Subdifferentiation and Smoothing of Nonsmooth Integral Functionals

James V Burke Mathematics, University of Washington

Joint work with Xiaojun Chen (Hong Kong Polytechnic) and Hailin Sun (Nanjing University)

SIAM Conference on Optimization Vancouver, British Columbia

May 23, 2017

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

The Problem

$$\min_{x \in X} F(x) := \mathbb{E}[f(\xi, x)]$$

 $X \subseteq \mathbb{R}^n$ convex compact set with non-empty interior

 $\Xi\subseteq \mathbb{R}^\ell$. Lebesgue measurable closed set with non-empty interior

 $f: \Xi \times X \to \overline{\mathbb{R}}$ continuous in $x \ \forall \xi \in \Xi$, measurable in $\xi \ \forall x \in X$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

 $\mathbb{E}[\cdot]$ expectation over Ξ

The Problem

$$\min_{x \in X} F(x) := \mathbb{E}[f(\xi, x)]$$

 $X \subseteq \mathbb{R}^n$ convex compact set with non-empty interior

 $\Xi\subseteq \mathbb{R}^\ell$. Lebesgue measurable closed set with non-empty interior

 $f: \Xi \times X \to \overline{\mathbb{R}}$ continuous in $x \ \forall \xi \in \Xi$, measurable in $\xi \ \forall x \in X$

 $\mathbb{E}[\cdot]$ expectation over Ξ

Applications of interest include stochastic nonlinear complementarity problems, stochastic gap functions, and optimization problems in statistical learning, where $f(\xi, x)$ is often not Clarke regular in x for almost all ξ .

Clarke Stationary Points $0 \in \partial F(x) + \mathcal{N}_X(x), \text{ where } F(x) = \mathbb{E}[f(\xi, x)]$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Clarke Stationary Points $0 \in \partial F(x) + \mathcal{N}_X(x), \text{ where } F(x) = \mathbb{E}[f(\xi, x)]$

Issues:

• Can we estimate $\partial F(x)$ using $f(\xi, x)$?

・ロト ・ 日 ・ モー・ モー・ うへぐ

Clarke Stationary Points

$$0 \in \partial F(x) + \mathcal{N}_X(x)$$
, where $F(x) = \mathbb{E}[f(\xi, x)]$

ション ふゆ マ キャット マックシン

Issues:

- Can we estimate $\partial F(x)$ using $f(\xi, x)$?
- (Clarke '83) If $f(\xi, x)$ is Clarke regular a.e. ξ , then $\partial F(x) = \mathbb{E}[\partial f(\xi, x)].$

Clarke Stationary Points

$$0 \in \partial F(x) + \mathcal{N}_X(x), \quad \text{where } F(x) = \mathbb{E}[f(\xi, x)]$$

Issues:

- Can we estimate $\partial F(x)$ using $f(\xi, x)$?
- (Clarke '83) If $f(\xi, x)$ is Clarke regular a.e. ξ , then $\partial F(x) = \mathbb{E}[\partial f(\xi, x)].$
- In general, we only have

 $\partial F(x) \subseteq \mathbb{E}[\partial_x f(\xi, x)].$

ション ふゆ マ キャット マックシン

Clarke Stationary Points

$$0 \in \partial F(x) + \mathcal{N}_X(x), \quad \text{where } F(x) = \mathbb{E}[f(\xi, x)]$$

Issues:

- Can we estimate $\partial F(x)$ using $f(\xi, x)$?
- (Clarke '83) If $f(\xi, x)$ is Clarke regular a.e. ξ , then $\partial F(x) = \mathbb{E}[\partial f(\xi, x)].$
- In general, we only have $\partial F(x) \subseteq \mathbb{E}[\partial_x f(\xi, x)].$

Example: $f(\xi, x) = \xi |x|$ with $\xi \sim N(0, 1)$. Then

$$\mathbb{E}[f(\xi, x)] = \mathbb{E}[\xi | x |] \equiv 0 \implies \partial F(x) = 0 \quad \forall \ x \in \mathbb{R}$$

but

$$\mathbb{E}[\partial f(\xi,0)] = \sqrt{\pi/2} \, [-1,1].$$

ション ふゆ マ キャット マックタン

Basic Assumptions (Clarke '83)

We say $f : \Xi \times X \to \mathbb{R}$ is a Carathéodory mapping on $\Xi \times X$ if $f(\xi, \cdot)$ is continuous on an open set U containing X for all $\xi \in \Xi$, and $f(\cdot, x)$ is measurable on Ξ for all $x \in X$.

(日) (日) (日) (日) (日) (日) (日) (日)

Basic Assumptions (Clarke '83)

We say $f : \Xi \times X \to \mathbb{R}$ is a Carathéodory mapping on $\Xi \times X$ if $f(\xi, \cdot)$ is continuous on an open set U containing X for all $\xi \in \Xi$, and $f(\cdot, x)$ is measurable on Ξ for all $x \in X$.

We say that $f : \Xi \times U \to \mathbb{R}$ is a locally Lipschitz integrand on $\Xi \times U$ if f is a Carathéodory mapping on $\Xi \times U$ and $\forall \ \bar{x} \in U \ \exists \ \epsilon(\bar{x}) > 0$ and an integrable mapping $\kappa_f(\cdot, \bar{x}) \in L^2_1(\mathbb{R}^\ell, \mathcal{M}, \rho)$ such that

 $|f(\xi, x_1) - f(\xi, x_2)| \le \kappa_f(\xi, \bar{x}) ||x_1 - x_2|| \quad \forall x_1, x_2 \in \mathbb{B}_{\epsilon(\bar{x})}(\bar{x}) \text{ a.e. } \xi \in \Xi,$

where $\mathbb{B}_{\epsilon}(\bar{x}) := \{x \mid ||x - \bar{x}|| \le \epsilon\} \subseteq U.$

Basic Assumptions (Clarke '83)

We say $f : \Xi \times X \to \mathbb{R}$ is a Carathéodory mapping on $\Xi \times X$ if $f(\xi, \cdot)$ is continuous on an open set U containing X for all $\xi \in \Xi$, and $f(\cdot, x)$ is measurable on Ξ for all $x \in X$.

We say that $f : \Xi \times U \to \mathbb{R}$ is a locally Lipschitz integrand on $\Xi \times U$ if f is a Carathéodory mapping on $\Xi \times U$ and $\forall \ \bar{x} \in U \ \exists \ \epsilon(\bar{x}) > 0$ and an integrable mapping $\kappa_f(\cdot, \bar{x}) \in L^2_1(\mathbb{R}^\ell, \mathcal{M}, \rho)$ such that

$$|f(\xi, x_1) - f(\xi, x_2)| \le \kappa_f(\xi, \bar{x}) ||x_1 - x_2|| \quad \forall x_1, x_2 \in \mathbb{B}_{\epsilon(\bar{x})}(\bar{x}) \text{ a.e. } \xi \in \Xi,$$

where $\mathbb{B}_{\epsilon}(\bar{x}) := \{x \mid ||x - \bar{x}|| \le \epsilon\} \subseteq U.$

If $f: \Xi \times U \to \mathbb{R}$ is a LL integrand then $F(x) := \mathbb{E}[f(\xi, x)]$ is locally Lipschitz continuous on U with local Lipschitz modulus $\kappa_F(\bar{x}) := \mathbb{E}[\kappa_f(\xi, \bar{x})].$

Approximation by Smoothing Functions

Let $F: U \to \mathbb{R}$, where $U \subseteq \mathbb{R}^n$ is open. We say that \sim

$$F: U \times \mathbb{R}_{++} \to \mathbb{R}$$

is a smoothing function for F on U if

(i) $\widetilde{F}(\cdot,\mu)$ converges continuously to F on U, i.e.,

$$\lim_{\mu \downarrow 0, x \to \bar{x}} \tilde{F}(x, \mu) = F(\bar{x}) \quad \forall \, \bar{x} \in U, \text{ and}$$

(日) (日) (日) (日) (日) (日) (日) (日)

(ii) $\widetilde{F}(\cdot,\mu)$ is continuously differentiable on U for all $\mu > 0$.

Measurable Smoothing Integrands

$$\begin{split} \tilde{f} &: \Xi \times U \times \mathbb{R}_{++} \to \mathbb{R} \text{ is a } measurable \ smoothing \ integrand \ for} \\ f &: \Xi \times U \to \mathbb{R} \text{ with smoothing parameter } \mu > 0 \text{ if,} \\ &\forall \ \mu > 0, \ \tilde{f}(\cdot, \cdot, \mu) \text{ is a Carathéodory map and} \end{split}$$

(i)

$$\lim_{\mu \downarrow 0, x \to \bar{x}} \tilde{f}(\xi, x, \mu) = f(\xi, \bar{x}) \quad \forall \, \bar{x} \in U \text{ and } \xi \in \Xi,$$

(ii) $\forall (\bar{x}, \bar{\mu}) \in U \times \mathbb{R}_{++} \exists \text{ open } V \subseteq U \text{ with } \bar{x} \in U \text{ and}$ $\hat{\kappa}_f(\cdot, \bar{x}, \bar{\mu}), \ \kappa_f(\cdot, \bar{x}, \bar{\mu}) \in L^2_1(\Xi, M, \rho)$

such that

$$|\tilde{f}(\xi, x, \mu)| \le \kappa_f(\xi, \bar{x}, \bar{\mu}) \text{ and } \left\| \nabla_x \tilde{f}(\xi, x, \mu) \right\| \le \hat{\kappa}_f(\xi, \bar{x}, \bar{\mu})$$

 $\forall (\xi, x, \mu) \in \Xi \times V \times (0, \bar{\mu}].$

Gradient Consistence of Smoothing Functions

Let $U \subseteq \mathbb{R}^n$ be open and let $F : U \to \mathbb{R}$ have smoothing function $\widetilde{F} : U \times \mathbb{R}_{++} \to \mathbb{R}$ on U. We say that \widetilde{F} is gradient consistent at $\overline{x} \in U$ if

$$\operatorname{co}\left\{\operatorname{Limsup}_{\mu\downarrow 0,x\to \bar{x}}\nabla_x \widetilde{F}(x,\mu)\right\} = \partial F(\bar{x}),$$

where the limit supremum is taken in the multi-valued sense.

If

$$\operatorname{co} \left\{ \operatorname{Limsup}_{x \to \bar{x}, \mu \downarrow 0} \nabla \widetilde{F}(x, \mu) \right\} \subseteq \partial F(\bar{x}),$$

we say the \widetilde{F} is gradient sub-consistent at $\overline{x} \in U$

Chen (2012), B-Hoheisel-Kanzow (2013), B-Hoheisel (2013-16)

Gradient Sub-Consistency

If $\bar{x} \in U$ is such that

$$\exists \ \bar{\nu} > 0 \quad \text{s.t.} \quad \forall \ \nu \in (0, \bar{\nu}) \quad \exists \ \delta(\nu, \bar{x}) > 0 \quad \text{and} \\ \Xi(\nu, \bar{x}) \in \mathcal{M} \quad \text{with} \quad \rho(\Xi(\nu, \bar{x})) \ge 1 - \nu \\ \text{for which} \\ \nabla_x \tilde{f}(\xi, x, \mu) \in \partial_x f(\xi, \bar{x}) + \nu \mathbb{B} \quad \forall \ (x, \mu) \in [(\bar{x}, 0) + \delta(\nu, \bar{x})(\mathbb{B} \times (0, 1))] \\ \text{a.e.} \ \xi \in \Xi(\nu, \bar{x}),$$

then

$$\operatorname{co}\left\{\operatorname{Limsup}_{x\to\bar{x},\mu\downarrow0}\nabla\widetilde{F}(x,\mu)\right\}\subseteq\partial F(\bar{x})=\mathbb{E}\left[\operatorname{co}\left\{\operatorname{Limsup}_{x\to\bar{x},\mu\downarrow0}\nabla_{x}\widetilde{f}(\xi,x,\mu)\right\}\right]$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Gradient Sub-Consistency

If $\bar{x} \in U$ is such that $\begin{cases} \exists \ \bar{\nu} > 0 \ \text{ s.t. } \forall \ \nu \in (0, \bar{\nu}) \ \exists \ \delta(\nu, \bar{x}) > 0 \ \text{ and} \\ \Xi(\nu, \bar{x}) \in \mathcal{M} \ \text{ with } \ \rho(\Xi(\nu, \bar{x})) \ge 1 - \nu \\ \text{ for which} \\ \nabla_x \tilde{f}(\xi, x, \mu) \in \partial_x f(\xi, \bar{x}) + \nu \mathbb{B} \ \forall (x, \mu) \in [(\bar{x}, 0) + \delta(\nu, \bar{x})(\mathbb{B} \times (0, 1))] \\ \text{ a.e. } \xi \in \Xi(\nu, \bar{x}), \end{cases}$ uniform subgradient approximation property then $\operatorname{co}\left\{\operatorname{Limsup}_{x \to \bar{x}, \mu \downarrow 0} \nabla \widetilde{F}(x, \mu)\right\} \subseteq \partial F(\bar{x}) = \mathbb{E}\left[\operatorname{co}\left\{\operatorname{Limsup}_{x \to \bar{x}, \mu \downarrow 0} \nabla_x \widetilde{f}(\xi, x, \mu)\right\}\right].$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 …の�?

Composite Max (CM) Integrands

Let $\Xi \times X \subseteq \mathbb{R}^{\ell} \times \mathbb{R}^{n}$ and let U be an open set containing X. We say that the mapping $g : \Xi \times U \to \mathbb{R}^{m}$ is a measurable mapping with amenable derivative if the following two conditions are satisfied:

- (i) Each component of g is a Carathéodory mapping and, for all $\xi \in \Xi$, $g(\xi, \cdot)$ is continuously differentiable in x on U;
- (ii) For all $(\xi, x) \in \Xi \times U$, the gradient $\nabla_x g(\xi, x)$ is locally L^2 bounded in x uniformly in ξ in the sense that there is a function $\hat{\kappa}_g : \Xi \times U \to \mathbb{R}$ satisfying $\hat{\kappa}_g(\cdot, x) \in L^2_1(\mathbb{R}^\ell, \mathcal{M}, \rho)$ for all $x \in U$ and

 $\forall \, \bar{x} \in X \, \exists \, \epsilon(\bar{x}) > 0 \, \text{ such that } \, \|\nabla_x g(\xi, x)\| \le \hat{\kappa}_g(\xi, \bar{x}) \quad \forall \, x \in \mathbb{B}_{\epsilon(\bar{x})}(\bar{x}).$

Composite Max (CM) Integrands

A CM integrand on $\Xi \times X$ is a mapping of the form

$$f(\xi, x) := q(c(\xi, x) + C(g(\xi, x)))$$
(0.1)

for which there exists an open set U containing X such that

1.
$$C : \mathbb{R}^m \to \mathbb{R}^m$$
 is of the form
 $C(y) := [p_1(y_1), p_2(y_2), \dots, p_m(y_m)]^T$,
where $p_i : \mathbb{R} \to \mathbb{R} \ (i = 1, \dots, m)$ are finite piecewise linear
convex with finitely many points of nondifferentiability,

- 2. the mappings c and g are measurable mappings with amenable derivatives and
- 3. the mapping $\mathbf{q} : \mathbb{R}^m \to \mathbb{R}$ is continuously differentiable with Lipschitz continuous derivative.

Piecewise Linear Convex Functions on \mathbb{R}

For i = 1, ..., m, there is a positive integer r_i and scalar pairs $(a_{ij}, b_{ij}), i = 1, ..., m, j = 1, ..., r_i$ such that

$$p_i(t) := \max \{ a_{ij}t + b_{ij} \mid j = 1, \dots, r_i \},\$$

where $a_{i1} < a_{i2} < \cdots < a_{i(r_i-1)} < a_{ir_i}$. The scalar pairs $(a_{ij}, b_{ij}), i = 1, \ldots, m, j = 1, \ldots, r_i$ are coupled with a scalar partition of the real line

$$-\infty = t_{i1} < t_{i2} < \dots < t_{ir_i} < t_{i(r_i+1)} = \infty$$

such that for all $j = 1, \dots, r_i - 1$,
 $a_{ij}t_{i(j+1)} + b_{ij} = a_{i(j+1)}t_{i(j+1)} + b_{i(j+1)}$ and
$$p_i(t) = \begin{cases} a_{i1}t + b_{i1}, & t \le t_{i2}, \\ a_{ij}t + b_{ij}, & t \in [t_{ij}, t_{i(j+1)}] \\ a_{ir_i}t + b_{ir_i}, & t \ge t_{ir_i}. \end{cases} (j \in \{2, \dots, r_i - 1\}),$$

This representation for the functions p_i gives

$$\partial p_i(t) = \begin{cases} a_{ij}, & t_{ij} < t < t_{i(j+1)}, \ j = 1, \dots, r_i \\ [a_{i(j-1)}, a_{ij}], & t = t_{ij}, \ j = 2, \dots, r_i. \end{cases} \quad i = 1, \dots, m.$$

Smoothing for CM Integrands

 $\beta : \mathbb{R} \to \mathbb{R}_+$ be a piecewise continuous density function s.t.

$$\beta(t) = \beta(-t)$$
 and $\omega := \int_{\mathbb{R}} |t| \beta(t) dt < \infty$.

Denote the distribution function for the density β by φ , i.e.,

$$\varphi : \mathbb{R} \to [0, 1]$$
 is given by $\varphi(x) = \int_{-\infty}^{x} \beta(t) dt$.

Since β is symmetric, φ is a non-decreasing continuous with

$$\varphi(0) = \frac{1}{2}, \quad (1 - \varphi(x)) = \varphi(-x),$$

 $\lim_{x \to \infty} \varphi(x) = 1 \quad \text{and} \quad \lim_{x \to -\infty} \varphi(x) = 0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Smoothing the p_i

For $i = 1, \ldots, m$, the convolution

$$\tilde{p}_i(t,\mu) := \int_{\mathbb{R}} p_i(t-\mu s)\beta(s)\,ds$$

is a (well-defined) smoothing function with

$$\nabla_t \tilde{p}_i(t,\mu) = a_{i1} \left(1 - \varphi \left(\frac{t - t_{i2}}{\mu} \right) \right) + \sum_{j=2}^{r_i - 1} a_{ij} \left(\varphi \left(\frac{t - t_{ij}}{\mu} \right) - \varphi \left(\frac{t - t_{i(j+1)}}{\mu} \right) \right) + a_{ir_i} \varphi \left(\frac{t - t_{ir_i}}{\mu} \right),$$

 $\eta_i(t) := \lim_{\mu \downarrow 0} \nabla_t \tilde{p}_i(t,\mu) = \begin{cases} a_{ij} & t_{ij} < t < t_{i(j+1)}, \ j = 1, \dots, r_i \\ \frac{1}{2}(a_{i(j-1)} + a_{ij}) & t = t_{ij}, \ j = 2, \dots, r_i \end{cases}$

is an element of $\partial p_i(\bar{t})$, and

$$\limsup_{t \to \bar{t}, \mu \downarrow 0} \nabla_t \tilde{p}_i(t, \mu) = \partial p_i(\bar{t}) \quad \forall \bar{t} \in \mathbb{R}.$$

うして ふゆう ふほう ふほう ふしつ

Smoothing CM Integrands (B-Hoheisel-Kanzow '13)

Let f be a CM integrand. Then
$$\tilde{f} : \Xi \times U \times \mathbb{R}_{++} \to \mathbb{R}$$
 given by $\tilde{f}(\xi, x, \mu) := \mathsf{q}(\mathsf{c}(\xi, x) + \tilde{C}(g(\xi, x), \mu))$

is a smoothing function for f, where $\tilde{C}(y,\mu) := [\tilde{p}_1(y_1,\mu), \tilde{p}_2(y_2,\mu), \dots, \tilde{p}_m(y_m,\mu)]^T.$

If rank
$$\nabla_x g(\xi, \bar{x}) = m$$
, then, for all $\mu > 0$,
 $\nabla_x \tilde{f}(\xi, \bar{x}, \mu)$ and $\partial_x f(\xi, \bar{x})$

are given respectively by

$$(\nabla_x \mathsf{c}(\xi, \bar{x}) + \operatorname{diag}(\nabla_t \tilde{p}_i(g_i(\xi, \bar{x}), \mu)) \nabla_x g(\xi, \bar{x}))^T \nabla \mathsf{q}(\mathsf{c}(\xi, \bar{x}) + \tilde{C}(g(\xi, \bar{x})))$$

 $(\nabla_x \mathsf{c}(\xi, \bar{x}) + \operatorname{diag}(\partial_t p_i(g_i(\xi, \bar{x}), \mu)) \nabla_x g(\xi, \bar{x}))^T \nabla \mathsf{q}(\mathsf{c}(\xi, \bar{x}) + C(g(\xi, \bar{x}))).$ Moreover,

$$\underset{x \to \bar{x}, \mu \downarrow 0}{\text{Limsup}} \nabla_x f(\xi, x, \mu) \subseteq \partial_x f(\xi, \bar{x})$$

Gradient Sub-Consistency of Smoothed CM Integrands

$$\begin{split} f(\xi,x) &:= \mathsf{q}(\mathsf{c}(\xi,x) + C(g(\xi,x),\mu)) \\ \tilde{f}(\xi,x,\mu) &:= \mathsf{q}(\mathsf{c}(\xi,x) + \tilde{C}(g(\xi,x),\mu)) \end{split}$$

If $f(\xi, \cdot)$ is subdifferentially regular \bar{x} for almost all $\xi \in \Xi$ or $-f(\xi, \cdot)$ is subdifferentially regular at \bar{x} for almost all $\xi \in \Xi$. Then

$$\widetilde{F}(x) := \mathbb{E}[\widetilde{f}(\xi, x)]$$

satisfies the gradient sub-consistency property i.e.,

$$\operatorname{co}\left\{\operatorname{Limsup}_{x\to\bar{x},\mu\downarrow 0}\nabla\widetilde{F}(x,\mu)\right\}\subseteq \partial F(\bar{x})=\mathbb{E}\left[\operatorname{co}\left\{\operatorname{Limsup}_{x\to\bar{x},\mu\downarrow 0}\nabla_{x}\tilde{f}(\xi,x,\mu)\right\}\right]$$

うして ふゆう ふほう ふほう ふしつ

What happens when Clarke regularity fails? Consider the CM integrand f and its smoothing function \tilde{f} :

$$\begin{split} f(\xi,x) &:= \mathsf{q}(\mathsf{c}(\xi,x) + C(g(\xi,x),\mu)) \\ \tilde{f}(\xi,x,\mu) &:= \mathsf{q}(\mathsf{c}(\xi,x) + \tilde{C}(g(\xi,x),\mu)) \end{split}$$

Assume that rank $\nabla_x g(\xi, \bar{x}) = m$ for a fixed $(\xi, \bar{x}) \in \Xi \times X$. Then the limit

$$\begin{aligned} u(\xi,\bar{x}) &:= \lim_{\mu \downarrow 0} \nabla_x \tilde{f}(\xi,\bar{x},\mu) \\ &= (\nabla_x \mathsf{c}(\xi,\bar{x}) + (\mathsf{z}_1(\xi,\bar{x}),\dots,\mathsf{z}_m(\xi,\bar{x}))^T \nabla \mathsf{q}(\mathsf{c}(\xi,\bar{x}) + C(g(\xi,\bar{x})))) \end{aligned}$$

exist as given with $u(\xi, \bar{x}) \in \partial_x f(\xi, \bar{x})$, where

$$\mathsf{z}_i(\xi, \bar{x}) := \eta_i(g_i(\xi, \bar{x})) \nabla_x g_i(\xi, \bar{x}) \quad \text{with}$$

$$\eta_i(t) := \lim_{\mu \downarrow 0} \nabla_t \tilde{p}_i(t,\mu) \in \partial p_i(\bar{t}).$$

(日) (日) (日) (日) (日) (日) (日) (日)

Subgradient Approximation by Smoothing

$$\begin{split} f(\xi, x) &:= \mathsf{q}(\mathsf{c}(\xi, x) + C(g(\xi, x), \mu)) \\ \tilde{f}(\xi, x, \mu) &:= \mathsf{q}(\mathsf{c}(\xi, x) + \tilde{C}(g(\xi, x), \mu)) \\ u(\xi, \bar{x}) &:= \lim_{\mu \downarrow 0} \nabla_x \tilde{f}(\xi, \bar{x}, \mu) \end{split}$$

 $F(x):=\mathbb{E}[f(\xi,x)] \ \, \text{and} \ \ \widetilde{F}(x,\mu):=\mathbb{E}[\widetilde{f}(\xi,x,\mu)] \quad \forall \ x\in X.$

Then $\widetilde{F}(\cdot,\mu)$ is differentiable for all $\mu > 0$ with $\nabla_x \widetilde{F}(x,\mu) = \mathbb{E}[\nabla_x \widetilde{f}(\xi,x,\mu)],$

the function u is well defined, and,

$$\lim_{\mu \downarrow 0} \nabla_x \widetilde{F}(\bar{x}, \mu) = \lim_{\mu \downarrow 0} \mathbb{E}[\nabla_x \widetilde{f}(\xi, \bar{x}, \mu)] = \mathbb{E}[u(\xi, \bar{x})] \in \partial F(\bar{x}).$$

(日) (日) (日) (日) (日) (日) (日) (日)

Subgradient Approximation by Smoothing

For $\mu > 0$ and $\bar{x} \in U$ there exits $K(\bar{x}) > 0$ and $\delta(\bar{x}) > 0$ s.t.

$$\left\|\nabla \tilde{f}(\xi, x, \mu) - \nabla \tilde{f}(\xi, \bar{x}, \mu)\right\| \le \frac{K(\bar{x})}{\mu} \|x - \bar{x}\| \quad \forall \xi \in \Xi \text{ and } x \in \mathcal{B}_{\bar{\delta}(\bar{x})}(\bar{x})$$

and

$$\operatorname{dist}\left(\mathbb{E}[\nabla \tilde{f}(\xi, x, \mu)] \,|\, \partial F(\bar{x})\right) \leq \frac{K(\bar{x})}{\mu} \,\|x - \bar{x}\| + \operatorname{dist}\left(\nabla_x \tilde{F}(\bar{x}, \mu) \,|\, \partial F(\bar{x})\right)$$
$$\forall \, x \in \mathcal{B}_{\bar{\delta}(\bar{x})}(\bar{x}).$$

Moreover, for any $\gamma \in (0, 1)$:

$$\underset{x \to \bar{x}, \, \mu = O(\|x - \bar{x}\|^{\gamma})}{\text{Limsup}} \mathbb{E}[\nabla \tilde{f}(\xi, x, \mu)] \subset \partial F(\bar{x}).$$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで