Quadratic Convergence of SQP-Like Methods for Convex-Composite Optimization

James V Burke Mathematics, University of Washington

> Joint work with Abraham Engle, Amazon

ICCOPT Berlin 2019

August 5–8

This research is partially funded by the US National Science Foundation under DMS1514559

$$\min_{x \in \mathbb{R}^n} f(x) := h(c(x)) \tag{P}$$

 $h: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ is closed, proper, convex $c: \mathbb{R}^n \to \mathbb{R}^m$ is \mathcal{C}^2 -smooth

$$\min_{x \in \mathbb{R}^n} f(x) := h(c(x)) \tag{P}$$

 $h: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ is closed, proper, convex c: $\mathbb{R}^n \to \mathbb{R}^m$ is \mathcal{C}^2 -smooth The Data

$$\min_{x \in \mathbb{R}^n} f(x) := h(c(x)) + g(x)$$
 (P)

 $h: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ is closed, proper, convex The Model $c: \mathbb{R}^n \to \mathbb{R}^m$ is \mathcal{C}^2 -smooth The Data $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is closed, proper, convex Regularization used to induce solution properties

$$\min_{x \in \mathbb{R}^n} f(x) := h(c(x)) + g(x)$$
 (P)

 $h: \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}$ is closed, proper, convex

 $c: \mathbb{R}^n \to \mathbb{R}^m$ is \mathcal{C}^2 -smooth

 $g: \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ is closed, proper, convex Regularization used to induce solution properties

70's

Fletcher, Powel, Osborne

80-90's

Burke, Ferris, Fletcher, Kawasaki, Masden, Poliquin, Powel, Osborne, Rockafellar, Womersley, Wright, Yuan

Recent (15-19's)

Aravkin, Bell, B, Chang, Cui, Duchi, Davis, Drusvyatskiy, Hoheisel, Hong, Lewis, Ioffe, Mordukhovich, Pang, Ruan

Non-linear least-squares: $f(x) = ||c(x)||_2^2$

Non-linear least-squares: $f(x) = ||c(x)||_2^2$

Feasibility: $c(x) \in C$: min dist $(c(x) \mid C)$, where $C \subset \mathbb{R}^m$ is non-empty, closed, convex, and dist $(y \mid C) := \inf \{ \|y - z\| \mid z \in C \}$.

Non-linear least-squares: $f(x) = ||c(x)||_2^2$

Feasibility: $c(x) \in C$: min dist $(c(x) \mid C)$, where $C \subset \mathbb{R}^m$ is non-empty, closed, convex, and dist $(y \mid C) := \inf \{ ||y - z|| \mid z \in C \}$.

Exact Penalization: $\min \varphi(x) + \alpha \operatorname{dist} (\hat{c}(x) \mid C)$ Here $c(x) := (\varphi(x), \hat{c}(x))$ and $h(\mu, y) := \mu + \alpha \operatorname{dist} (y \mid C)$

Non-linear least-squares: $f(x) = ||c(x)||_2^2$

Feasibility: $c(x) \in C$: min dist $(c(x) \mid C)$, where $C \subset \mathbb{R}^m$ is non-empty, closed, convex, and dist $(y \mid C) := \inf \{ ||y - z|| \mid z \in C \}$.

Exact Penalization: $\min \varphi(x) + \alpha \operatorname{dist} (\hat{c}(x) \mid C)$ Here $c(x) := (\varphi(x), \hat{c}(x))$ and $h(\mu, y) := \mu + \alpha \operatorname{dist} (y \mid C)$

Non-linear programming: $\min \varphi(x) + \delta_C(\hat{c}(x))$. Here $c(x) := (\varphi(x), \hat{c}(x))$ and $h(\mu, y) := \mu + \delta_C(y)$, where $\delta_C(y) = 0$ if $y \in C$ and $+\infty$ otherwise.

More Recent Examples

Optimal Value Composition:

$$h(c) := \min \left\{ b^\top y \mid Ay \le c \right\}$$

More Recent Examples

Optimal Value Composition:

$$h(c) := \min \left\{ b^{\top} y \mid Ay \le c \right\}$$

Quadratic support functions:

$$h(c) := \sup_{u \in U} \langle u, Bc \rangle - \frac{1}{2} u^T M u$$

with $U \subset \mathbb{R}^k$ non-empty, closed, convex, $M \in \mathbb{S}^n$ is positive semi-definite.

More Recent Examples

Optimal Value Composition:

$$h(c) := \min \left\{ b^\top y \mid Ay \le c \right\}$$

Quadratic support functions:

$$h(c) := \sup_{u \in U} \langle u, Bc \rangle - \frac{1}{2} u^T M u$$

with $U \subset \mathbb{R}^k$ non-empty, closed, convex, $M \in \mathbb{S}^n$ is positive semi-definite.

Piecewise linear-quadratic (PLQ) penalties:

(Rockfellar-Wets (97))

Quadratic support functions with $U \subset \mathbb{R}^k$ non-empty, closed and convex polyhedron.

PLQ penalties in practice

i LQ penames in pract		D. 0
Application	Objective	PLQs
Regression	$ Ax - b ^2$	L_2
Robust regression	$ \rho_H(Ax-b) $	Huber
Quantile regression	Q(Ax-b)	Asym. L_1
Lasso	$ Ax - b ^2 + \lambda x _1$	$L_2 + L_1$
Robust lasso	$\rho_H(Ax-b) + \lambda x _1$	Huber $+ L_1$
SVM	$\frac{1}{2} w ^2 + H(1 - Ax)$	L_1 + hinge loss
SVR	$ \rho_V(Ax-b) $	Vapnik loss
Kalman smoother	$\ Gx\!-\!w\ _{Q^{-1}}^2\!+\!\ Hx\!-\!z\ _{R^{-1}}^2$	$L_2 + L_2$
Robust trend smoothing	$ Gx-w _1+\rho_H(Hx-z)$	L_1 + Huber

$$\mathbf{P} \qquad \min_{x \in \mathbb{R}^n} h(c(x))$$

 \bullet The Lagrangian for $\mathbf{P} \colon (B.~(87))$

$$L(x,y) := \langle y, c(x) \rangle - h^*(y)$$

$$h^*(y) := \sup_{x} [\langle y, x \rangle - h(x)] = \sup_{(x,\mu) \in \operatorname{epi}(h)} \langle (y,-1), (x,\mu) \rangle$$

$$\mathbf{P} \qquad \min_{x \in \mathbb{R}^n} h(c(x)) + g(x)$$

 \bullet The Lagrangian for $\mathbf{P} \colon (B.~(87))$

$$L(x,y) := \langle y, c(x) \rangle - h^*(y) + g(x)$$

$$h^*(y) := \sup_{x} [\langle y, x \rangle - h(x)] = \sup_{(x,\mu) \in \operatorname{epi}(h)} \langle (y,-1), (x,\mu) \rangle$$

$$\mathbf{P} \qquad \min_{x \in \mathbb{R}^n} h(c(x)) + g(x)$$

 \bullet The Lagrangian for **P**: (B. (87))

$$L(x, y, v) := \langle y, c(x) \rangle - h^*(y) + \langle v, x \rangle - g^*(v)$$

$$h^*(y) := \sup_{x} [\langle y, x \rangle - h(x)] = \sup_{(x,\mu) \in \operatorname{epi}(h)} \langle (y,-1), (x,\mu) \rangle$$

$$\mathbf{P} \qquad \min_{x \in \mathbb{R}^n} h(c(x))$$

• The Lagrangian for P: (B. (87))

$$L(x,y) := \langle y, c(x) \rangle - h^*(y) \qquad \begin{cases} (\operatorname{Primal}) & & \inf_{x} \sup_{y} \ L(x,y) \\ \\ (\operatorname{Dual}) & & \sup_{y} \inf_{x} \ L(x,y) \end{cases}$$

$$h^*(y) := \sup_{x} [\langle y, x \rangle - h(x)] = \sup_{(x,\mu) \in \operatorname{epi}(h)} \langle (y,-1), (x,\mu) \rangle$$

Algorithms

$$\mathbf{P}_k = \min_{x} h\left(c(x^k) + \nabla c(x^k)[x - x^k]\right) + \frac{1}{2}(x - x^k)^{\top} H_k(x - x^k),$$

- H_k approximates the Hessian of a Lagrangian for **P** at (x^k, y^k)
- Newton's method: $H_k := \nabla^2_{xx} L(x^k, y^k) = \sum_{k=1}^m y_i^k \nabla^2_{xx} c_i(x^k)$
- \mathbf{P}_k may or may not be convex depending on whether $H_k \succeq 0$.
- In the context of NLP, this reduces to SQP (sequential quadratic programming)

Convergence of Convex-Composite Newton's Method

Robinson (72):

Assumed $h = \delta_K$ with $K := \{0\}^s \times \mathbb{R}^{m-s}_-$ (NLP case).

Established quadratic convergence in the NLP case under linear independence of the active constraint gradients, strict complementarity, and strong second-order sufficiency.

Robinson (80):

Introduced the revolutionary notion of generalized equations which, among many other consequences, re-established quadratic convergence for NLP. The generalized equations approach is much more powerful as it allows access to a very rich sensitivity theory including metric regularity properties of solution mappings.

Convergence of Convex-Composite Newton's Method

Womersley (85):

Assumed h is finite-valued piecewise linear convex.

Established quadratic convergence under NLP-like conditions: LICQ, strict complementarity, and strong second-order sufficiency.

B-Ferris (95):

Assumed h is finite-valued closed, proper, convex.

Established quadratic convergence when

 $C := \arg \min h \text{ is a set of weak sharp minima for } h, \text{ and}$ $\arg \min f = \{x \mid c(x) \in C\}.$

Only first-order information on c required.

Cibulka-Dontchev-Kruger (16):

Assumed h is piecewise linear convex (not nec.ly finite-valued).

Established super-linear convergence under the Dennis-Moré conditions using generalized equations.

The Program

A long standing open problem:

Establish second-order rates using the rich history of second-order ideas for convex-composite functions?

 $B(87),\, Kawazaki(88),\, Ioffe(88),\, B-Poliquin(92),\, Rochafellar-Wets(92),\, Nguyen(17-19)$

The Program

A long standing open problem:

Establish second-order rates using the rich history of second-order ideas for convex-composite functions? B(87), Kawazaki(88), Ioffe(88), B-Poliquin(92), Rochafellar-Wets(92), Nguyen(17-19)

Proposal:

Focus on the PLQ class using a generalized equations approach combining PLQ second-order theory with partial smoothness.

The Program

A long standing open problem:

Establish second-order rates using the rich history of second-order ideas for convex-composite functions?

B(87), Kawazaki(88), Ioffe(88), B-Poliquin(92), Rochafellar-Wets(92), Nguyen(17-19)

Proposal:

Focus on the PLQ class using a generalized equations approach combining PLQ second-order theory with partial smoothness.

Inspiration: R. Cibulka, A. Dontchev, and A. Kruger (2017) arXiv:1701.02078.

Key new ingredient is partial smoothness (Lewis (02)).

PLQ Functions

 $h: \mathbb{R}^m \to \overline{\mathbb{R}}$ is called piecewise linear-quadratic (PLQ) if dom $h \neq \emptyset$ and, for $K \geq 1$,

$$dom h = \bigcup_{k=1}^{K} C_k,$$

where the sets C_k are convex polyhedrons,

$$C_k = \{c \mid \langle a_{kj}, c \rangle \leq \alpha_{kj}, \text{ for all } j \in \{1, \dots, s_k\}\},\$$

and relative to which h(c) is given by an expression of the form

$$h(c) = \frac{1}{2} \langle c, Q_k c \rangle + \langle b_k, c \rangle + \beta_k \quad \forall \ c \in C_k$$

with $\beta_k \in \mathbb{R}$, $b_k \in \mathbb{R}^n$, and $Q_k \in \mathbb{S}^m$.

Variational Analysis of PLQ-Composite Functions

Assume $f := h \circ c$ with h convex PLQ and c in $\mathcal{C}^2(\mathbb{R}^n)$.

Active Set: For $c \in \text{dom } h$, the active set at c is $\mathcal{K}(c) := \{k \mid c \in C_k\}.$

Basic Constraint Qualification: (BCQ)

$$\ker \nabla c(\bar{x})^{\top} \cap N_{\operatorname{dom} h}(c(\bar{x})) = \{0\}$$

Subdifferential: Under the BCQ

$$\partial f(x) = c'(x)^T \partial h(c(x)).$$

Directional Derivative: Under BCQ

$$f'(x;d) = \lim_{t \downarrow 0} \frac{f(x+td) - f(x)}{t} = h'(c(x); c'(x)d)$$

with

$$h'(\bar{c}; w) = \langle Q_k \bar{c} + b_k, w \rangle \quad \forall \ k \in \mathcal{K}(\bar{c}) \text{ and } w \in T_{C_k}(\bar{c}).$$

Directions of Non-Ascent and Multipliers

Directions of non-ascent:

$$D(x) := \left\{ d \in \mathbb{R}^n \mid f'(x:d) \le 0 \right\}$$

= $\left\{ d \in \mathbb{R}^n \mid h'(c(x); \nabla c(x)d) \le 0 \right\}$ (BCQ)

The Multiplier Set:

$$M(\bar{x}) := \ker \nabla c(\bar{x})^{\top} \cap \partial h(c(\bar{x})) = \left\{ y \mid \begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \begin{pmatrix} \partial_x L(\bar{x}, y) \\ \partial_y (-L)(\bar{x}, y) \end{pmatrix} \right\}$$

Directions of Non-Ascent and Multipliers

Directions of non-ascent:

$$D(x) := \left\{ d \in \mathbb{R}^n \mid f'(x:d) \le 0 \right\}$$

= $\left\{ d \in \mathbb{R}^n \mid h'(c(x); \nabla c(x)d) \le 0 \right\}$ (BCQ)

The Multiplier Set:

$$M(\bar{x}) := \ker \nabla c(\bar{x})^{\top} \cap \partial h(c(\bar{x})) = \left\{ y \mid \begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \begin{pmatrix} \partial_x L(\bar{x}, y) \\ \partial_y (-L)(\bar{x}, y) \end{pmatrix} \right\}$$

Strict Criticality (SC):

$$\ker \nabla c(\bar{x})^{\top} \cap \operatorname{ri} \left(\partial h(c(\bar{x})) \right) = \{\bar{y}\}\$$

Implied by "strict complementarity and LICQ". Under SC, $D(\bar{x})$ is a subspace on which $h'(c(x); \nabla c(x)d) = 0$.

The Second Directional Derivative

The PLQ second directional derivative:

(Rockafellar-Wets (97))

$$0 \le h''(\bar{c}; w) := \lim_{t \searrow 0} \frac{h(\bar{c} + tw) - h(\bar{c}) - th'(\bar{c}; w)}{\frac{1}{2}t^2}$$
$$= \begin{cases} \langle w, Q_k w \rangle & \text{when } w \in T_{C_k}(\bar{c}), \\ \infty & \text{when } w \notin T_{\text{dom } h}(\bar{c}). \end{cases}$$

and $h''(\bar{c};\cdot)$ is PLQ, but not necessarily convex.

The Second Directional Derivative

The PLQ second directional derivative:

(Rockafellar-Wets (97))

$$0 \le h''(\bar{c}; w) := \lim_{t \searrow 0} \frac{h(\bar{c} + tw) - h(\bar{c}) - th'(\bar{c}; w)}{\frac{1}{2}t^2}$$
$$= \begin{cases} \langle w, Q_k w \rangle & \text{when } w \in T_{C_k}(\bar{c}), \\ \infty & \text{when } w \notin T_{\text{dom } h}(\bar{c}). \end{cases}$$

and $h''(\bar{c};\cdot)$ is PLQ, but not necessarily convex.

Moreover, there exists a neighborhood V of \bar{c} such that

$$h(c) = h(\bar{c}) + h'(\bar{c}; c - \bar{c}) + \frac{1}{2}h''(\bar{c}; c - \bar{c}) \text{ for } c \in V \cap \text{dom } h.$$

PLQ-Composite 2nd-Order Nec. and Suff. Conditions

(Rockafellar-Wets (97))

Let $\bar{x} \in \text{dom } f$ such that f satisfies BCQ at \bar{x} .

(1) (Nec.) If f has a local minimum at \bar{x} , then $0 \in \nabla c(\bar{x})^{\top} \partial h(c(\bar{x}))$ and, $\forall \ d \in D(\bar{x})$,

$$h''(c(\bar{x}); \nabla c(\bar{x})d) + \max\left\{ \left\langle d, \nabla^2_{xx} L(\bar{x}, y)d \right\rangle \mid y \in M(\bar{x}) \right\} \ge 0.$$

(2) (Suff.) If $0 \in \nabla c(\bar{x})^{\top} \partial h(c(\bar{x}))$ and, $\forall d \in D(\bar{x}) \setminus \{0\}$,

$$h''(c(\bar{x}); \nabla c(\bar{x})d) + \max\left\{\left\langle d, \nabla_{xx}^2 L(\bar{x}, y)d\right\rangle \mid y \in M(\bar{x})\right\} > 0,$$

then \bar{x} is a strong local minimizer of f, that is, there exists $\varepsilon > 0, \mu > 0$ such that

$$f(x) \ge f(\bar{x}) + \frac{\mu}{2} \|x - \bar{x}\|_2^2 \quad \forall \ x \in B(\bar{x}, \varepsilon).$$

Convex-Composite Generalized Equations

Let $f := h \circ c$ be convex-composite, and define the set-valued mapping $g + G : \mathbb{R}^{n+m} \rightrightarrows \mathbb{R}^{n+m}$ by

$$g(x,y) = \begin{pmatrix} \nabla c(x)^{\top} y \\ -c(x) \end{pmatrix}, \quad G(x,y) = \begin{pmatrix} \{0\}^n \\ \partial h^*(y) \end{pmatrix}.$$

The associated generalized equation for **P** is $0 \in g + G$.

Convex-Composite Generalized Equations

Let $f:=h\circ c$ be convex-composite, and define the set-valued mapping $g+G:\mathbb{R}^{n+m}\rightrightarrows\mathbb{R}^{n+m}$ by

$$g(x,y) = \begin{pmatrix} \nabla c(x)^{\top} y \\ -c(x) \end{pmatrix}, \quad G(x,y) = \begin{pmatrix} \{0\}^n \\ \partial h^*(y) \end{pmatrix}.$$

The associated generalized equation for **P** is $0 \in g + G$.

For a fixed $(\bar{x}, \bar{y}) \in \mathbb{R}^n \times \mathbb{R}^m$, define the linearization mapping

$$\mathcal{G}: (x,y) \mapsto g(\bar{x},\bar{y}) + \nabla g(\bar{x},\bar{y}) \begin{pmatrix} x - \bar{x} \\ y - \bar{y} \end{pmatrix} + G(x,y),$$

where
$$\nabla g(\bar{x}, \bar{y}) = \begin{pmatrix} \nabla^2(\bar{y}c)(\bar{x}) & \nabla c(\bar{x})^\top \\ -\nabla c(\bar{x}) & 0 \end{pmatrix}$$
.

Newton's Method for Generalized Equations

- Let $f := h \circ c$ be convex-composite.
- For $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ set $\widehat{H} := \nabla^2_{xx} L(\hat{x}, \hat{y})$.
- Assume f satisfies BCQ at \hat{x} .

Then, $(\tilde{x}, \tilde{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ satisfy the optimality conditions for

$$\min_{x \in \mathbb{R}^n} h(c(\hat{x}) + \nabla c(\hat{x})(x - \hat{x}) + \frac{1}{2}(x - \hat{x})^{\top} \widehat{H}(x - \hat{x})$$

if and only if (\tilde{x}, \tilde{y}) solves the Newton equations for g+G:

$$0 \in g(\hat{x}, \hat{y}) + \nabla g(\hat{x}, \hat{y}) \begin{pmatrix} x - \hat{x} \\ y - \hat{y} \end{pmatrix} + G(x, y).$$

Strong Metric Subregularity

A set-valued mapping $S : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is strongly metrically subregular at \bar{u} for \bar{v} if $(\bar{u}, \bar{v}) \in \operatorname{graph}(S)$ and there exists $\kappa \geq 0$ and a neighborhood U of \bar{u} such that $\|u - \bar{u}\| \leq \kappa \operatorname{dist}(\bar{v} \mid S(u))$ for all $u \in U$.

Strong Metric Subregularity

A set-valued mapping $S: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is strongly metrically subregular at \bar{u} for \bar{v} if $(\bar{u}, \bar{v}) \in \operatorname{graph}(S)$ and there exists $\kappa \geq 0$ and a neighborhood U of \bar{u} such that

$$||u - \bar{u}|| \le \kappa \operatorname{dist}(\bar{v} \mid S(u))$$
 for all $u \in U$.

Theorem: (B-Engel(18)) $h : \mathbb{R}^m \to \overline{\mathbb{R}}$ convex PLQ and $f := h \circ c$ satisfies BCQ at $\bar{x} \in \text{dom } f$. Then, the following are equivalent:

- (1) The multiplier set $M(\bar{x}) := \ker \nabla c(\bar{x})^{\top} \cap \partial h(c(\bar{x}))$ is a singleton $\{\bar{y}\}$ and the second-order sufficient conditions are satisfied at \bar{x} .
- (2) The mapping g + G is strongly metrically subregular at (\bar{x}, \bar{y}) for 0 and \bar{x} is a strong local minimizer of f.

Strong Metric Subregularity

A set-valued mapping $S: \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is strongly metrically subregular at \bar{u} for \bar{v} if $(\bar{u}, \bar{v}) \in \operatorname{graph}(S)$ and there exists $\kappa \geq 0$ and a neighborhood U of \bar{u} such that

$$||u - \bar{u}|| \le \kappa \operatorname{dist}(\bar{v} \mid S(u))$$
 for all $u \in U$.

Theorem: (B-Engel(18)) $h : \mathbb{R}^m \to \overline{\mathbb{R}}$ convex PLQ and $f := h \circ c$ satisfies BCQ at $\bar{x} \in \text{dom } f$. Then, the following are equivalent:

- (1) The multiplier set $M(\bar{x}) := \ker \nabla c(\bar{x})^{\top} \cap \partial h(c(\bar{x}))$ is a singleton $\{\bar{y}\}$ and the second-order sufficient conditions are satisfied at \bar{x} .
- (2) The mapping g + G is strongly metrically subregular at (\bar{x}, \bar{y}) for 0 and \bar{x} is a strong local minimizer of f.

Corollary: The matrix secant method converges superlinearly if the Dennis-Móre condition holds.

Partial Smoothness: Lewis (02)

- $h: \mathbb{R}^m \to \overline{\mathbb{R}}$ is a closed and proper function.
- \mathcal{M} a \mathcal{C}^2 -smooth manifold and $\bar{c} \in \mathcal{M} \subset \mathbb{R}^m$.

The function h is partly smooth at \bar{c} relative to \mathcal{M} if \mathcal{M} the following four properties hold:

- (1) (Restricted Smoothness) The restriction $h|_{\mathcal{M}}$ is smooth around \bar{c} , in that there exists a neighborhood V of \bar{c} and a \mathcal{C}^2 -smooth function g defined on V such that h = g on $V \cap \mathcal{M}$;
- (2) (Existence of Subgradients) At every point $c \in \mathcal{M}$ close to \bar{c} , $\partial h(c) \neq \emptyset$;
- (3) (Normals and Subgradients Parallel) $\operatorname{par}\partial h(\bar{c}) = N_{\mathcal{M}}(\bar{c});$
- (4) (Subgradient Continuity) the subdifferential map ∂h is inner semicontinuous at \bar{c} relative to \mathcal{M} .

Partial Smoothness: Lewis (02)

- $h: \mathbb{R}^m \to \overline{\mathbb{R}}$ is a closed and proper function.
- \mathcal{M} a \mathcal{C}^2 -smooth manifold and $\bar{c} \in \mathcal{M} \subset \mathbb{R}^m$.

The function h is partly smooth at \bar{c} relative to \mathcal{M} if \mathcal{M} the following four properties hold:

- (1) (Restricted Smoothness) The restriction $h|_{\mathcal{M}}$ is smooth around \bar{c} , in that there exists a neighborhood V of \bar{c} and a \mathcal{C}^2 -smooth function g defined on V such that h = g on $V \cap \mathcal{M}$;
- (2) (Existence of Subgradients) At every point $c \in \mathcal{M}$ close to \bar{c} , $\partial h(c) \neq \emptyset$;
- (3) (Normals and Subgradients Parallel) $\operatorname{par}\partial h(\bar{c}) = N_{\mathcal{M}}(\bar{c});$
- (4) (Subgradient Continuity) the subdifferential map ∂h is inner semicontinuous at \bar{c} relative to \mathcal{M} .

Generalizes classical notions of nondegeneracy, strict complementarity, and active constraint identification.

Partial Smoothness

The Active Manifold

- \mathcal{M} Active set: $\mathcal{K}(c) := \{k \in \mathbb{R}^m \mid c \in C_k, \ k \in \{1, 2, \dots, \mathcal{K}\}\}$

- Active Manifold: $\mathcal{M}_{\bar{c}} := \operatorname{ri} \bigcap_{k \in \mathcal{K}(\bar{c})} C_k$

Lemma: Let $\bar{c} \in \text{dom } f$ and assume dom h is given by an RWR. Then, for all $c \in \mathcal{M}_{\bar{c}}$ and $k \in \mathcal{K}(\bar{c})$,

$$\mathcal{K}(c) = \mathcal{K}(\bar{c}), \ \mathcal{M}_c = \mathcal{M}_{\bar{c}} \text{ and } I_k(c) = I_k(\bar{c}).$$

The Subdifferential of h

Given that a certain nondegeneracy condition holds (a property of the representation of dom h), then $\partial h(c)$ has a structure functional representation (Osborne (01)).

The Subdifferential of h

Given that a certain nondegeneracy condition holds (a property of the representation of dom h), then $\partial h(c)$ has a structure functional representation (Osborne (01)).

Lemma: Let $c \in \mathcal{M}_{\bar{c}}$ and suppose nondegeneracy holds. Then there is a polyhedral convex set $\mathcal{U}(c)$ and a matrix \bar{A} such that, for every $y \in \partial h(c)$, there is a unique $\mu(c,y) \in \mathcal{U}(c)$ for which $y = \lambda_0(c) + \bar{A}\mu(c,y)$. In particular,

$$\partial h(c) = \lambda_0(c) + \bar{A}\mathcal{U}(c).$$

Newton's Method Hypotheses

Let $f = h \circ c$ be PLQ convex composite, $\bar{x} \in \text{dom } f, \ \bar{y} \in \partial h(c(\bar{x}))$, and set $\bar{c} := c(\bar{x})$.

Assumptions:

- (a) c is C^3 -smooth,
- (b) $\mathcal{M}_{\bar{c}}$ satisfies the nondegeneracy condition,
- (c) f satisfies SC at \bar{x} for \bar{y} ,
- (d) \bar{x} satisfies the second-order sufficient conditions, i.e., $h''(c(\bar{x}); \nabla c(\bar{x})d) + \left\langle d, \nabla^2_{xx} L(\bar{x}, \bar{y})d \right\rangle > 0 \quad \forall \, d \in \ker A^\top \nabla c(\bar{x}) \setminus \{0\},$ where $M(\bar{x}) = \{\bar{y}\}$ and $D(\bar{x}) = \ker A^\top \nabla c(\bar{x})$.

Newton's Method Hypotheses

Let $f = h \circ c$ be PLQ convex composite, $\bar{x} \in \text{dom } f, \ \bar{y} \in \partial h(c(\bar{x}))$, and set $\bar{c} := c(\bar{x})$.

Assumptions:

- (a) c is C^3 -smooth,
- (b) $\mathcal{M}_{\bar{c}}$ satisfies the nondegeneracy condition,
- (c) f satisfies SC at \bar{x} for \bar{y} ,
- (d) \bar{x} satisfies the second-order sufficient conditions, i.e., $h''(c(\bar{x}); \nabla c(\bar{x})d) + \left\langle d, \nabla^2_{xx} L(\bar{x}, \bar{y})d \right\rangle > 0 \quad \forall \, d \in \ker A^\top \nabla c(\bar{x}) \setminus \{0\},$ where $M(\bar{x}) = \{\bar{y}\}$ and $D(\bar{x}) = \ker A^\top \nabla c(\bar{x})$.

NLP Analogues:

- (b) linear independence of the active constraint gradients,
- (c) strict complementary slackness, and
- (d) strong second-order sufficiency condition.

Convergence of Newton's Method

There exists a neighborhood \mathcal{N} of (\bar{x}, \bar{y}) such that if $(x^0, y^0) \in \mathcal{N}$, then there exists a unique sequence $\{(x^k, y^k)\}$ satisfying the optimality conditions of $\mathbf{P_k}$ with $H_k := \nabla^2_{xx} L(x^k, y^k)$ such that, for all $k \in \mathbb{N}$,

(i)
$$c(x^{k-1}) + \nabla c(x^{k-1})[x^k - x^{k-1}] \in \mathcal{M}_{\bar{c}}$$
,

(ii)
$$y^k \in \operatorname{ri} \partial h(c(x^{k-1}) + \nabla c(x^{k-1})[x^k - x^{k-1}]),$$

(iii)
$$H_{k-1}[x^k - x^{k-1}] + \nabla c(x^{k-1})^{\top} y^k = 0,$$

(iv) x^{k+1} is a strong local minimizer of $\mathbf{P_k}$.

Moreover, the sequence (x^k, y^k) converges to (\bar{x}, \bar{y}) at a quadratic rate.

