Quadratic Convergence of SQP-Like Methods for Convex-Composite Optimization

James V Burke
Mathematics, University of Washington

Joint work with
Abraham Engle, Amazon

ICCOPT Berlin 2019
August 5–8
This research is partially funded by the US National Science Foundation under DMS1514559
Convex-Composite Optimization

\[\min_{x \in \mathbb{R}^n} f(x) := h(c(x)) \quad (P) \]

\[h : \mathbb{R}^m \rightarrow \mathbb{R} \cup \{+\infty\} \text{ is closed, proper, convex} \]
\[c : \mathbb{R}^n \rightarrow \mathbb{R}^m \text{ is } C^2\text{-smooth} \]
Convex-Composite Optimization

\[
\min_{x \in \mathbb{R}^n} f(x) := h(c(x)) \quad (P)
\]

\[h : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\} \text{ is closed, proper, convex} \]
\[c : \mathbb{R}^n \to \mathbb{R}^m \text{ is } C^2\text{-smooth} \]

The Model

The Data
Convex-Composite Optimization

$$\min_{x \in \mathbb{R}^n} f(x) := h(c(x)) + g(x) \quad \text{(P)}$$

The Model

$$h : \mathbb{R}^m \rightarrow \mathbb{R} \cup \{+\infty\} \text{ is closed, proper, convex}$$

The Data

$$c : \mathbb{R}^n \rightarrow \mathbb{R}^m \text{ is } C^2\text{-smooth}$$

Regularization

$$g : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\} \text{ is closed, proper, convex}$$

used to induce solution properties
Convex-Composite Optimization

\[
\min_{x \in \mathbb{R}^n} f(x) := h(c(x)) + g(x) \quad (P)
\]

- \(h : \mathbb{R}^m \to \mathbb{R} \cup \{+\infty\}\) is closed, proper, convex
- \(c : \mathbb{R}^n \to \mathbb{R}^m\) is \(C^2\)-smooth
- \(g : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}\) is closed, proper, convex

Regularization used to induce solution properties

70’s
Fletcher, Powel, Osborne

80-90’s
Burke, Ferris, Fletcher, Kawasaki, Masden, Poliquin, Powel, Osborne, Rockafellar, Womersley, Wright, Yuan

Recent (15-19’s)
Aravkin, Bell, B, Chang, Cui, Duchi, Davis, Drusvyatskiy, Hoheisel, Hong, Lewis, Ioffe, Mordukhovich, Pang, Ruan
Examples: 70 - 90’s

Non-linear least-squares: \(f(x) = \| c(x) \|^2_2 \)
Examples: 70 - 90’s

Non-linear least-squares: \(f(x) = \|c(x)\|_2^2 \)

Feasibility: \(c(x) \in C : \min \text{dist} (c(x) \mid C) \),
where \(C \subset \mathbb{R}^m \) is non-empty, closed, convex, and
\(\text{dist} (y \mid C) := \inf \{ \|y - z\| \mid z \in C \} \).
Examples: 70 - 90’s

Non-linear least-squares: \(f(x) = \| c(x) \|^2_2 \)

Feasibility: \(c(x) \in C : \) \(\min \) dist \((c(x) \mid C) \),
where \(C \subset \mathbb{R}^m \) is non-empty, closed, convex, and
\(\text{dist} (y \mid C) := \inf \{ \|y - z\| \mid z \in C \} \).

Exact Penalization: \(\min \varphi(x) + \alpha \text{dist} (\hat{c}(x) \mid C) \)
Here \(c(x) := (\varphi(x), \hat{c}(x)) \) and \(h(\mu, y) := \mu + \alpha \text{dist} (y \mid C) \)
Examples: 70 - 90’s

Non-linear least-squares: \(f(x) = \|c(x)\|_2^2 \)

Feasibility: \(c(x) \in C : \min \text{dist} \ (c(x) \mid C) \),
where \(C \subset \mathbb{R}^m \) is non-empty, closed, convex, and
\(\text{dist} \ (y \mid C) := \inf \{ \|y - z\| \mid z \in C \} \).

Exact Penalization: \(\min \varphi(x) + \alpha \text{dist} \ (\hat{c}(x) \mid C) \)
Here \(c(x) := (\varphi(x), \hat{c}(x)) \) and \(h(\mu, y) := \mu + \alpha \text{dist} \ (y \mid C) \)

Non-linear programming: \(\min \varphi(x) + \delta_C(\hat{c}(x)) \).
Here \(c(x) := (\varphi(x), \hat{c}(x)) \) and \(h(\mu, y) := \mu + \delta_C(y) \), where
\(\delta_C(y) = 0 \) if \(y \in C \) and \(+\infty \) otherwise.
More Recent Examples

Optimal Value Composition:

\[h(c) := \min \left\{ b^\top y \mid Ay \leq c \right\} \]
More Recent Examples

Optimal Value Composition:

\[h(c) := \min \left\{ b^\top y \mid Ay \leq c \right\} \]

Quadratic support functions:

\[h(c) := \sup_{u \in U} \langle u, Bc \rangle - \frac{1}{2} u^T M u \]

with \(U \subset \mathbb{R}^k \) non-empty, closed, convex, \(M \in \mathbb{S}^n \) is positive semi-definite.
More Recent Examples

Optimal Value Composition:

\[h(c) := \min \left\{ b^\top y \mid Ay \leq c \right\} \]

Quadratic support functions:

\[h(c) := \sup_{u \in U} \langle u, Bc \rangle - \frac{1}{2} u^T M u \]

with \(U \subset \mathbb{R}^k \) non-empty, closed, convex, \(M \in \mathbb{S}^n \) is positive semi-definite.

Piecewise linear-quadratic (PLQ) penalties:
(Rockfellar-Wets (97))

Quadratic support functions with \(U \subset \mathbb{R}^k \) non-empty, closed and convex polyhedron.
<table>
<thead>
<tr>
<th>Application</th>
<th>Objective</th>
<th>PLQs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>$|Ax - b|^2$</td>
<td>L_2</td>
</tr>
<tr>
<td>Robust regression</td>
<td>$\rho_H(Ax - b)$</td>
<td>Huber</td>
</tr>
<tr>
<td>Quantile regression</td>
<td>$Q(Ax - b)$</td>
<td>Asym. L_1</td>
</tr>
<tr>
<td>Lasso</td>
<td>$|Ax - b|^2 + \lambda |x|_1$</td>
<td>$L_2 + L_1$</td>
</tr>
<tr>
<td>Robust lasso</td>
<td>$\rho_H(Ax - b) + \lambda |x|_1$</td>
<td>Huber + L_1</td>
</tr>
<tr>
<td>SVM</td>
<td>$\frac{1}{2}|w|^2 + H(1 - Ax)$</td>
<td>$L_1 +$ hinge loss</td>
</tr>
<tr>
<td>SVR</td>
<td>$\rho_V(Ax - b)$</td>
<td>Vapnik loss</td>
</tr>
<tr>
<td>Kalman smoother</td>
<td>$|Gx - w|_Q^{-1} + |Hx - z|_R^{-1}$</td>
<td>$L_2 + L_2$</td>
</tr>
<tr>
<td>Robust trend smoothing</td>
<td>$|Gx - w|_1 + \rho_H(Hx - z)$</td>
<td>$L_1 +$ Huber</td>
</tr>
</tbody>
</table>
The Convex-Composite Lagrangian

\[\mathbf{P} \min_{x \in \mathbb{R}^n} h(c(x)) \]

- The Lagrangian for \(\mathbf{P} \): (B. (87))

\[L(x, y) := \langle y, c(x) \rangle - h^*(y) \]

- The conjugate of \(h \) given by the support function for \(\text{epi}(h) \),

\[h^*(y) := \sup_x [\langle y, x \rangle - h(x)] = \sup_{(x, \mu) \in \text{epi}(h)} \langle (y, -1), (x, \mu) \rangle \]
The Convex-Composite Lagrangian

\[\mathbf{P} \min_{x \in \mathbb{R}^n} h(c(x)) + g(x) \]

- The Lagrangian for \(\mathbf{P} \): (B. (87))

\[L(x, y) := \langle y, c(x) \rangle - h^*(y) + g(x) \]

- The conjugate of \(h \) given by the support function for \(\text{epi}(h) \),

\[h^*(y) := \sup_x [\langle y, x \rangle - h(x)] = \sup_{(x, \mu) \in \text{epi}(h)} \langle (y, -1), (x, \mu) \rangle \]
The Convex-Composite Lagrangian

\[\textbf{P} \min_{x \in \mathbb{R}^n} h(c(x)) + g(x) \]

- The Lagrangian for \(\textbf{P} \): (B. (87))

\[L(x, y, v) := \langle y, c(x) \rangle - h^*(y) + \langle v, x \rangle - g^*(v) \]

- The conjugate of \(h \) given by the support function for \(\text{epi}(h) \),

\[h^*(y) := \sup_x [\langle y, x \rangle - h(x)] = \sup_{(x, \mu) \in \text{epi}(h)} \langle (y, -1), (x, \mu) \rangle \]
The Convex-Composite Lagrangian

\[\textbf{P} \min_{x \in \mathbb{R}^n} h(c(x)) \]

- The Lagrangian for \textbf{P}: (B. (87))

\[L(x, y) := \langle y, c(x) \rangle - h^*(y) \]

\[
\begin{cases}
\text{(Primal)} & \inf_x \sup_y L(x, y) \\
\text{(Dual)} & \sup_y \inf_x L(x, y)
\end{cases}
\]

- The conjugate of \(h \) given by the support function for \(\text{epi}(h) \),

\[h^*(y) := \sup_x [\langle y, x \rangle - h(x)] = \sup_{(x, \mu) \in \text{epi}(h)} \langle (y, -1), (x, \mu) \rangle \]
\[P_k \min_{x} h \left(c(x^k) + \nabla c(x^k) [x - x^k] \right) + \frac{1}{2} (x - x^k) ^\top H_k (x - x^k) , \]

- \(H_k \) approximates the Hessian of a Lagrangian for \(P \) at \((x^k, y^k)\)
- Newton’s method: \(H_k := \nabla^2_{xx} L(x^k, y^k) = \sum_{k=1}^{m} y_i^k \nabla^2_{xx} c_i(x^k) \)
- \(P_k \) may or may not be convex depending on whether \(H_k \succeq 0 \).
- In the context of NLP, this reduces to SQP
 (sequential quadratic programming)
Convergence of Convex-Composite Newton’s Method

Robinson (72):
Assumed \(h = \delta_K \) with \(K := \{0\}^s \times \mathbb{R}^{m-s} \) (NLP case).

Established quadratic convergence in the NLP case under linear independence of the active constraint gradients, strict complementarity, and strong second-order sufficiency.

Robinson (80):

Introduced the revolutionary notion of generalized equations which, among many other consequences, re-established quadratic convergence for NLP. The generalized equations approach is much more powerful as it allows access to a very rich sensitivity theory including metric regularity properties of solution mappings.
Convergence of Convex-Composite Newton’s Method

Womersley (85):
Assumed h is finite-valued piecewise linear convex.

Established quadratic convergence under NLP-like conditions: LICQ, strict complementarity, and strong second-order sufficiency.

B-Ferris (95):
Assumed h is finite-valued closed, proper, convex.

*Established quadratic convergence when $C := \arg\min h$ is a set of weak sharp minima for h, and\[
\arg\min f = \{ x \mid c(x) \in C \}.
\]*

Only first-order information on c required.

Cibulka-Dontchev-Kruger (16):
Assumed h is piecewise linear convex (not nec.ly finite-valued).

Established super-linear convergence under the Dennis-Moré conditions using generalized equations.
The Program

A long standing open problem:

Establish second-order rates using the rich history of second-order ideas for convex-composite functions?

B(87), Kawazaki(88), Ioffe(88), B-Poliquin(92), Rochafellar-Wets(92), Nguyen(17-19)
The Program

A long standing open problem:

Establish second-order rates using the rich history of second-order ideas for convex-composite functions?

B(87), Kawazaki(88), Ioffe(88), B-Poliquin(92), Rochafellar-Wets(92), Nguyen(17-19)

Proposal:

Focus on the PLQ class using a generalized equations approach combining PLQ second-order theory with partial smoothness.
The Program

A long standing open problem:

Establish second-order rates using the rich history of second-order ideas for convex-composite functions?
B(87), Kawazaki(88), Ioffe(88), B-Poliquin(92), Rochafellar-Wets(92), Nguyen(17-19)

Proposal:

Focus on the PLQ class using a generalized equations approach combining PLQ second-order theory with partial smoothness.

Key new ingredient is *partial smoothness* (Lewis (02)).
PLQ Functions

$h : \mathbb{R}^m \to \overline{\mathbb{R}}$ is called piecewise linear-quadratic (PLQ) if $\text{dom } h \neq \emptyset$ and, for $K \geq 1$,

$$\text{dom } h = \bigcup_{k=1}^{K} C_k,$$

where the sets C_k are convex polyhedrons,

$$C_k = \{ c \mid \langle a_{kj}, c \rangle \leq \alpha_{kj}, \text{ for all } j \in \{1, \ldots, s_k\} \},$$

and relative to which $h(c)$ is given by an expression of the form

$$h(c) = \frac{1}{2} \langle c, Q_k c \rangle + \langle b_k, c \rangle + \beta_k \quad \forall \ c \in C_k$$

with $\beta_k \in \mathbb{R}$, $b_k \in \mathbb{R}^n$, and $Q_k \in \mathbb{S}^m$.
Variational Analysis of PLQ-Composite Functions

Assume $f := h \circ c$ with h convex PLQ and c in $C^2(\mathbb{R}^n)$.

Active Set: For $c \in \text{dom} \, h$, the active set at c is

$$\mathcal{K}(c) := \{ k \mid c \in C_k \}.$$

Basic Constraint Qualification: (BCQ)

$$\ker \nabla c(\bar{x})^\top \cap N_{\text{dom} \, h}(c(\bar{x})) = \{0\}$$

Subdifferential: Under the BCQ

$$\partial f(x) = c'(x)^T \partial h(c(x)).$$

Directional Derivative: Under BCQ

$$f'(x; d) = \lim_{t \downarrow 0} \frac{f(x+td) - f(x)}{t} = h'(c(x); c'(x)d)$$

with

$$h'(\bar{c}; w) = \langle Q_k \bar{c} + b_k, w \rangle \quad \forall \, k \in \mathcal{K}(\bar{c})\text{ and } w \in T_{C_k}(\bar{c}).$$
Directions of Non-Ascent and Multipliers

Directions of non-ascent:

\[D(x) := \{ d \in \mathbb{R}^n \mid f'(x : d) \leq 0 \} \]
\[= \{ d \in \mathbb{R}^n \mid h'(c(x); \nabla c(x)d) \leq 0 \} \]

(BCQ)

The Multiplier Set:

\[M(\bar{x}) := \ker \nabla c(\bar{x})^\top \cap \partial h(c(\bar{x})) = \left\{ y \mid \begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \begin{pmatrix} \partial_x L(\bar{x}, y) \\ \partial_y (-L)(\bar{x}, y) \end{pmatrix} \right\} \]
Directions of Non-Ascent and Multipliers

Directions of non-ascent:

\[D(x) := \{ d \in \mathbb{R}^n \mid f'(x : d) \leq 0 \} = \{ d \in \mathbb{R}^n \mid h'(c(x); \nabla c(x)d) \leq 0 \} \quad \text{(BCQ)} \]

The Multiplier Set:

\[M(\bar{x}) := \ker \nabla c(\bar{x})^\top \cap \partial h(c(\bar{x})) = \left\{ y \mid \begin{pmatrix} 0 \\ 0 \end{pmatrix} \in \begin{pmatrix} \partial_x L(\bar{x}, y) \\ \partial_y (-L)(\bar{x}, y) \end{pmatrix} \right\} \]

Strict Criticality (SC):

\[\ker \nabla c(\bar{x})^\top \cap \text{ri} \left(\partial h(c(\bar{x})) \right) = \{ \bar{y} \} \]

Implied by “strict complementarity and LICQ”.
Under SC, \(D(\bar{x}) \) is a subspace on which \(h'(c(x); \nabla c(x)d) = 0 \).
The Second Directional Derivative

The PLQ second directional derivative:
(Rockafellar-Wets (97))

\[
0 \leq h''(\bar{c}; w) := \lim_{t \downarrow 0} \frac{h(\bar{c} + tw) - h(\bar{c}) - th'(\bar{c}; w)}{\frac{1}{2} t^2}
= \begin{cases}
\langle w, Q_k w \rangle & \text{when } w \in T_{C_k}(\bar{c}), \\
\infty & \text{when } w \not\in T_{\text{dom } h}(\bar{c}).
\end{cases}
\]

and \(h''(\bar{c}; \cdot) \) is PLQ, but not necessarily convex.
The Second Directional Derivative

The PLQ second directional derivative:
(Rockafellar-Wets (97))

\[
0 \leq h''(\bar{c}; w) := \lim_{t \to 0} \frac{h(\bar{c} + tw) - h(\bar{c}) - th'(\bar{c}; w)}{\frac{1}{2} t^2}
\]

\[
= \begin{cases}
\langle w, Q_k w \rangle & \text{when } w \in T_{C_k}(\bar{c}), \\
\infty & \text{when } w \notin T_{\text{dom } h}(\bar{c}).
\end{cases}
\]

and \(h''(\bar{c}; \cdot) \) is PLQ, but not necessarily convex.

Moreover, there exists a neighborhood \(V \) of \(\bar{c} \) such that

\[
h(c) = h(\bar{c}) + h'(\bar{c}; c - \bar{c}) + \frac{1}{2} h''(\bar{c}; c - \bar{c}) \text{ for } c \in V \cap \text{dom } h.
\]
PLQ-Composite 2nd-Order Nec. and Suff. Conditions

(Rockafellar-Wets (97))

Let $\bar{x} \in \text{dom } f$ such that f satisfies BCQ at \bar{x}.

(1) (Nec.) If f has a local minimum at \bar{x}, then

$0 \in \nabla c(\bar{x})^\top \partial h(c(\bar{x}))$ and, $\forall \; d \in D(\bar{x})$,

$$h''(c(\bar{x}); \nabla c(\bar{x})d) + \max \left\{ \langle d, \nabla^2_{xx} L(\bar{x}, y)d \rangle \mid y \in M(\bar{x}) \right\} \geq 0.$$

(2) (Suff.) If $0 \in \nabla c(\bar{x})^\top \partial h(c(\bar{x}))$ and, $\forall \; d \in D(\bar{x}) \setminus \{0\}$,

$$h''(c(\bar{x}); \nabla c(\bar{x})d) + \max \left\{ \langle d, \nabla^2_{xx} L(\bar{x}, y)d \rangle \mid y \in M(\bar{x}) \right\} > 0,$$

then \bar{x} is a strong local minimizer of f,

that is, there exists $\varepsilon > 0$, $\mu > 0$ such that

$$f(x) \geq f(\bar{x}) + \frac{\mu}{2} \|x - \bar{x}\|^2 \quad \forall \; x \in B(\bar{x}, \varepsilon).$$
Let \(f := h \circ c \) be convex-composite, and define the set-valued mapping \(g + G : \mathbb{R}^{n+m} \rightrightarrows \mathbb{R}^{n+m} \) by

\[
g(x, y) = \begin{pmatrix} \nabla c(x)^\top y \\ -c(x) \end{pmatrix}, \quad G(x, y) = \begin{pmatrix} \{0\}^n \\ \partial h^*(y) \end{pmatrix}.
\]

The associated generalized equation for \(P \) is \(0 \in g + G \).
Convex-Composite Generalized Equations

Let $f := h \circ c$ be convex-composite, and define the set-valued mapping $g + G : \mathbb{R}^{n+m} \rightrightarrows \mathbb{R}^{n+m}$ by

$$g(x, y) = \begin{pmatrix} \nabla c(x)^\top y \\ -c(x) \end{pmatrix}, \quad G(x, y) = \begin{pmatrix} \{0\}^n \\ \partial h^*(y) \end{pmatrix}.$$

The associated generalized equation for P is $0 \in g + G$.

For a fixed $(\bar{x}, \bar{y}) \in \mathbb{R}^n \times \mathbb{R}^m$, define the linearization mapping

$$\mathcal{G} : (x, y) \mapsto g(\bar{x}, \bar{y}) + \nabla g(\bar{x}, \bar{y}) \begin{pmatrix} x - \bar{x} \\ y - \bar{y} \end{pmatrix} + G(x, y),$$

where $\nabla g(\bar{x}, \bar{y}) = \begin{pmatrix} \nabla^2(\bar{y}c)(\bar{x}) & \nabla c(\bar{x})^\top \\ -\nabla c(\bar{x}) & 0 \end{pmatrix}$.
Newton’s Method for Generalized Equations

- Let $f := h \circ c$ be convex-composite.
- For $(\hat{x}, \hat{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ set $\hat{H} := \nabla^2_x L(\hat{x}, \hat{y})$.
- Assume f satisfies BCQ at \hat{x}.

Then, $(\tilde{x}, \tilde{y}) \in \mathbb{R}^n \times \mathbb{R}^m$ satisfy the optimality conditions for

$$\min_{x \in \mathbb{R}^n} h(c(\hat{x})) + \nabla c(\hat{x})(x - \hat{x}) + \frac{1}{2} (x - \hat{x})^\top \hat{H}(x - \hat{x})$$

if and only if (\tilde{x}, \tilde{y}) solves the Newton equations for $g + G$:

$$0 \in g(\hat{x}, \hat{y}) + \nabla g(\hat{x}, \hat{y}) \begin{pmatrix} x - \hat{x} \\ y - \hat{y} \end{pmatrix} + G(x, y).$$
Strong Metric Subregularity

A set-valued mapping $S : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is **strongly metrically subregular** at \bar{u} for \bar{v} if $(\bar{u}, \bar{v}) \in \text{graph } (S)$ and there exists $\kappa \geq 0$ and a neighborhood U of \bar{u} such that

$$
\|u - \bar{u}\| \leq \kappa \text{dist } (\bar{v} | S(u)) \quad \text{for all } u \in U.
$$

Theorem: (B-Engel(18))

$h : \mathbb{R}^m \rightarrow \mathbb{R}$ convex PLQ and $f := h \circ c$ satisfies BCQ at $\bar{x} \in \text{dom } f$. Then, the following are equivalent:

1. The multiplier set $M(\bar{x}) := \ker \nabla c(\bar{x})^\top \cap \partial h(c(\bar{x}))$ is a singleton $\{\bar{y}\}$ and the second-order sufficient conditions are satisfied at \bar{x}.

2. The mapping $g + G$ is strongly metrically subregular at (\bar{x}, \bar{y}) for 0 and \bar{x} is a strong local minimizer of f.

Corollary: The matrix secant method converges superlinearly if the Dennis-M’ore condition holds.
Strong Metric Subregularity

A set-valued mapping $S : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is strongly metrically subregular at \bar{u} for \bar{v} if $(\bar{u}, \bar{v}) \in \text{graph}(S)$ and there exists $\kappa \geq 0$ and a neighborhood U of \bar{u} such that

$$\|u - \bar{u}\| \leq \kappa \text{dist}(\bar{v} | S(u))$$

for all $u \in U$.

Theorem: (B-Engel(18)) $h : \mathbb{R}^m \to \mathbb{R}$ convex PLQ and $f := h \circ c$ satisfies BCQ at $\bar{x} \in \text{dom } f$. Then, the following are equivalent:

1. The multiplier set $M(\bar{x}) := \ker \nabla c(\bar{x})^\top \cap \partial h(c(\bar{x}))$ is a singleton $\{\bar{y}\}$ and the second-order sufficient conditions are satisfied at \bar{x}.

2. The mapping $g + G$ is strongly metrically subregular at (\bar{x}, \bar{y}) for 0 and \bar{x} is a strong local minimizer of f.

Corollary: The matrix secant method converges superlinearly if the Dennis-Möte condition holds.
Strong Metric Subregularity

A set-valued mapping $S : \mathbb{R}^n \rightrightarrows \mathbb{R}^m$ is strongly metrically subregular at \bar{u} for \bar{v} if $(\bar{u}, \bar{v}) \in \text{graph}(S)$ and there exists $\kappa \geq 0$ and a neighborhood U of \bar{u} such that

$$\|u - \bar{u}\| \leq \kappa \text{dist}(\bar{v}|S(u)) \quad \text{for all } u \in U.$$

Theorem: (B-Engel(18)) $h : \mathbb{R}^m \to \mathbb{R}$ convex PLQ and $f := h \circ c$ satisfies BCQ at $\bar{x} \in \text{dom} f$. Then, the following are equivalent:

1. The multiplier set $M(\bar{x}) := \ker \nabla c(\bar{x})^\top \cap \partial h(c(\bar{x}))$ is a singleton $\{\bar{y}\}$ and the second-order sufficient conditions are satisfied at \bar{x}.

2. The mapping $g + G$ is strongly metrically subregular at (\bar{x}, \bar{y}) for 0 and \bar{x} is a strong local minimizer of f.

Corollary: The matrix secant method converges superlinearly if the Dennis-Móré condition holds.
Partial Smoothness: Lewis (02)

- $h : \mathbb{R}^m \to \overline{\mathbb{R}}$ is a closed and proper function.
- \mathcal{M} a \mathcal{C}^2-smooth manifold and $\bar{c} \in \mathcal{M} \subset \mathbb{R}^m$.

The function h is *partly smooth* at \bar{c} relative to \mathcal{M} if the following four properties hold:

1. **(Restricted Smoothness)** The restriction $h|_{\mathcal{M}}$ is smooth around \bar{c}, in that there exists a neighborhood V of \bar{c} and a \mathcal{C}^2-smooth function g defined on V such that $h = g$ on $V \cap \mathcal{M}$;

2. **(Existence of Subgradients)** At every point $c \in \mathcal{M}$ close to \bar{c}, $\partial h(c) \neq \emptyset$;

3. **(Normals and Subgradients Parallel)** $\text{par} \partial h(\bar{c}) = N_{\mathcal{M}}(\bar{c})$;

4. **(Subgradient Continuity)** the subdifferential map ∂h is inner semicontinuous at \bar{c} relative to \mathcal{M}.

Generalizes classical notions of nondegeneracy, strict complementarity, and active constraint identification.
Partial Smoothness: Lewis (02)

- $h : \mathbb{R}^m \to \overline{\mathbb{R}}$ is a closed and proper function.
- \mathcal{M} a C^2-smooth manifold and $\bar{c} \in \mathcal{M} \subset \mathbb{R}^m$.

The function h is *partly smooth* at \bar{c} relative to \mathcal{M} if \mathcal{M} the following four properties hold:

1. **(Restricted Smoothness)** The restriction $h|_{\mathcal{M}}$ is smooth around \bar{c}, in that there exists a neighborhood V of \bar{c} and a C^2-smooth function g defined on V such that $h = g$ on $V \cap \mathcal{M}$;

2. **(Existence of Subgradients)** At every point $c \in \mathcal{M}$ close to \bar{c}, $\partial h(c) \neq \emptyset$;

3. **(Normals and Subgradients Parallel)** $\text{par}\partial h(\bar{c}) = N_{\mathcal{M}}(\bar{c})$;

4. **(Subgradient Continuity)** the subdifferential map ∂h is inner semicontinuous at \bar{c} relative to \mathcal{M}.

Generalizes classical notions of *nondegeneracy, strict complementarity, and active constraint identification*.
Partial Smoothness
- \mathcal{M} Active set: $\mathcal{K}(c) := \{k \in \mathbb{R}^m \mid c \in C_k, \ k \in \{1, 2, \ldots, K\}\}$

- Active Manifold: $\mathcal{M}_{\bar{c}} := \text{ri} \bigcap_{k \in \mathcal{K}(\bar{c})} C_k$

Lemma: Let $\bar{c} \in \text{dom } f$ and assume $\text{dom } h$ is given by an RWR. Then, for all $c \in \mathcal{M}_{\bar{c}}$ and $k \in \mathcal{K}(\bar{c})$,

$$
\mathcal{K}(c) = \mathcal{K}(\bar{c}), \ \mathcal{M}_c = \mathcal{M}_{\bar{c}} \text{ and } I_k(c) = I_k(\bar{c}).
$$
The Subdifferential of h

Given that a certain nondegeneracy condition holds (a property of the representation of dom h), then $\partial h(c)$ has a structure functional representation (Osborne (01)).
The Subdifferential of h

Given that a certain *nondegeneracy* condition holds (a property of the representation of $\text{dom } h$), then $\partial h(c)$ has a *structure functional* representation (Osborne (01)).

Lemma: Let $c \in M\bar{c}$ and suppose nondegeneracy holds. Then there is a polyhedral convex set $U(c)$ and a matrix \bar{A} such that, for every $y \in \partial h(c)$, there is a unique $\mu(c, y) \in U(c)$ for which $y = \lambda_0(c) + \bar{A}\mu(c, y)$.

In particular,

$$\partial h(c) = \lambda_0(c) + \bar{A}U(c).$$
Newton’s Method Hypotheses

Let \(f = h \circ c \) be PLQ convex composite, \(\bar{x} \in \text{dom} \, f \), \(\bar{y} \in \partial h(c(\bar{x})) \), and set \(\bar{c} := c(\bar{x}) \).

Assumptions:

(a) \(c \) is \(C^3 \)-smooth,

(b) \(M_{\bar{c}} \) satisfies the nondegeneracy condition,

(c) \(f \) satisfies SC at \(\bar{x} \) for \(\bar{y} \),

(d) \(\bar{x} \) satisfies the second-order sufficient conditions, i.e.,

\[
\frac{d}{dx} h''(c(\bar{x}); \nabla c(\bar{x})d) + \langle d, \nabla^2_{xx} L(\bar{x}, \bar{y})d \rangle > 0 \quad \forall d \in \ker A^\top \nabla c(\bar{x}) \setminus \{0\},
\]

where \(M(\bar{x}) = \{ \bar{y} \} \) and \(D(\bar{x}) = \ker A^\top \nabla c(\bar{x}) \).
Newton’s Method Hypotheses

Let $f = h \circ c$ be PLQ convex composite, $\bar{x} \in \text{dom } f$, $\bar{y} \in \partial h(c(\bar{x}))$, and set $\bar{c} := c(\bar{x})$.

Assumptions:

(a) c is C^3-smooth,

(b) $\mathcal{M}_{\bar{c}}$ satisfies the nondegeneracy condition,

(c) f satisfies SC at \bar{x} for \bar{y},

(d) \bar{x} satisfies the second-order sufficient conditions, i.e.,

$$h''(c(\bar{x}); \nabla c(\bar{x})d) + \langle d, \nabla^2_{xx} L(\bar{x}, \bar{y})d \rangle > 0 \quad \forall \, d \in \ker A^\top \nabla c(\bar{x}) \setminus \{0\},$$

where $M(\bar{x}) = \{\bar{y}\}$ and $D(\bar{x}) = \ker A^\top \nabla c(\bar{x})$.

NLP Analogues:

(b) linear independence of the active constraint gradients,

(c) strict complementary slackness, and

(d) strong second-order sufficiency condition.
Convergence of Newton’s Method

There exists a neighborhood \mathcal{N} of (\bar{x}, \bar{y}) such that if $(x^0, y^0) \in \mathcal{N}$, then there exists a unique sequence $\{(x^k, y^k)\}$ satisfying the optimality conditions of P_k with $H_k := \nabla^2_{xx} L(x^k, y^k)$ such that, for all $k \in \mathbb{N}$,

(i) $c(x^{k-1}) + \nabla c(x^{k-1})[x^k - x^{k-1}] \in \mathcal{M}_\bar{c}$,

(ii) $y^k \in \text{ri} \partial h(c(x^{k-1}) + \nabla c(x^{k-1})[x^k - x^{k-1}])$,

(iii) $H_{k-1}[x^k - x^{k-1}] + \nabla c(x^{k-1})^\top y^k = 0$,

(iv) x^{k+1} is a strong local minimizer of P_k.

Moreover, the sequence (x^k, y^k) converges to (\bar{x}, \bar{y}) at a quadratic rate.