. �

4.1. Proof of Theorem 4.2. (1) The forward direction is a straightforward consequence
of Faltings’s theorem [Fal94]; we include the details for the readers’ convenience. Assume
that there are infinitely many degree d points. Then either there are two degree d points
x, x′ ∈ C such that φd(x) = φd(x

′) and so in particular x and x′ are not P1-isolated, or φd
is injective on the set of degree d points. In the latter case, W d ⊂ PicdC contains infinitely
many rational points. Faltings’s theorem states that the rational points on W d are a finite
union of translates of subabelian varieties, so in particular, there must be a positive rank
abelian variety A ⊂ Pic0C and a degree d point x ∈ C such that x+A ⊂ W d, i.e., the degree
d point x is not AV-isolated.

Now we prove the backwards direction, which requires a more detailed study of Faltings’s
theorem. Let x ∈ C be a degree d point that is not isolated. If x is not P1-isolated, then
there exists an x′ ∈ (SymdC)(F ), x 6= x′, such that φd(x) = φd(x

′), or equivalently, there
exists a rational function g ∈ k(C)× such that div(g) = x− x′. Since x is a closed point and
x′ ∈ (SymdC)(F ), x 6= x′ implies that x and x′ have disjoint support. Thus the function g
gives a degree d morphism g : C → P1. By Hilbert’s irreducibility theorem [Ser97, Chap. 9],
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there are infinitely many degree 1 points z ∈ P1 such that g−1(z) has degree d, which gives
the desired result.

Now assume that x is P1-isolated but not AV-isolated, i.e., that x is not equivalent to any
other effective divisors and that there is a positive rank subabelian variety A ⊂ Pic0C such

that x + T ⊂ W d. Since the cokernel of PicC →
(
PicC

)Gal(F/F )
is torsion, there is a finite

index subgroupH ⊂ A(F ) such that every divisor class inH (and therefore every divisor class
in x+H) is represented by an F -rational divisor, and every divisor class in A(F ) \H is not
represented by an F -rational divisor. In other words, φd

(
(SymdC)(F )

)
∩(x+A(F )) = x+H.

Since H has positive rank, taking the preimage of x + H under φd yields infinitely many
rational points on SymdC, or, equivalently, infinitely many effective degree d 0-cycles on C.
It remains to prove that infinitely many of these 0-cycles are irreducible, i.e., are not in the
image of ∪i

(
(Symd−iC)(F )× (SymiC)(F )

)
.

Consider the following commutative diagram

(Symd−iC)(F )× (SymiC)(F )
φd−i×φi //

��

W d−i ×W i

��
(SymdC)(F )

φd // W d,

where the vertical maps are induced by concatenation and summation, respectively. If there
are only finitely many degree d points on C, then all but finitely many of the points in x+H
are contained in the union ∪i(W d−i(F ) +W i(F )). Faltings’s theorem on rational points on
subvarieties of abelian varieties implies that

bd/2c⋃
i=1

(W d−i(F ) +W i(F )) =
n⋃
j=1

yj + Aj(F ), (4.1)

where n is some nonnegative integer, the Aj’s are some subabelian varieties of Pic0C and the
yj’s are degree d divisors on C, which can be taken to be reducible and effective.

We are concerned with the intersection

(x+H) ∩

(
n⋃
j=1

yj + Aj(F )

)
= x+

(
H ∩

(
n⋃
j=1

yj − x+ Aj(F )

))

= x+
n⋃
j=1

(H ∩ (yj − x+ Aj(F )))

If the intersection H ∩ (yj − x + Aj(F )) is nonempty, then it is a coset of H ∩ Aj(F ). In
addition, since x is a P1-isolated degree d point on C, x cannot be written as the sum of two
nonzero effective divisors, so by definition of (4.1), H ∩ (yj − x + Aj(F )) does not include
the identity. Thus,

(x+H) ∩

(
n⋃
j=1

yj + Aj(F )

)
= x+

⋃
j∈J

(zj +H ∩ Aj(F )) ,

where J ⊂ {1, . . . , n} and zj ∈ H \H ∩ Aj(F ).
13



For each j ∈ J , let Gj be a subgroup of H of finite index that contains H ∩ Aj(F ) and
that does not contain zj. Then we have

(x+H) ∩

(
n⋃
j=1

yj + Aj(F )

)
= x+

⋃
j∈J

(zj +H ∩ Aj(F ))

⊂ x+
⋃
j∈J

(zj +Gj)

⊂ (x+H) \ (x+ ∩j∈JGj) ( x+H.

Since each Gj is finite index in H, so is the intersection ∩j∈JGj. Hence, the image of
∪i(W d−i(F ) + W i(F )) misses infinitely many rational points of x + H, and so there are
infinitely many degree d points on C.

(2) If C has genus 0, then no point is P1-isolated, so the statement trivially holds. Now
assume that g := genus(C) is positive, and let P be a point of degree d. If d > g + 1, then
by Riemann-Roch, `(P ) = d− g+ 1 > 2 and so P is not P1-isolated. Therefore, any isolated
point on C must have bounded degree, and so it suffices to prove that there are only finitely
many isolated points of a fixed degree d.

Recall that degree d points on C give rise to rational points on SymdC that in turn map,
via φd, injectively to rational points on W d. By Faltings’s theorem, W d(F ) is the finite union
of translates of subabelian varieties of Pic0C. By definition, any degree d point on C that
lands in a translate of a positive rank subabelian variety is not AV-isolated. Therefore, the
set of degree d isolated points of C must inject (under φd) into a finite union of translates
of rank 0 subabelian varieties, so in particular must be finite. �

5. Isolated points above a fixed non-CM j-invariant

For any non-CM elliptic curve E over a number field k, recall from §2.3 that

SE = SE/k := {2, 3} ∪ {` : ρE,`∞(Galk) 6⊃ SL2(Z`)} ∪ {5, if ρE,5∞(Galk) 6= GL2(Z5)} .

In this section we show that the degree of a non-cuspidal non-CM point x ∈ X1(n) is as
large as possible given the degree of its image in X1(a) for a = gcd(n,MEx(SEx)), where Ex
is an elliptic curve over Q(j(x)) with j-invariant j(x).

Theorem 5.1. Fix a non-CM elliptic curve E over a number field k. Let S be a finite set of
places containing SE and let mS :=

∏
`∈S `. Let M be a positive integer with Supp(M) ⊂ S

satisfying
im ρE,m∞S = π−1(im ρE,M). (5.1)

If x ∈ X1(n) is a closed point with j(x) = j(E), then deg(x) = deg(f) deg(f(x)), where f
denotes the natural map X1(n)→ X1(gcd(n,M)).

Remark 5.2. Note that if E and E ′ are quadratic twists of each other, both defined over a
number field k, then SE = SE′ (see, e.g., [Sut16, Lemma 5.27]). Furthermore, for any S,

± (im ρE,m∞S ) = ±(im ρE′,m∞S ) (5.2)

(see, e.g., [Sut16, Lemma 5.17]). Since any open subgroup of GL2(ZmS
) has only finitely

many subgroups of index 2, there is an integer M that will satisfy (5.1) for all quadratic
twists of a fixed elliptic curve.
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This theorem combined with Theorem 4.3 yields the following corollary, of which Theo-
rem 1.1 is a special case.

Corollary 5.3. Fix a non-CM elliptic curve E over a number field k. Let S be a finite set
of places containing SE and let M be a positive integer with Supp(M) ⊂ S satisfying

im ρE,m∞S = π−1(im ρE,M).

Let x ∈ X1(n) be a point with j(x) = j(E), and let f denote the natural map X1(n) →
X1(gcd(n,M)).

(1) If x is P1-isolated, then f(x) is P1-isolated.
(2) If x is AV-isolated, then f(x) is AV-isolated.
(3) If x is sporadic, then f(x) is sporadic.

From this, we deduce the following.

Corollary 5.4. Let E be a non-CM elliptic curve defined over k := Q(j(E)). If ` /∈ SE,
then there are no sporadic or isolated points on X1(`

s) lying over j(E) for any s ∈ N.

In Section 5.1, specifically Lemma 5.6, we show that the desired maximal degree growth
condition (i.e., the conclusion of Theorem 5.1) is implied by a condition on the degree of field
extensions k(P )/k(bP ) where P is a point of order ab on a non-CM elliptic curve E. We
then show that the assumed growth of the Galois representation (5.1) implies the hypothesis
of Lemma 5.6 in two different cases. First, for maps X1(n) → X1(n`

−1) for prime divisors
` of n outside of SE (see Section 5.2), and second, for maps X1(ab) → X1(a) for integers
a, b with bounded support (see Section 5.3). The results of these two sections are brought
together in Section 5.4 to prove Theorem 5.1.

Remark 5.5. As discussed in Section 2.3, the full strength of Serre’s Open Image Theorem
implies that for any non-CM elliptic curve E/k, there exists a positive integer ME such that

im ρE = π−1(im ρE,ME
).

The arguments in Section 5.3 alone then imply that deg(x) = deg(f) deg(f(x)), where f
denotes the natural map X1(n) → X1(gcd(n,ME)), which yields a weaker version of Theo-
rem 5.1.

While there is not a dramatic difference in the strength of these results for a fixed elliptic
curve, the difference is substantial when applied to a family of elliptic curves. It is well-
known that ME can be arbitrarily large for a non-CM elliptic curve E over a fixed number
field k (see Section 2.3). However, for a fixed finite set of places S, we prove that ME(S)
can be bounded depending only on [k : Q]. This allows us to obtain the uniform version of
Corollary 5.3, namely Theorem 1.6 (see §6).

5.1. Field-theoretic condition for maximal degree growth.

Lemma 5.6. Let a and b be positive integers, E a non-CM elliptic curve over a number
field k, and P ∈ E a point of order ab. Let x := [(E,P )] ∈ X1(ab) and let f denote the map
X1(ab) → X1(a). If [k(P ) : k(bP )] is as large as possible, i.e., if [k(P ) : k(bP )] = #{Q ∈
E : bQ = bP,Q order ab}, then

deg(x) = deg(f) deg(f(x)).
15



Proof. From the definition of X1(n), we have that

#{Q ∈ E : bQ = bP,Q order ab} =

{
2 deg(X1(ab)→ X1(a)) if a ≤ 2 and ab > 2,

deg(X1(ab)→ X1(a)) otherwise.
(5.3)

Let us first consider the case that a ≤ 2 and ab > 2. Then deg(f(x)) = [k(bP ) : Q].
Since [k(P ) : k(bP )] is as large as possible and a ≤ 2, there must be a σ ∈ Galk such that
σ(P ) = −P . Hence deg(x) = 1

2
[k(P ) : Q] by Lemma 2.1, so (5.3) yields the desired result.

Now assume that ab ≤ 2. Then deg(f(x)) = [k(bP ) : Q] and deg(x) = [k(P ) : Q], so (5.3)
again yields the desired result.

Finally we consider the case when a > 2. Note that for any point y ∈ X1(ab), deg(y) ≤
deg(f(y)) · deg(X1(ab)→ X1(a)). Combining this with (5.3), it remains to prove that

deg(x)

deg(f(x))
≥ #{Q ∈ E : bQ = bP,Q order ab}.

By Lemma 2.1, deg(x) = cx · [k(P ) : Q] and deg(f(x)) = cf(x) · [k(bP ) : Q] where cx, cf(x) ∈
{1, 1/2}. Since any σ ∈ Galk that sends P to −P also sends bP to −bP , cx ≥ cf(x) and so
these arguments together show that

deg(x)

deg(f(x))
=

cx[k(P ) : Q]

cf(x)[k(bP ) : Q]
=

cx
cf(x)

[k(P ) : k(bP )] ≥ [k(P ) : k(bP )].

By assumption, [k(P ) : k(bP )] = #{Q ∈ E : bQ = bP,Q order ab}, yielding the desired
inequality. �

5.2. Eliminating primes with large Galois representation.

Proposition 5.7. Let E be a non-CM elliptic curve over a number field k, let ` be a prime
not contained in SE, and let a and s be positive integers. Let x ∈ X1(a`

s) be a closed point
with j(x) = j(E) and let f : X1(a`

s)→ X1(a) be the natural map. Then

deg(x) = deg(f) deg(f(x)).

Proof. Write a = b`t where ` - b, let g denote the map X1(a)→ X1(b) and let h : X1(a`
s)→

X1(b) be the composition g ◦ f . Since deg(h) = deg(f) deg(g), the general case follows from
the case when ` - a. We work with this assumption for the remainder of the proof.

Let P ∈ E be a point of order a`s such that x = [(E,P )] and for any c|a`s, let B1
c ⊂

Aut(E[c]) be the stabilizer of a`
s

c
P . LetH denote the kernel of the projection map im ρE,a`s →

im ρE,a.
We wish to prove [k(P ) : k(`sP )] = #{Q ∈ E : `sQ = `sP, Q order a`s}, so that we can

apply Lemma 5.6. Note that we always have the following upper bound

#
(
Aut(E[`s])/B1

`s

)
= #{Q ∈ E : `sQ = `sP, Q order a`s} ≥ [k(P ) : k(`sP )].

We may also apply Galois theory to the towers of fields k(E[a`s]) ⊃ k(P ) ⊃ k(`sP ) and
k(E[a`s]) ⊃ k(E[a]) ⊃ k(`sP ) to obtain the following lower bound.

[k(P ) : k(`sP )] =
[k(E[a`s]) : k(E[a])] · [k(E[a]) : k(`sP )]

[k(E[a`s]) : k(P )]
=

#H ·# (im ρE,a ∩B1
a)

# (im ρE,a`s ∩B1
a`s)

≥ #H ·# (im ρE,a ∩B1
a)

#(H ∩B1
a`s) ·# (im ρE,a ∩B1

a)
=

#H

#(H ∩B1
a`s)

=
#H

#(H ∩B1
`s)
.
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Since ` 6∈ SE, we may use Proposition 3.2 to conclude that H must contain SL2(Z/`sZ).
Therefore we have set inclusions

SL2(Z/`sZ)/
(
SL2(Z/`sZ) ∩B1

`s

)
↪→ H/

(
H ∩B1

`s

)
↪→ Aut(E[`s])/B1

`s . (5.4)

Since the sets on the right and the left of (5.4) have the same cardinality, all inclusions in
(5.4) must be bijections. Hence, the upper and lower bounds obtained above agree, and, in
particular, [k(P ) : k(`sP )] = #{Q ∈ E : `sQ = `sP, Q order a`s} as desired. �

5.3. Maps between {X1(n)} where n has specified support.

Proposition 5.8. Let E be a non-CM elliptic curve over a number field k, let S be a finite
set of primes, and let mS :=

∏
`∈S `. Let M = ME(S) be a positive integer with Supp(M) ⊂ S

such that

im ρE,m∞S = π−1(im ρE,M)

and let a and b be positive integers with gcd(ab,M)|a and Supp(ab) ⊂ S. Let x ∈ X1(ab) be
a closed point with j(x) = j(E) and let f denote the natural map X1(ab)→ X1(a). Then

deg(x) = deg(f) deg(f(x)).

Proof. Let M ′ := lcm(a,M) and let n = ab. By definition, im ρE,n is the mod n reduction
of im ρE,m∞S and im ρE,a is the mod a reduction of im ρE,M ′ . Since im ρE,m∞S = π−1(im ρE,M),
this implies that

im ρE,m∞S = π−1(im ρE,M ′) and that im ρE,n = π−1(im ρE,a),

where by abuse of notation, we use π to denote both natural projections. In other words, the
mod n Galois representation is as large as possible given the mod a Galois representation.
Hence, for any P ∈ E of order n, the extension [k(P ) : k(bP )] is as large as possible, i.e.,
[k(P ) : k(bP )] = #{Q ∈ E : bQ = bP,Q order n}. In particular this applies to a point
P ∈ E such that x = [(E,P )] ∈ X1(n). Therefore, Lemma 5.6 completes the proof. �

5.4. Proof of Theorem 5.1. Let x ∈ X1(n) be a closed point with j(x) = j(E) and write
n = n0n1 where Supp(n0) ⊂ S and Supp(n1) is disjoint from S. Note that gcd(n,M)|n0.
We factor the map f as

X1(n)
f1→ X1(n0)

f2→ X1(gcd(n,M)).

By inductively applying Proposition 5.7 to powers of primes ` /∈ SE, we see that deg(x) =
deg(f1) deg(f1(x)). Then we apply Proposition 5.8 with a = gcd(n,M), b = n0/ gcd(n,M)
to show that

deg(f1(x)) = deg(f2) deg(f2(f1(x))).

6. Proof of Theorem 1.6

In this section we prove Theorem 1.6. For a fixed number field k, Conjecture 1.3 implies
that there is a finite set of primes S = S(k) such that for all non-CM elliptic curves E/k,
S ⊃ SE/k (see (2.1)). Furthermore, Conjecture 1.4 implies that S(k) can be taken to depend
only on [k : Q]. Thus, to deduce Theorem 1.6 from Corollary 5.3, it suffices to show that for
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any positive integer d and any finite set of primes S, there is an integer M = Md(S) such
that for all number fields k of degree d and all non-CM elliptic curves E/k, we have

im ρE,m∞S = π−1(im ρE,M).

Hence Proposition 6.1 completes the proof of Theorem 1.6.

Proposition 6.1. Let d be a positive integer, S a finite set of primes, and E a set of non-CM
elliptic curves over number fields of degree at most d.

(1) There exists a positive integer M with Supp(M) ⊂ S such that for all E/k ∈ E

im ρE,m∞S = π−1(im ρE,M).

(2) Let Md(S, E) be the smallest such M as in (1) and for all ` ∈ S, define

τ = τS,E,` := max
E/k∈E

(
v`

(
# im ρE,mS−{`}

))
≤ v`(# GL2(Z/mS−{`}Z)).

Then v`(Md(S, E)) ≤ max(v`(Md({`}, E)), v`(2`)) + τ .

Remark 6.2. In the proof of Proposition 6.1(2), if im ρE,mS−{`} is a Sylow `-subgroup of

GL2(Z/mS−{`}Z), then a chief series (a maximal normal series) of im ρE,mS−{`} does have

length τ . So the bound in (2) is sharp if the group structure of im ρE,`∞ allows. However,
given set values for d, S, and E , information about the group structure of possible Galois
representations (rather than just bounds on the cardinality) could give sharper bounds.

Remark 6.3. A weaker version of Proposition 6.1 follows from [Jon09, Proof of Lemma 8].
Indeed, Jones’s proof goes through over a number field and for any finite set of primes S
(rather than only S = {2, 3, 5} ∪ {p : im ρE,p 6= GL2(Z/pZ)} ∪ Supp(∆E), which is the case
under consideration in [Jon09, Lemma 8]) and shows that

v`(Md(S, E)) ≤ max(v`(Md({`}, E)), v`(2`)) + v`(# GL2(Z/mS−{`}Z)).

The proof here and the one in [Jon09] roughly follow the same structure; however, by isolating
the purely group-theoretic components (e.g., Proposition 3.7), we are able to obtain a sharper
bound in (2).

Proof. When #S = 1, part (1) follows from Theorem 2.3 and Proposition 3.5 and part (2)
is immediate.

We prove part (1) when #S is arbitrary by induction using Proposition 3.7. Let S =
{`1, . . . , `q}, let Mi = Md({`i}, E), let si = max(v`i(Mi), v`i(2`i)), and let Ni =

∏
j 6=i `

sj
j . It

suffices to show that for all 1 ≤ i ≤ q there exists a ti ≥ si such that for all E/k ∈ E

im ρE,Ni·`∞i = π−1(im ρ
E,Ni`

ti
i

);

then Proposition 3.7 implies that we may take M =
∏

i `
ti
i .

Fix i ∈ {1, . . . , q}. For any E/k ∈ E and any s ≥ si, define

Ki
E,s := ker(im ρE,Ni·`si → im ρE,Ni

), and LiE,s := ker(im ρE,Ni·`si → im ρE,`si ).

By definition, Ki
E,s′ maps surjectively onto Ki

E,s for any s′ ≥ s, so Ki
E,s is the mod Ni`

s
i

reduction of Ki
E := ker(im ρE,Ni·`∞i → im ρE,Ni

). Let us now consider LiE,s. Since `i - Ni,
18



LiE,s can be viewed as a subgroup of im ρE,Ni
and we have LiE,s′ ⊂ LiE,s for all s′ ≥ s. Let

r ≥ si be an integer such that LiE,r = LiE,r+1. Then we have the following diagram

im ρE,`r+1
i
/Ki

E,r+1
// //

∼=
��

im ρE,`ri /K
i
E,r

∼=
��

im ρE,Ni
/LiE,r+1 im ρE,Ni

/LiE,r

(6.1)

where the vertical isomorphisms are given by Goursat’s Lemma (Lemma 3.1)6. Since r ≥
si, im ρE,`r+1

i
is the full preimage of im ρE,`ri under the natural reduction map. So (6.1)

implies that Ki
E,r+1 is the full preimage of Ki

E,r under the natural reduction map. Then by

Proposition 3.5, Ki
E is the full preimage of Ki

E,r under the map GL2(Z`)→ GL2(Z/`rZ) and

therefore im ρE,Ni·`∞i = π−1(im ρE,Ni`ri
). Hence we may take tE,i to be the minimal r ≥ si

such that LiE,r = LiE,r+1. Since LiE,s is a subgroup of im ρE,Ni
⊂ GL2(Z/NiZ), tE,i may be

bounded independent of E/k, depending only on Ni. This completes the proof of (1).
It remains to prove (2). Let s ≥ si and consider the following diagram, where again the

vertical isomorphisms follow from Goursat’s Lemma.

im ρE,`si /K
i
E,s

// //

∼=
��

im ρE,`si/K
i
E,si

∼=
��

im ρE,Ni
/LiE,s

// // im ρE,Ni
/LiE,si

(6.2)

The kernel of the top horizontal map is an `i-primary subgroup, so the index of LiE,s in LiE,si is

a power of `i. Thus, the maximal chain of proper containments LiE,si ) LiE,si+1 ) · · · ) LiE,ti
is bounded by v`i(# im ρE,Ni

) = v`i(# im ρE,mS−{`i}
), which yields (2). �

7. Lifting sporadic points

In this section we study when a sporadic point on X1(n) lifts to a sporadic point on a
modular curve of higher level. We give a numerical criterion that is sufficient for lifting
sporadic points (see Lemma 7.2), and use this to prove that there exist sporadic points such
that every lift is sporadic. The examples we have identified correspond to CM elliptic curves.

Theorem 7.1. Let E be an elliptic curve with CM by an order in an imaginary quadratic
field K. Then for all sufficiently large primes ` which split in K, there exists a sporadic point
x = [(E,P )] ∈ X1(`) with only sporadic lifts. Specifically, for any positive integer d and any
point y ∈ X1(d`) with π(y) = x, the point y is sporadic, where π denotes the natural map
X1(d`)→ X1(`).

The key to the proof of Theorem 7.1 is producing a sporadic point of sufficiently low degree
so we may apply the following lemma. It is a consequence of Abramovich’s lower bound on
gonality in [Abr96] and the result of Frey [Fre94] which states that a curve C/K has infinitely
many points of degree at most d only if gonK(C) ≤ 2d.

6By tracing through the isomorphism given by Goursat’s lemma, one can prove that this diagram is commu-
tative. We do not do so here, since the claims that follow can also be deduced from cardinality arguments.
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Lemma 7.2. Suppose there is a point x ∈ X1(N) with

deg(x) <
7

1600
[PSL2(Z) : Γ1(N)].

Then x is sporadic and for any positive integer d and any point y ∈ X1(dN) with π(y) = x,
the point y is sporadic, where π denotes the natural map X1(dN)→ X1(N).

Proof. We claim that the assumption on the degree of x implies that deg(y) < 7
1600

[PSL2(Z) :
Γ1(dN)]. Then [Abr96, Thm. 0.1], shows that

deg(y) <
1

2
gonQ(X1(dN)) and deg(x) <

1

2
gonQ(X1(N)).

Thus x and y are sporadic by [Fre94, Prop. 2].
Now we prove the claim. Let x ∈ X1(N) be a deg(x) ≤ 7

1600
[PSL2(Z) : Γ1(N)]. In

particular, this implies N > 2. Thus for any point y ∈ X1(dN) with π(y) = x we have

deg(y) ≤ deg(x) · deg(X1(dN)→ X1(N))

<
7

1600
[PSL2(Z) : Γ1(N)] · d2

∏
p|d, p-N

(
1− 1

p2

)
(see Proposition 2.2)

=
7

1600
· 1

2
(dN)

∏
p|dN

(
1 +

1

p

)
ϕ(dN)

=
7

1600
[PSL2(Z) : Γ1(dN)].

�

Proof of Theorem 7.1. Let E be an elliptic curve with CM by an order O in an imaginary
quadratic field K. Then L := K(j(E)) is the ring class field of O and [L : K] = h(O), the
class number of O. (See [Cox13, Thms. 7.24 and 11.1] for details.) Let ` be a prime that
splits in K and satisfies

` >

(
6400

7
· h(O)

#O×

)
− 1.

By [BC, Thm. 6.2], there is a point P ∈ E of order ` with

[L(h(P )) : L] =
`− 1

#O×
.

Then for x = [(E,P )] ∈ X1(`),

deg(x) = [Q(j(E), h(P )) : Q] ≤ [K(j(E), h(P )) : Q] = [L(h(P )) : Q] =
`− 1

#O×
· h(O) · 2

< (`− 1) · 7

6400
(`+ 1) · 2 =

7

1600
[PSL2(Z) : Γ1(`)].

The result now follows from Lemma 7.2. �

Remark 7.3. Note that none of the known non-cuspidal non-CM sporadic points satisfy the
degree condition given in Lemma 7.2. Thus it is an interesting open question to determine
whether there exist non-CM sporadic points with infinitely many sporadic lifts. If no such
examples exist, then by Theorem 1.6 there would be only finitely many non-CM sporadic
points corresponding to j-invariants of bounded degree, assuming Conjecture 1.4.
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8. Isolated points with rational j-invariant

In this section, we study non-CM isolated points with rational j-invariant. Our main result
of this section (Theorem 8.1) gives a classification of the non-cuspidal non-CM isolated points
on X1(n) with rational j-invariant. We prove that they either arise from elliptic curves whose
Galois representations are very special (and may not even exist), or they can be mapped to
isolated points on X1(m) for an explicit set of integers m.

Later, we focus on sporadic points with rational j-invariant on X1(n) for particular values
of n. We show that if n is prime (Proposition 8.4), is a power of 2 (Proposition 8.5),
or, conditionally on Sutherland [Sut16, Conj. 1.1] and Zywina [Zyw, Conj. 1.12]), has
min(Supp(n)) ≥ 17 (Proposition 8.6), then any non-CM, non-cuspidal sporadic point with
rational j-invariant has j(x) = −7 · 113.

8.1. Classification of non-CM isolated points with rational j-invariant.

Theorem 8.1. Let x ∈ X1(n) be a non-CM non-cuspidal isolated point with j(x) ∈ Q. Then
one of the following holds:

(1) There is an elliptic curve E/Q with j(E) = j(x) and a prime ` ∈ Supp(n) such that
either ` > 17, ` 6= 37 and ρE,` is not surjective or ` = 17 or 37 and ρE,` is a subgroup
of the normalizer of a non-split Cartan subgroup.

(2) There is an elliptic curve E/Q with j(E) = j(x) and two distinct primes `1 > `2 > 3
in Supp(n) such that both ρE,`1 and ρE,`2 are not surjective.

(3) There is an elliptic curve E/Q with j(E) = j(x) and a prime 2 < ` ≤ 37 in Supp(n)
such that the `-adic Galois representation of E has level greater than 169.

(4) There is a divisor of n of the form 2a3bpc such that the image of x in X1(2
a3bpc) is

isolated and such that a ≤ ap, b ≤ bp, p
c ≤ 169 for one of the following values of p,

ap, bp.

p 1 5 7 11 13 17 37
ap 9 14 14 13 14 15 13
bp 5 6 7 6 7 5 8

Remark 8.2. This theorem also holds for x a P1-isolated, AV-isolated, or sporadic point,
respectively, at the expense of (4) giving the statement that the image of x is P1-isolated,
AV-isolated, or sporadic, respectively.

Remark 8.3. Each of cases (1), (2), and (3) should be rare situations, if they occur at
all. Indeed, the question of whether elliptic curves as in (1) exist is related to a question
originally raised by Serre in 1972, and their non-existence has since been conjectured by
Sutherland [Sut16, Conj. 1.1] and Zywina [Zyw, Conj. 1.12].

Assuming (1) does not hold, elliptic curves as in (2) correspond to points on finitely many
modular curves of genus greater than 2, so there are at worst finitely many j-invariants in
this case [DGJ, Tables 6–14, Theorem 16A]. Additionally, there are no elliptic curves in the
LMFDB database [LMFDB] as in (2), so in particular, any elliptic curve as in (2) must have
conductor larger than 400, 000. (The Galois representation computations in LMFDB were
carried out using the algorithm from [Sut16].) If we do not assume (1) does not hold, then
we must consider the case where `1 > 37. In this case the elliptic curves of interest no longer
correspond to points on finitely many modular curves, but nevertheless, Lemos has shown
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that such elliptic curves do not exist, assuming that im ρE,`2 is contained in the normalizer
of a split Cartan subgroup or in a Borel subgroup [Lem19a,Lem19b].

Sutherland and Zywina’s classification of modular curves of prime-power level with in-
finitely many points [SZ17] shows that there are only finitely many rational j-invariants
corresponding to elliptic curves as in (3), and suggests that in fact they do not exist. Ta-
ble 8.1 gives, for each prime `, the maximal prime-power level for which there exists a
modular curve of that level with infinitely many rational points. Therefore, for 3 ≤ ` ≤ 37,

` 3 5 7 11 13 17 37
max level 27 25 7 11 13 1 1

Table 8.1. Maximal prime-power level for which there exists a modular curve
with infinitely many rational points

respectively, there are already only finitely many j-invariants of elliptic curves with an `-adic
Galois representation of level at least 81, 125, 49, 121, 169, 17, or 37. Since such j-invariants
are already rare, it seems reasonable to expect any such correspond to elliptic curves of `-adic
level exactly 81, 125, 49, 121, 169, 17 and 37, respectively.

This has been (conditionally) verified by Drew Sutherland in the cases ` = 17 and ` = 37.
For these primes, there are conjecturally only 4 j-invariants corresponding to elliptic curves
with non-surjective `-adic Galois representation: −17 · 3733/217,−172 · 1013/2,−7 · 113, and
−7 · 1373 · 20833 [Zyw, Conj. 1.12]. For each of these j-invariants, Sutherland computed
that the `-adic Galois representation is the full preimage of the mod ` representation, so the
representations are indeed of level ` and not level `2 [Sut17].7

Proof. Let x ∈ X1(n) be a non-cuspidal non-CM isolated point with j(x) ∈ Q. Let E be
an elliptic curve over Q with j(E) = j(x). Assume that (1) does not hold, so in particular
E has surjective mod ` representation for every ` > 17 and ` 6= 37. Thus Proposition 5.7
and Theorem 4.3 together imply that x maps to an isolated point on X1(n

′) where n′ is the
largest divisor of n that is not divisible by any primes greater than 17 except possibly 37.

Now assume further that (2) does not hold, so there is at most one prime p > 3 for which
the p-adic Galois representation is not surjective. If the p-adic Galois representation of E is
surjective for all primes larger than 3, then we will abuse notation and set p = 1. Under these
assumptions, additional applications of Proposition 5.7 and Theorem 4.3 show that x maps
to an isolated point on X1(n

′′) where n′′ is a divisor of n′ with Supp(n′′) ⊂ S := {2, 3, p}8
and p ∈ {1, 5, 7, 11, 13, 17, 37}. Furthermore, Corollary 5.3 shows that x maps to an isolated
point on X1(gcd(n′′,M)), where M is the level of the m∞S Galois representation of E.

Now we will further assume that (3) does not hold. Let E denote the set of all non-CM
elliptic curves over Q. Proposition 6.1 states that there is an integer M1(S, E) such that the
level of the m∞S Galois representation of E divides M1(S, E) for all E ∈ E . We will show that
M1({2, 3, p}, E) divides 2ap3bppc for p, ap, bp, c as in (4).

By the assumption that (3) does not hold and [RZB15, Corollary 1.3], we have the following
values for the constant M1({`}, E) from Proposition 6.1.

7Sutherland used a generalization of the algorithm in [Sut16] to prove in each case the index of the mod-`2

image is no smaller than that of the mod-` image. It then follows from [SZ17, Lemma 3.7] that the `-adic
image is the full preimage of the mod-` image.
8When p = 1, we conflate the set {2, 3, p} with the set {2, 3}.
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` 2 3 5 7 11 13 17 37
M1({`}, E) 25 34 53 72 112 132 17 37

By Proposition 6.1(2),

v`(M1(S, E)) ≤ max(v`(M1({`}, E)), v`(2`)) +
∑

`′∈S−{`}

v`(# GL2(Z/`′Z)).

This upper bound combined with Table 8.2 yields the desired divisibility except for the case
where p = 17 or p = 37.

` 2 3 5 7 11 13 17 37

# GL2(Z/`Z) 2 · 3 243 25315 25327 24315211 25327113 293217 253419137

Table 8.2. Cardinality of GL2(Z/`Z)

Let us consider the case that p = 17, so ρE,17 is not surjective. Since we are not in case (1),
we know im ρE,17 is not contained in the normalizer of the non-split Cartan. Thus [Zyw,
Thms. 1.10 and 1.11] show that # im ρE,17 = 2617, so Proposition 6.1(2) implies that the
level of the m∞S Galois representation divides 2153517.

The case when p = 37 proceeds similarly. In this case [Zyw, Thms. 1.10 and 1.11] show
that # im ρE,37 = 243337 and so Proposition 6.1(2) implies that the level of the m∞S Galois
representation divides 2133837. �

8.2. Rational j-invariants of non-CM non-cuspidal sporadic points on X1(n) for
particular values of n.

Proposition 8.4. Fix a prime `. If x ∈ X1(`) is a non-CM non-cuspidal sporadic point
with j(x) ∈ Q then ` = 37 and j(x) = −7 · 113.

Proof. Let x = [(E,P )] be a non-CM sporadic point on X1(`) with j(E) ∈ Q. We may
assume E is defined over Q. Note that X1(`) has infinitely many rational points for ` ≤ 10.
Further, X1(`) has gonality 2 for ` = 11, 13, and no non-cuspidal rational points [Maz77].
Hence if x ∈ X1(`) is a non-cuspidal non-CM sporadic point, ` > 13.

If the mod ` Galois representation of E is surjective, then x cannot be a sporadic point on
X1(`) by Corollary 5.4, so assume that ρE,` is not surjective. Then the im ρE,` is contained
in a maximal subgroup, which can be an exceptional subgroup, a Borel subgroup or the
normalizer of a (split or non-split) Cartan subgroup of GL2(F`) [Ser72, Section 2]. We will
analyze each case separately.

In the case where im ρE,` is contained in the normalizer of the non-split Cartan subgroup,
Lozano-Robledo [LR13, Theorem 7.3] shows that the degree of a field of definition of a point
of order ` is greater than or equal to (`2 − 1)/6. Since ` > 13 we have

gonQ(X1(`)) ≤ genus(X1(`)) ≤
1

24
(`2 − 1).

Therefore x cannot be sporadic in this case.
If im ρE,` is contained in the normalizer of the split Cartan subgroup, then by [BPR13], `

has to be less than or equal to 13. Similarly, if im ρE,` is one of the exceptional subgroups,
then by [LR13, Theorem 8.1], ` ≤ 13.
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If im ρE,` is contained in a Borel subgroup, then E has a rational isogeny of degree `. By
[Maz78], ` is one of the following primes: 2, 3, 5, 7, 11, 13, 17, 37. Thus we need only consider
` = 17 and 37. For ` = 17, [LR13, Table 5] shows that deg(x) ≥ 4. Since the gonality of
X1(17) is also 4, x cannot be sporadic.

Finally when ` = 37, there are exactly two non-cuspidal points in X0(37)(Q) [LR13, Table
5]. The one corresponding to an elliptic curve with j-invariant −7 ·113 gives a degree 6 point
on X1(37), which is sporadic since gonQX1(37) = 18. The other gives a point on X1(37) of
degree 18, which is not sporadic. �

Proposition 8.5. Let s ≥ 1. If x ∈ X1(2
s) is a non-cuspidal non-CM sporadic point, then

j(x) /∈ Q.

Proof. By [RZB15, Cor. 1.3], the 2-adic Galois representation of any non-CM elliptic curve
over Q has level at most 32. Thus, by Proposition 5.8 it suffices to show that X1(2

s) has no
non-cuspidal non-CM sporadic points with rational j-invariant for s ≤ 5.

If s = 1, 2 or 3, then modular curve X1(2
a) is isomorphic to P1

Q and so has no sporadic
points. When s = 4, the modular curve X1(16) has genus 2 and hence gonality 2 which
implies that it has infinitely many points of degree 2. Additionally, as first established by
Levi [Lev08], X1(16) has no non-cuspidal points over Q and so has no non-cuspidal sporadic
points.

Now we consider X1(32), which has gonality 8 (see [DvH14, Table 1]). Let x = [(E,P )] be
a non-CM sporadic point on X1(32) with j = j(E) ∈ Q. We may assume that E is defined
over Q. Since x is a sporadic point, there are only finitely many points y ∈ X1(32) with
deg(y) ≤ deg(x). Since the degree of a point y ∈ X1(32) can be calculated from the mod
32 Galois representation of an elliptic curve with j-invariant j(y), this implies that there
are only finitely many j-invariants whose mod 32 Galois representation is contained in a
conjugate of im ρE,32. By [RZB15, Table 1], there are only eight non-CM j-invariants with
this property:

211, 24173,
40973

24
,

2573

28
, −8579853

628
,

9194253

4964
, −3 · 182499203

1716
, and − 7 · 17231878060803

7916
.

Using Magma, we compute the degree of each irreducible factor of 32nd division polynomial for
each of these j-invariants and we find that the least degree of a field where a point of order
32 is defined is 32, hence there are no non-CM sporadic points on X1(32) with a rational
j-invariant. �

Proposition 8.6. Let n be a positive integer with min(Supp(n)) ≥ 17. Assume [Sut16, Conj.
1.1] or [Zyw, Conj. 1.12]. If x ∈ X1(n) is a non-cuspidal non-CM sporadic point with
j(x) ∈ Q, then 37|n and j(x) = −7 · 113.

Proof. Let E be an elliptic curve over Q with j(E) = j(x). We apply Theorem 8.1. By
assumption and Remark 8.3, cases (1) and (3) of Theorem 8.1 do not occur. Further, case (2)
only occurs if 17 · 37|n and im ρE,17 and im ρE,37 are both contained in Borel subgroups (see
proof of Proposition 8.4), which is impossible (see, e.g., [LR13, Table 4]).

Hence, we must be in case (4) of Theorem 8.1. Since min(Supp(n)) ≥ 17, the only possible
divisors of n of the form 2a3bpc (with a, b, c, p as in Theorem 8.1(4)) are 17 or 37. Thus, for
one of ` = 17 or 37 we must have `|n and x maps to a sporadic point on X1(`). Proposition 8.4
then completes the proof. �
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