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Convex-Composite Optimization

P min
x∈Rn

f(x) := h(c(x)) + g(x)

h : Rm → R ∪ {+∞} is closed, proper, convex

The Model

c : Rn → Rm is C2-smooth

Model input (Data)

g : Rn → R ∪ {+∞} is closed, proper, convex

Regularizer

In general, these problems are neither convex nor smooth.Note that g can be absorbed into h.

Set
h̃(y, x) := h(y) + g(x) and c̃(x) := (c(x), x),

then f = h̃ ◦ c̃ is convex-composite.

For simplicity, we usually take g ≡ 0.

But in the context of algorithmic implementations, it is often essential to
treat g explicitly.

1805 The Gauss-Newton method :

minx
1
2‖c(x)‖22

Legendre 1805, Gauss 1809 (1795?)

Gauss, in 1809 at the age of 24, used the method to track the newly
discovered asteroid Ceres. He also advanced Legendre’s work by
establishing connections to probability and statistics using the normal
distribution.

Gauss also claimed to have been using the method for celestial
computations since 1795 at the age of 10.

70’s
Anderson, Osborne, Watson: Algorithms for nonlinear approximation

80-90’s
B., Conn, Ferris, Fletcher, Kawasaki, Masden, Poliquin, Powell,
Osborne, Rockafellar, Womersley, Wright, Yuan

Recent (15- )
Aravkin, Bell, B., Chang, Cui, Duchi, Davis, Drusvyatskiy, Engle,
Hoheisel, Hong, Lewis, Ioffe, Mohammadi, Mordukhovich, Pang,
Paquette, Royset, Ruan, Sarabi, Zheng ...
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Examples:

Non-linear least-squares: f(x) = ‖c(x)‖22

Feasibility Problems: c(x) ∈ C : f(x) = dist (c(x) |C ),

where C ⊂ Rm is closed, convex (e.g., C = {0}p × Rq−), and
dist (y |C ) := inf {‖y − z‖ | z ∈ C }.

Non-linear programming (NLP): minϕ(x) + δC(ĉ(x)).

Here c(x) := (ϕ(x), ĉ(x)) and h(µ, y) := µ+ δC(y), where

δC(y) =

{
0, y ∈ C,

+∞, else.
δC is called the convex indicator function for C, typically

C = {0}s × Rm−s− .

Exact Penalization: f(x) = ϕ(x) + αdist (ĉ(x) |C )

Here c(x) := (ϕ(x), ĉ(x)) and h(µ, y) := µ+ αdist (y |C )

Additive composite problems: f(x) = ψ(x) + g(x) with ψ ∈ C1
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Examples

Robust Phase Retrieval:

min
x

1

m

m∑
i=1

|〈ai, x〉
2 − b2i |

Sparse Dictionary Learning:

min
D∈Rd×n

,ri∈R
n

1

m

m∑
i=1

‖xi −Dri‖2 + λ‖ri‖1 subject to ‖Di‖ ≤ 1

Robust PCA:
min

U∈Rm×r
,V ∈Rn×r

∥∥∥UV T −M∥∥∥
1

Sparse/Robust Estimation and Kalman Smoothing:

min
x
V (k(x, z)) +W (q(x)),

where V and W are convex piecewise linear-quadratic penalties:

ρ(y) = sup
u∈U

{
〈u, b+By〉 − 1

2
yTMy

}
.

`1, least-squares,
elastic net, Vapnik

Huber, . . .

Rockafellar ’88
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First-Order Properties

P min
x∈Rn

f(x) := h(c(x))

Standard first-order necessary conditions for optimality in P are

f ′(x; d) ≥ 0 ∀ d ∈ Rn,

where f ′(x; d) is the directional derivative of f at x given by

f ′(x; d) := lim
t↓0

f(x+ td)− f(x)

t
.

Does the directional derivative exists?

We begin by assuming that h is finite valued.
Convexity implies that h is locally Lipschitz continuous, i.e.

∀ ū ∃L > 0 : |h(u)− h(v)| ≤ L‖u− v‖ ∀u, v near ū.
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f(x+ td)− f(x)

t
.

Does the directional derivative exists?

We begin by assuming that h is finite valued.
Convexity implies that h is locally Lipschitz continuous, i.e.

∀ ū ∃L > 0 : |h(u)− h(v)| ≤ L‖u− v‖ ∀u, v near ū.



The Directional Derivative f ′(x; d)
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The Subdifferential ∂f(x)

Recall that for a convex function ϕ, we have

ϕ′(y; v) = sup {〈z, v〉 | z ∈ ∂ϕ(y)},

whenever ∂ϕ(y) 6= ∅, where

∂ϕ(y) := {z |ϕ(y) + 〈z, y − y〉 ≤ ϕ(y) ∀ y ∈ Rm },

is the convex subdifferential of ϕ(y) at y.

Consequently,

f ′(x; d) = h′(c(x); c′(x)d) = sup
{
〈z, c′(x)d〉 | z ∈ ∂h(c(x))

}
= sup

{
〈c′(x)T z, d〉 | z ∈ ∂h(c(x))

}
= sup

{
〈w, d〉

∣∣∣w ∈ c′(x)T∂h(c(x))
}
.

Define ∂f(x) := c′(x)T∂h(c(x)).

f is subdifferentially regular.
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The Basic Constraint Qualification

What happens when h is not finite-valued?

In this case, f ′(x; d) does not adequately describe the variational
behavior of f on the relative boundary of dom (h).

Consequently, we employ the more general subderivative:

df(x)(d) := lim inf
t↓0,d′→d

f(x+ td′)− f(x)

t
.

In addition, c may be “deficient” at x ∈ rbdry (dom (f)) in the
sense that

@ x̃ s.t. c(x) + c′(x)(x̃− x) ∈ ri (dom (h)) .

That is, c(x) + c′(x)(x− x) does not enter ri (dom (h)) from c(x).

A constraint qualification is employed to address this deficiency.
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The Basic Constraint Qualification

Basic Constraint Qualification (BCQ) (Rockafellar ’85):

ker (c′(x)T ) ∩N (c(x) | dom (h)) = {0}

where

N (y |C) := ∂δC(y) = {z | 〈z, y − y〉 ≤ 0 ∀ y ∈ C }

is the normal cone to the convex set C at y ∈ C.

• If f = h ◦ c satisfies the BCQ at x ∈ dom (f), then f is
subdifferentially regular at x with

∂f(x) = c′(x)T∂h(c(x)) and

df(x)(d) = sup {〈z, d〉 | z ∈ ∂f(x)}.

• f = h ◦ c satisfies the BCQ at x ∈ dom (f) if and only if{
y ∈ ∂h(c(x))

∣∣∣ v = c′(x)T y
}

is compact ∀ v ∈ ∂f(x).

In the case of NLP, the BCQ is precisely the
Mangasarian-Fromovitz constraint qualification (MFCQ).
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Interlude: Support Functions and Conjugacy

σS(z) := supx∈S〈z, x〉

σS = σconv(S)

epi (ϕ) := {(x, µ) |ϕ(x) ≤ µ}

−3 −2 −1 0 1 2 3

0

2

4

ϕ∗(z) := σepi(ϕ)(z,−1)

ϕ∗(z) := σepi(ϕ)(z,−1) = supx{〈z, x〉 − ϕ(x)}

ϕ(x) + ϕ∗(z) ≥ 〈z, x〉 ∀x, z equality
=⇒ ϕ(x) = (ϕ∗)∗(x).

Bi-conjugacy: If there exists x such that −∞ < ϕ(x) < +∞, then

epi
(
ϕ∗∗
)

= conv (epi (ϕ)) so ϕ(x) ≥ ϕ∗∗(x) ∀x.

If, in addition, epi (ϕ) is closed and convex, then ϕ(x) = ϕ∗∗(x) .
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The Convex-Composite Lagrangian

P min
x∈Rn

h(c(x))

+ g(x)

• The Lagrangian for P:

L(x, y) := 〈y, c(x)〉 − h∗(y)

L(x, y

, v

) := 〈y, c(x)〉 − h∗(y)

+〈v, x〉 − g∗(v)L(x, y) := 〈y, c(x)〉 − h∗(y) + g(x)min
x

(h ◦ c)(x) = min
x

sup
y

[〈y, c(x)〉 − h∗(y)] = min
x

sup
y

L(x, y)

• First-Order Optimality Conditions:

x ∈ argminx f =⇒ 0 ∈ ∂f(x) ⇐⇒
(

0
0

)
∈
(

∂xL(x, y)
∂y(−L)(x, y)

)

In the case of NLP, the Lagrangian optimality conditions are
precisely the KKT conditions.

Rockafellar (’23) has recently introduced a notion of augmented
Lagrangians for convex-composite functions and proposed an
associated AL method.
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Second-Order Optimality Conditions

Theorem: (B.-Poliquin ’92) (Necessity) If x is a local solution to
minx f(x) at which the BCQ is satisfied, then

h′′(c(x); c′(x)d) + maxy∈M(x) d
T∇2

xxL(x, y)d ≥ 0

for all d ∈ Rn such that df(x)(d) ≤ 0 where

h′′(c(x); c′(x)d) := lim inf
u→d, t↓0

h(c(x) + tc′(x)u)− f(x)− tdf(x)(d)
1
2 t

2

M(x) :=
{
y ∈ ∂h(c(x))

∣∣∣ c′(x)T y = 0
}
.

Example:

h ∈ C2 =⇒ ∇2f(x) = c′(x)T∇2h(c(x))c′(x) +
m∑
i=1

yi∇
2ci(x),

where y = ∇h(c(x)).

Theorem: (Rockafellar ’89) (Sufficiency) Suppose that h is a piecewise
linear-quadratic function. If x is such that 0 ∈ ∂f(x) and

h′′(c(x); c′(x)d) + maxy∈M(x) d
T∇2

xxL(x, y)d > 0

for all d 6= 0 such that df(x)(d) ≤ 0, then there is an α > 0 such that

f(x) ≥ f(x) + α‖x− x‖22 for all x near x.

Mohammadi and Sarabi ’20 use Rockafellar’s notion of parabolic
regularity ’85 and metric subregularity to give a new approach to the
necessity theorem and extend the sufficiency theorem.
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“Exactness” and the Pasch-Hausdorff Envelope

Pasch-Hausdorff Envelope:

hα(y) := inf
w

[h(w) + α‖y − w‖]

hα is finite-valued and globally α-Lipschitz.

Example:
h(y) := δΩ(y) =⇒ hα(y) := α infw∈Ω ‖y − w‖ = αdist (y |Ω) .

Define fα(x) := hα(c(x)).

Exactness: Does argmin f = argmin fα?
Theorem:(B.-Poliquin ’92)
If x is a local solution to minx f(x) at which c is locally Lipschitz
and the BCQ is satisfied, then there is an ᾱ > 0 such that x is a
local solution to minx fα(x) with f(x) = fα(x) for all α > ᾱ.

NLP exact penalization as well as other exact penalization results for this
class follow from this theorem since (δΩ)α(x) = αdist (y |Ω).



“Exactness” and the Pasch-Hausdorff Envelope

Pasch-Hausdorff Envelope:

hα(y) := inf
w

[h(w) + α‖y − w‖]

hα is finite-valued and globally α-Lipschitz.

Example:
h(y) := δΩ(y) =⇒ hα(y) := α infw∈Ω ‖y − w‖ = αdist (y |Ω) .

Define fα(x) := hα(c(x)).

Exactness: Does argmin f = argmin fα?
Theorem:(B.-Poliquin ’92)
If x is a local solution to minx f(x) at which c is locally Lipschitz
and the BCQ is satisfied, then there is an ᾱ > 0 such that x is a
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When is a convex-composite function convex?

Observe that

f(x) = h(c(x)) = h∗∗(c(x)) = sup
y

[〈y, c(x)〉 − h∗(y)].

So f is convex if 〈y, c〉(·) is convex for all y ∈ dom
(
h∗
)
, i.e.,

∀ y ∈ K := R+dom
(
h∗
)
, u, v ∈ Rn, λ ∈ [0, 1]

〈y, c〉((1− λ)u+ λv) ≤ (1− λ)〈y, c〉(u) + λ〈y, c〉(v)

⇐⇒
〈y, c((1− λ)u+ λv))− [(1− λ)c(u) + λc(v)]〉 ≤ 0

⇐⇒
c((1− λ)u+ λv)− [(1− λ)c(u) + λc(v)] ∈ K◦

⇐⇒
c is concave wrt K◦ = hzn (h)

,

where hzn (h) :={z |h(x+λz)≤h(x) ∀x∈dom (h), λ > 0}.
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Convex convex-composite functions

Theorem:(B.-Hoheisel-Nguyen ’21)
If c : Ω→ Rm is convex wrt (−hzn (h)), then f = h◦ c is convex.

If, in addition,
c(ri (Ω) ∩ ri (dom (h)) 6= ∅,

then
(h ◦ c)∗(p) = min

v∈Rm
h∗(v) + 〈v, c(·)〉∗(p)

and

∂(h ◦ c)(x̄) =
⋃

v∈∂h(c(x̄))

∂〈v, c(·)〉(x̄) (x̄ ∈ dom (h ◦ c)).

Borwein ’74, Bot-Wanka-Grad-Hodrea ’06-’10,
Combari-Lagdhir-Thibault ’94, Pennanen ’99
Applications: conic programming, Kiefer-Gaffe-Krafft inequalities,
matrix-fractional functions, variational Gram functions, spectral
functions, generalized Farkas theorems, ...



Convex convex-composite functions

Theorem:(B.-Hoheisel-Nguyen ’21)
If c : Ω→ Rm is convex wrt (−hzn (h)), then f = h◦ c is convex.

If, in addition,
c(ri (Ω) ∩ ri (dom (h)) 6= ∅,

then
(h ◦ c)∗(p) = min

v∈Rm
h∗(v) + 〈v, c(·)〉∗(p)

and

∂(h ◦ c)(x̄) =
⋃

v∈∂h(c(x̄))

∂〈v, c(·)〉(x̄) (x̄ ∈ dom (h ◦ c)).

Borwein ’74, Bot-Wanka-Grad-Hodrea ’06-’10,
Combari-Lagdhir-Thibault ’94, Pennanen ’99

Applications: conic programming, Kiefer-Gaffe-Krafft inequalities,
matrix-fractional functions, variational Gram functions, spectral
functions, generalized Farkas theorems, ...



Convex convex-composite functions

Theorem:(B.-Hoheisel-Nguyen ’21)
If c : Ω→ Rm is convex wrt (−hzn (h)), then f = h◦ c is convex.

If, in addition,
c(ri (Ω) ∩ ri (dom (h)) 6= ∅,

then
(h ◦ c)∗(p) = min

v∈Rm
h∗(v) + 〈v, c(·)〉∗(p)

and

∂(h ◦ c)(x̄) =
⋃

v∈∂h(c(x̄))

∂〈v, c(·)〉(x̄) (x̄ ∈ dom (h ◦ c)).

Borwein ’74, Bot-Wanka-Grad-Hodrea ’06-’10,
Combari-Lagdhir-Thibault ’94, Pennanen ’99

Applications: conic programming, Kiefer-Gaffe-Krafft inequalities,
matrix-fractional functions, variational Gram functions, spectral
functions, generalized Farkas theorems, ...



Algorithms

Pk min∥∥∥x−xk∥∥∥≤ηk h
(
c(xk)+∇c(xk)[x− xk]

)
+

1

2
(x−xk)>Hk(x−x

k),

• Newton-like method: Hk ≈ ∇
2
xxL(xk, yk)

• Prox-linear method: Hk = αkI

• Pk may or may not be convex depending on whether Hk � 0.
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Algorithm for NLP

NLP minimize φ(x)

subject to fi(x)=0, i = 1, . . . , s, fi(x)≤0, i = s+1, . . . ,m.

• Convex-Composite Framework

h(µ, y) = µ+ δK(y), K := {0}s × Rm−s−

c(x) = (φ(x), ĉ(x))

L(x, y) = φ(x) +

m∑
k=1

yiĉi(x) − δK◦(y), K◦ = Rs × Rm−s+

• Subproblems:

Sequential quadratic programming (SQP)

Pk minimize φ(xk) +∇φ(xk)T (x− xk) +
1

2
[x− xk]>Hk[x− x

k]

subject to ĉi(x
k) +∇ĉi(x

k)T (x− xk) = 0, i = 1, . . . , s

ĉi(x
k) +∇ĉi(x

k)T (x− xk) ≤ 0, i = s+ 1, . . . ,m.
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k) +∇ĉi(x
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The Sharp Case

The set C := argminh is said to be a set of sharp minima for h if

∃α > 0 s.t. h(c) ≥ hmin + αdist (c |C ) ∀ c ∈ Rm.

Consider the following algorithm with ∆ > 0:

xk+1 solves min∥∥∥x−xk∥∥∥≤∆

h(c(xk) + c′(xk)(x− xk)).

Theorem:(B.-Ferris ’95) If {xk} is generated by the algorithm
above with x0 such that c(x0) is sufficiently close to C and

ker(c′(x0)T ) ∩
[
R+(C − c(x0))

]◦
= {0},

then there exists x such that c(x) ∈ C with xk → x at a quadratic
rate.

Li-Wang ’02 use the same proof technique but slightly weaken the
sharpness hypothsis.
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Newton’s Method in General: Hypotheses

Assume h is convex piecewise linear-quadratic (PLQ), i.e.,

dom (h) =
⋃N
i=1Ci with each Ci convex polyhedral, and

h(z) = 1
2〈z,Qkz〉+ 〈bk, z〉+ βk on Ci with Qk ∈ Sm.

(x, y) a primal-dual optimal pair for min f = h ◦ c.

Assume c ∈ C3 and (x, y) satisfy NLP-like conditions:
LICQ,

strict complementarity, and

second-order sufficiency.

In the case of NLP, these assumptions reduce the usual NLP
assumptions.
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Convergence of Newton’s Method

Theorem: (B.-Engle ’19) If (x0, y0) is sufficiently close to (x, y), then

the Newton sequence {(xk, yk)} satisfies

(i) c(xk−1)+∇c(xk−1)(xk−xk−1)∈active manifold (active constr. ID),

(ii) yk ∈ ri
(
∂h(c(xk−1) +∇c(xk−1)(xk − xk−1))

)
(str. compl.),

(iii)
yk ∈ ∂h(c(xk) + c′(xk)(xk − xk−1)

0 =∇c(xk−1)>yk+∇2
xxL(xk, yk)(xk−xk−1)

(1st-order opt.),

(iv) xk+1 is a strong local minimizer of Pk (2nd order suff.),

(v) (xk, yk)→ (x, y) at a quadratic rate.

Proof uses Robinson’s generalized equations, Rockafellar’s PLQ 2nd-order
theory, metric subregularity, and Lewis’ partial smoothness techniques.
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Globalization and descent

P min
x∈Rn

f(x) := h(c(x)) + g(x),

where h : Rm → R convex, g : Rn → R ∪ {+∞} proper, convex,
loc. Lipschitz relative to dom (g), and c : Rn → Rm is C1.

Pk min
‖d‖≤ηk

h(c(xk) +∇c(xk)d) +
1

2
dTHkd+ g(xk + d)

Define

∆f(x; d) := h(c(x) +∇c(x)d) +
1

2
dTHkd+ g(x+ d)− f(x).

Recall that
f ′(x; d) = limt↓0

∆f(x;td)
t = inft>0

∆f(x;td)
t .
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Backtracking, Weak Wolfe, Trust Regions

(B. –Engle ’19)
Assume f ′(x; d) ≤ ∆f(x; d) ≤ τ min

‖d‖≤η
∆f(x; d) < 0 for τ ∈ (0, 1).

Backtracking: With σ ∈ (0, 1) choose t > 0 to satisfy
f(x+ td) > f(x) + σt∆f(x; d).

Weak Wolfe: With 0<σ1<σ2<1 choose t>0 to satisfy

WW1 f(x+ td) ≤ f(x) + σ1t∆f(x; d), and

WW2 σ2∆f(x; d) ≤ ∆f(x+ td; d) .

Trust Region: With ‖d‖ ≤ δ and
0 < γ1 ≤ γ2 < 1 ≤ γ3, 0 < β1 ≤ β2 < β3 < 1 update δ as follows:

r = [f(x+ d)− f(x)]/[∆f(x; d)]

δ ∈


[δ, γ3δ] , if r > β3,

{δ} , if β2 ≤ r ≤ β3,

[γ1δ, γ2δ] , if r < β2.
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Global Convergence: xk+1 := xk + τkd
k

• Backtracking:
∞∑
k=0

∆f(xk; dk)2∥∥∥dk∥∥∥2

2

<∞, in particular,

∆f(xk; dk)→ 0.

• Weak Wolfe:
∞∑
k=0

∆f(xk; dk)2∥∥∥dk∥∥∥+
∥∥∥dk∥∥∥2 <∞, in particular,

∆f(xk; dk)→ 0.

• Trust Region: ∆f(xk; dk)→ 0.

In all cases, cluster points x satisfy 0 ∈ ∂f(x).
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Complexity: Drusvyatskiy-Paquette ’18

Inexact Prox-Linear Algorithms:
• Additional Assumptions:

(i) h is L-Lipschitz: ‖h(u)− h(v)‖ ≤ L‖u− v‖ ∀u, v ∈ Rm.

(ii) c is β-Lipschitz. ‖c(x)− h(z)‖ ≤ β‖x− z‖ ∀x, z ∈ Rn.

• Prox-Linear ingredients:

St(x) := argmin
z

ft(z;x) := h(c(x) +∇c(x)(z − x)) + g(z) +
1

2t
‖z − x‖22

Gt(x) := t−1 (x− St(x))

optimality =⇒ Gt(x) = 0 ∀ t > 0

• Algorithm: xk+1 ≈ St(x
k) (or an εk-approx. min of ft(z;x

k))

• Convergence: If t < (Lβ)−1, then

min
j=1,...,N

∥∥∥Gt(xj)∥∥∥2

2
≤

2(f(x0)− f̂ +
∑N

j=1 εj)

tN

where f̂ := lim infk f(xk).
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Stochastic Prox Linear
Duchi-Ruan ’17, Davis-Drusvyatskiy ’19

f(x) = Eξ∼P [h(c(x, ξ), ξ)] + g(x),

Input: x0 ∈ Rn, ρ̄ > ρ where h ◦ c+ g is ρ-weakly convex, γ > 0, an
iteration count T .

Step: t = 1, 2, . . . , T

Sample ξt ∼ P

βt = ρ̄+ γ−1√T + 1

Set

xt+1 =argminx

{
r(x)+h(c(xt, ξt)+c′(xt, ξt)(x−x

t), ξt)+ βt

2

∥∥∥x−xt∥∥∥2

2

}


Sample: t∗ ∈ {0, 1, . . . , T} according to P(t∗ = t) ∝ ρ̄−ρ

βt−ρ
.

Return: xt
∗
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Convergence

E

[∥∥∥∇f1/ρ̄(x
t
∗

)
∥∥∥2

2

]
≤

2(ρ̄(f1/ρ̄(x
0)−minx f)+2ρ̄2L2γ2

ρ̄−ρ
·
(
ρ̄−ρ
T+1

+
1

γ
√
T+1

)
,

where
f1/ρ̄(x) := min

z
[f(z) +

ρ

2
‖z − x‖22]

L =

√
Eξ[`(ξ)]

2]

√
Eξ[M(ξ)]2].
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Feature Selection in Mixed Effects Models

Linear mixed-effects (LME) models are often used for analyzing
nested or combined data across a range of groups or clusters.

Covariates are used to separate the total population variability (the
fixed effects) from the group variability (the random effects).

Due to strength across groups, LMEs can estimate key statistics
when the within group data is limited or highly variable.

Feature selection in mixed effects models finds a sparse set of
covariates that explain
(i) the mean behavior across groups, and
(ii) the variability between groups.



Linear Mixed-Effects (LME) Model
yi = Xiβ + Ziui + εi, i = 1 . . .m

ui ∼ N(0,Γ), Γ ∈ Sq+
εi ∼ N(0,Λi), Λi ∈ Sni

++

where

- yi are known observations,

- β ∈ Rp is an unknown vector of fixed (mean) covariates,

- ui ∈ Rq are unobserved random effects distributed N(0,Γ),

- Λi known observation error covariance matrices,

- Γ := Diag γ, γ ∈ Rs+ unknown random effects covariance matrix,

- Ωi(Γ) := ZiΓZ
T
i + Λi the marginalized covariance.

The marginalized negative log-likelihood function

L(β, γ) :=

m∑
i=1

1

2
(yi −Xiβ)TΩi(Γ)−1(yi −Xiβ) +

1

2
ln det Ωi(Γ).

Maximum likelihood estimates for β and γ solve

min
β,γ∈Rq

+

L(β, γ)
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Convex-Composite Structure

1
2 (yi −Xiβ)TΩi(Γ)−1(yi −Xiβ) is convex-composite.

Matrix Fractional Functions
(B.-Gao-Hoheisel ’15,’18)

Given the graph of the mapping Y 7→ − 1
2Y Y

T ,

G :=

{(
Y,−1

2
Y Y T

) ∣∣∣Y ∈ Rn×m
}
,

we have

σG(X,V )=

{
1
2 tr
(
XTV †X

)
if rgeX⊂rgeV, V ∈Sn,

+∞ else,

where V † is the Moore-Penrose pseudo inverse of V .



Feature Selection for Linear Mixed Effects

min
β∈Rp

,γ∈Rq
+

L(β, γ) +R(β, γ)

L(β, γ) :=

m∑
i=1

1

2
(yi −Xiβ)TΩi(Γ)−1(yi −Xiβ) +

1

2
ln det Ωi(Γ)

L is smooth on its domain.
R is closed, proper, convex with easily computed prox operator.

L is weakly convex since

∇2L(β, γ) = H(β, γ)−
[
0 0

0 1
2(ZTi Ωi(γ)−1Zi)

◦2

]
,

where H(β, γ) is always positive semi-definite.

Apply PGD!
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Feature Selection

min
β∈Rp

,γ∈Rq
+

L(β, γ) +R(β, γ)

with
L(β, γ) := 1

2 (y −Xβ)TΩ(Γ(γ))−1(y −Xβ) + 1
2 ln det Ω(Γ(γ)).

The relaxed model problem (Decouple and smooth)

min
(β,γ),(β̃,γ̃),γ̃≥0

L(β, γ) + φµ(γ) +
η

2

∥∥∥∥ β − β̃
γ − γ̃

∥∥∥∥2

2

+R(β̃, γ̃),

where

ϕ(γ, µ) :=


−µ
∑q

i=1 ln(γi/µ) , µ > 0,

δRq
+

(γ) , µ = 0,

+∞ , µ < 0.
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Optimal value function reformulation

min
(β,γ),(β̃,γ̃),γ̃≥0

L(β, γ) + φµ(γ) +
η

2

∥∥∥∥ β − β̃
γ − γ̃

∥∥∥∥2

2

+R(β̃, γ̃),

Optimal value function reformulation:

Pη,µ min
(β̃,γ̃)

uη,µ(β̃, γ̃) +R(β̃, γ̃) + δRq
+

(γ̃)

where

uη,µ(β̃, γ̃) := min
(β,γ)
L(β, γ) + φµ(γ) +

η

2

∥∥∥∥ β − β̃
γ − γ̃

∥∥∥∥2

2

.

Apply the PGD algorithm to Pη,µ with

∇uη,µ(β̃, γ̃) =

(
β̃ − β̄
γ̃ − γ̄

)
, (locally Lipschitz)

with

(
β̄
γ̄

)
= argmin(β,γ) Lη,µ((β, γ), (β̃, γ̃)).
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Performance

Model PGD MSR3 MSR3-fast
Regilarizer Metric
L0 Accuracy 0.89 0.92 0.92

Time 41.68 88.54 0.13
L1 Accuracy 0.73 0.88 0.88

Time 38.39 9.13 0.13
ALASSO Accuracy 0.88 0.92 0.91

Time 34.55 65.19 0.12
SCAD Accuracy 0.71 0.93 0.92

Time 77.62 84.67 0.17

The Experiment. The number of fixed effects p and random effects q is
20. β = γ = [ 1

2 ,
2
2 ,

3
2 , . . . ,

10
2 , 0, 0, 0, . . . , 0]

yi = Xiβ + Ziui + εi, εi ∼ N(0, 0.32I)

Xi ∼ N(0, I)p, Zi = Xi

ui ∼ N(0,Diag γ)

9 groups sizes [10, 15, 4, 8, 3, 5, 18, 9, 6]
Each experiment is repeated 100 times.
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