Quadratic Convergence of SQP-Like Methods for Convex-Composite Optimization

James V Burke
Mathematics, University of Washington

Joint work with
Abraham Engle, Amazon

Midwest Optimization Meeting
Northern Illinois University, DeKalb
October 18, 2019

Convex-Composite Optimization

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x):=h(c(x)) \tag{P}
\end{equation*}
$$

$h: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{+\infty\}$ is closed, proper, convex $c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is \mathcal{C}^{2}-smooth

Convex-Composite Optimization

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x):=h(c(x)) \tag{P}
\end{equation*}
$$

$h: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{+\infty\}$ is closed, proper, convex
$c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is \mathcal{C}^{2}-smooth

The Model The Data

Convex-Composite Optimization

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x):=h(c(x)) \quad+g(x) \tag{P}
\end{equation*}
$$

$h: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{+\infty\}$ is closed, proper, convex The Model
$c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is \mathcal{C}^{2}-smooth
$g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is closed, proper, convex
The Data
Regularization used to induce solution properties

Convex-Composite Optimization

$$
\begin{equation*}
\min _{x \in \mathbb{R}^{n}} f(x):=h(c(x)) \quad+g(x) \tag{P}
\end{equation*}
$$

$h: \mathbb{R}^{m} \rightarrow \mathbb{R} \cup\{+\infty\}$ is closed, proper, convex
$c: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is \mathcal{C}^{2}-smooth
$g: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ is closed, proper, convex
Regularization
used to induce solution properties
70's
Fletcher, Powel, Osborne
80-90's
Burke, Ferris, Fletcher, Kawasaki, Masden, Poliquin, Powel,
Osborne, Rockafellar, Womersley, Wright, Yuan
Recent (15-19's)
Aravkin, Bell, B, Chang, Cui, Duchi, Davis, Drusvyatskiy, Hoheisel, Hong, Lewis, Ioffe, Pang, Ruan
Mohammadi-Mordukhovich-Sarabi

Examples: 70-90's

Non-linear least-squares: $f(x)=\|c(x)\|_{2}^{2}$

Examples: 70-90's

Non-linear least-squares: $f(x)=\|c(x)\|_{2}^{2}$

Feasibility: $c(x) \in C: \quad$ min dist $(c(x) \mid C)$,
where $C \subset \mathbb{R}^{m}$ is non-empty, closed, convex, and $\operatorname{dist}(y \mid C):=\inf \{\|y-z\| \mid z \in C\}$.

Examples: 70-90's

Non-linear least-squares: $f(x)=\|c(x)\|_{2}^{2}$

Feasibility: $c(x) \in C: \quad \min \operatorname{dist}(c(x) \mid C)$,
where $C \subset \mathbb{R}^{m}$ is non-empty, closed, convex, and $\operatorname{dist}(y \mid C):=\inf \{\|y-z\| \mid z \in C\}$.

Exact Penalization: $\min \varphi(x)+\alpha \operatorname{dist}(\hat{c}(x) \mid C)$
Here $c(x):=(\varphi(x), \hat{c}(x))$ and $h(\mu, y):=\mu+\alpha \operatorname{dist}(y \mid C)$

Examples: 70-90's

Non-linear least-squares: $f(x)=\|c(x)\|_{2}^{2}$

Feasibility: $c(x) \in C: \quad$ min $\operatorname{dist}(c(x) \mid C)$, where $C \subset \mathbb{R}^{m}$ is non-empty, closed, convex, and $\operatorname{dist}(y \mid C):=\inf \{\|y-z\| \mid z \in C\}$.

Exact Penalization: $\min \varphi(x)+\alpha \operatorname{dist}(\hat{c}(x) \mid C)$
Here $c(x):=(\varphi(x), \hat{c}(x))$ and $h(\mu, y):=\mu+\alpha \operatorname{dist}(y \mid C)$

Non-linear programming: $\min \varphi(x)+\delta_{C}(\hat{c}(x))$.
Here $c(x):=(\varphi(x), \hat{c}(x))$ and $h(\mu, y):=\mu+\delta_{C}(y)$, where $\delta_{C}(y)=0$ if $y \in C$ and $+\infty$ otherwise.

More Recent Examples

Quadratic support functions:

$$
h(c):=\sup _{u \in U}\langle u, B c\rangle-\frac{1}{2} u^{T} M u
$$

with $U \subset \mathbb{R}^{k}$ non-empty, closed, convex, $M \in \mathbb{S}^{n}$ is positive semi-definite.

More Recent Examples

Quadratic support functions:

$$
h(c):=\sup _{u \in U}\langle u, B c\rangle-\frac{1}{2} u^{T} M u
$$

with $U \subset \mathbb{R}^{k}$ non-empty, closed, convex, $M \in \mathbb{S}^{n}$ is positive semi-definite.

Piecewise linear-quadratic (PLQ) penalties:
(Rockfellar-Wets (97))
Quadratic support functions with $U \subset \mathbb{R}^{k}$ non-empty, closed and convex polyhedron.

Dual representation of PLQs

$$
\begin{gathered}
Q_{0.8}(x)=\sup _{u \in[-0.8,0.2]}\langle u, x\rangle \\
\rho_{h}(x)=\sup _{u \in[-\kappa, \kappa]}\langle u, x\rangle-\frac{1}{2} u^{2}
\end{gathered}
$$

Dual representation of PLQs

$$
Q_{0.8}(x)=\sup _{u \in[-0.8,0.2]}\langle u, x\rangle
$$

$$
\rho_{h}(x)=\sup _{u \in[-\kappa, \kappa]}\langle u, x\rangle-\frac{1}{2} u^{2}
$$

PLQ penalties closed under addition and affine composition.

PLQ penalties in practice

PLQs

Regression
Robust regression
Quantile regression
Lasso
Robust lasso
SVM
SVR
Kalman smoother

$$
\|G x-w\|_{Q^{-1}}^{2}+\|H x-z\|_{R^{-1}}^{2}
$$

$$
L_{2}+L_{2}
$$

Robust trend smoothing

$$
\|G x-w\|_{1}+\rho_{H}(H x-z)
$$

$$
L_{1}+\text { Huber }
$$

The Convex-Composite Lagrangian

$$
\mathbf{P} \quad \min _{x \in \mathbb{R}^{n}} h(c(x))
$$

- The Lagrangian for $\mathbf{P}:($ B. (87))

$$
L(x, y):=\langle y, c(x)\rangle-h^{*}(y)
$$

- The conjugate of h given by the support function for epi (h),

$$
h^{*}(y):=\sup _{x}[\langle y, x\rangle-h(x)]
$$

The Convex-Composite Lagrangian

$$
\mathbf{P} \quad \min _{x \in \mathbb{R}^{n}} h(c(x))+g(x)
$$

- The Lagrangian for $\mathbf{P}:($ B. (87))

$$
L(x, y):=\langle y, c(x)\rangle-h^{*}(y) \quad+g(x)
$$

- The conjugate of h given by the support function for epi (h),

$$
h^{*}(y):=\sup _{x}[\langle y, x\rangle-h(x)]
$$

The Convex-Composite Lagrangian

$$
\mathbf{P} \quad \min _{x \in \mathbb{R}^{n}} h(c(x)) \quad+g(x)
$$

- The Lagrangian for P: (B. (87))

$$
L(x, y, v):=\langle y, c(x)\rangle-h^{*}(y) \quad+\langle v, x\rangle-g^{*}(v)
$$

- The conjugate of h given by the support function for epi (h),

$$
h^{*}(y):=\sup _{x}[\langle y, x\rangle-h(x)]
$$

The Convex-Composite Lagrangian

$$
\mathbf{P} \quad \min _{x \in \mathbb{R}^{n}} h(c(x))
$$

- The Lagrangian for $\mathbf{P}:(B .(87))$

- The conjugate of h given by the support function for epi (h),

$$
h^{*}(y):=\sup _{x}[\langle y, x\rangle-h(x)]
$$

The Convex-Composite Lagrangian

$$
\mathbf{P} \quad \min _{x \in \mathbb{R}^{n}} h(c(x))
$$

- The Lagrangian for $\mathbf{P}:(B .(87))$

$$
\begin{cases}(\text { Primal }) & \inf _{x} \sup _{y} L(x, y) \\ (\text { Dual }) & \sup _{y} \inf _{x} L(x, y)\end{cases}
$$

- The conjugate of h given by the support function for epi (h),

$$
h^{*}(y):=\sup _{x}[\langle y, x\rangle-h(x)] \quad=\sup _{(x, \mu) \in \operatorname{epi}(h)}\langle(y,-1),(x, \mu)\rangle
$$

Algorithms

$$
\mathbf{P}_{k} \quad \min _{x} h\left(c\left(x^{k}\right)+\nabla c\left(x^{k}\right)\left[x-x^{k}\right]\right)+\frac{1}{2}\left(x-x^{k}\right)^{\top} H_{k}\left(x-x^{k}\right),
$$

- H_{k} approximates the Hessian of a Lagrangian for \mathbf{P} at $\left(x^{k}, y^{k}\right)$
- Newton's method: $H_{k}:=\nabla_{x x}^{2} L\left(x^{k}, y^{k}\right)=\sum_{k=1}^{m} y_{i}^{k} \nabla_{x x}^{2} c_{i}\left(x^{k}\right)$
- \mathbf{P}_{k} may or may not be convex depending on whether $H_{k} \succeq 0$.
- A example is the Gauss-Newton method: $h=\|\cdot\|_{2}^{2}$

$$
\min _{x}\left\|c\left(x^{k}\right)+c^{\prime}\left(x^{k}\right)\left(x-x^{k}\right)\right\|_{2}^{2}
$$

Algorithm for NLP

NLP minimize $\phi(x)$
subject to $f_{i}(x)=0, i=1, \ldots, s, f_{i}(x) \leq 0, i=s+1, \ldots, m$.

Algorithm for NLP

NLP minimize $\phi(x)$

$$
\text { subject to } f_{i}(x)=0, i=1, \ldots, s, f_{i}(x) \leq 0, i=s+1, \ldots, m \text {. }
$$

- Convex-Composite Framework

$$
\begin{array}{rlrl}
h(\mu, y) & =\mu+\delta_{K}(y), & K:=\{0\}^{s} \times \mathbb{R}_{-}^{m-s} \\
c(x) & =(\phi(x), f(x)) & & \\
L(x, y) & =\phi(x)+\sum_{k=1}^{m} y_{i} f_{i}(x)-\delta_{K^{\circ}}(y), & K^{\circ}=\mathbb{R}^{s} \times \mathbb{R}_{+}^{m-s}
\end{array}
$$

Algorithm for NLP

NLP minimize $\phi(x)$

$$
\text { subject to } f_{i}(x)=0, i=1, \ldots, s, f_{i}(x) \leq 0, i=s+1, \ldots, m \text {. }
$$

- Convex-Composite Framework

$$
\begin{array}{rlrl}
h(\mu, y) & =\mu+\delta_{K}(y), & & K:=\{0\}^{s} \times \mathbb{R}_{-}^{m-s} \\
c(x) & =(\phi(x), f(x)) & & \\
L(x, y) & =\phi(x)+\sum_{k=1}^{m} y_{i} f_{i}(x)-\delta_{K^{\circ}}(y), & K^{\circ}=\mathbb{R}^{s} \times \mathbb{R}_{+}^{m-s}
\end{array}
$$

- Subproblems:
$\mathbf{P}_{\mathbf{k}} \quad$ minimize

$$
\phi\left(x^{k}\right)+\nabla \phi\left(x^{k}\right)^{T}\left(x-x^{k}\right)+\frac{1}{2}\left[x-x^{k}\right]^{\top} H_{k}\left[x-x^{k}\right]
$$

subject to

$$
\begin{aligned}
& f_{i}\left(x^{k}\right)+\nabla f_{i}\left(x^{k}\right)^{T}\left(x-x^{k}\right)=0, i=1, \ldots, s \\
& f_{i}\left(x^{k}\right)+\nabla f_{i}\left(x^{k}\right)^{T}\left(x-x^{k}\right)=0, i=s+1, \ldots, m
\end{aligned}
$$

Algorithm for NLP

NLP minimize $\phi(x)$

$$
\text { subject to } f_{i}(x)=0, i=1, \ldots, s, f_{i}(x) \leq 0, i=s+1, \ldots, m \text {. }
$$

- Convex-Composite Framework

$$
\begin{array}{rlrl}
h(\mu, y) & =\mu+\delta_{K}(y), & & K:=\{0\}^{s} \times \mathbb{R}_{-}^{m-s} \\
c(x) & =(\phi(x), f(x)) & & \\
L(x, y) & =\phi(x)+\sum_{k=1}^{m} y_{i} f_{i}(x)-\delta_{K^{\circ}}(y), & K^{\circ}=\mathbb{R}^{s} \times \mathbb{R}_{+}^{m-s}
\end{array}
$$

- Subproblems: Sequential quadratic programming (SQP)
$\mathbf{P}_{\mathbf{k}} \quad$ minimize $\quad \phi\left(x^{k}\right)+\nabla \phi\left(x^{k}\right)^{T}\left(x-x^{k}\right)+\frac{1}{2}\left[x-x^{k}\right]^{\top} H_{k}\left[x-x^{k}\right]$
subject to $f_{i}\left(x^{k}\right)+\nabla f_{i}\left(x^{k}\right)^{T}\left(x-x^{k}\right)=0, i=1, \ldots, s$

$$
f_{i}\left(x^{k}\right)+\nabla f_{i}\left(x^{k}\right)^{T}\left(x-x^{k}\right)=0, i=s+1, \ldots, m .
$$

Convergence of Convex-Composite Newton's Method

Robinson (72):

Assumed $h=\delta_{K}$ with $K:=\{0\}^{s} \times \mathbb{R}_{-}^{m-s}$ (NLP case).
Established quadratic convergence in the NLP case under linear independence of the active constraint gradients, strict complementarity, and strong second-order sufficiency.

Robinson (80):
Introduced the revolutionary notion of generalized equations which, among many other consequences, re-established quadratic convergence for NLP. The generalized equations approach is much more powerful as it allows access to a very rich sensitivity theory including metric regularity properties of solution mappings.

Convergence of Convex-Composite Newton's Method

Womersley (85):

Assumed h is finite-valued piecewise linear convex.
Established quadratic convergence under NLP-like
conditions: linear independence of the active constraint gradients, strict complementarity, and strong second-order sufficiency.

B-Ferris (95):

Assumed h is finite-valued closed, proper, convex.
Established quadratic convergence when $C:=\arg \min h$ is a set of weak sharp minima for h, and $\arg \min f=\{x \mid c(x) \in C\}$.

Cibulka-Dontchev-Kruger (16):

Assumed h is piecewise linear convex.
Established super-linear convergence under the
Dennis-Moré conditions using generalized equations.

The Program

A long standing open problem:

Can one establish second-order rates using the rich history of second-order ideas for convex-composite functions?
(B(87), Kawazaki(88), Ioffe(88), B-Poliquin(92),
Rochafellar-Wets(92), Nguyen(17-19))

The Program

A long standing open problem:

Can one establish second-order rates using the rich history of second-order ideas for convex-composite functions?
(B(87), Kawazaki(88), Ioffe(88), B-Poliquin(92),
Rochafellar-Wets(92), Nguyen(17-19))
Solution Proposal:
Develop a generalized equations approach for the $P L Q$ class using PLQ second-order theory and partial smoothness to establish second-order rates under hypotheses motivated by those used for NLP .

The Program

A long standing open problem:

Can one establish second-order rates using the rich history of second-order ideas for convex-composite functions?
(B(87), Kawazaki(88), Ioffe(88), B-Poliquin(92),
Rochafellar-Wets(92), Nguyen(17-19))
Solution Proposal:
Develop a generalized equations approach for the $P L Q$ class using PLQ second-order theory and partial smoothness to establish second-order rates under hypotheses motivated by those used for NLP.

Key new ingredient is partial smoothness due to (Lewis (02)).

PLQ Functions

$h: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ is called piecewise linear-quadratic (PLQ) if $\operatorname{dom} h \neq \emptyset$ and, for $\mathcal{K} \geq 1$,

$$
\operatorname{dom} h=\bigcup_{k=1}^{\mathcal{K}} C_{k}
$$

where the sets C_{k} are convex polyhedrons,

$$
C_{k}=\left\{c \mid\left\langle a_{k j}, c\right\rangle \leq \alpha_{k j}, \text { for all } j \in\left\{1, \ldots, s_{k}\right\}\right\}
$$

and relative to which $h(c)$ is given by an expression of the form

$$
h(c)=\frac{1}{2}\left\langle c, Q_{k} c\right\rangle+\left\langle b_{k}, c\right\rangle+\beta_{k} \quad \forall c \in C_{k}
$$

with $\beta_{k} \in \mathbb{R}, b_{k} \in \mathbb{R}^{n}$, and $Q_{k} \in \mathbb{S}^{m}$.

Variational Analysis of PLQ-Composite Functions

Assume $f:=h \circ c$ with h convex PLQ and c in $\mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$.
Active Set: For $c \in \operatorname{dom} h$, the active set at c is $\mathcal{K}(c):=\left\{k \mid c \in C_{k}\right\}$.

Basic Constraint Qualification: (BCQ)

$$
\operatorname{ker} \nabla c(\bar{x})^{\top} \cap N_{\operatorname{dom} h}(c(\bar{x}))=\{0\}
$$

Subdifferential: Under the BCQ

$$
\partial f(x)=c^{\prime}(x)^{T} \partial h(c(x))
$$

Directional Derivative: Under BCQ

$$
f^{\prime}(x ; d)=\lim _{t \downarrow 0} \frac{f(x+t d)-f(x)}{t}=h^{\prime}\left(c(x) ; c^{\prime}(x) d\right)
$$

with

$$
h^{\prime}(\bar{c} ; w)=\left\langle Q_{k} \bar{c}+b_{k}, w\right\rangle \quad \forall k \in \mathcal{K}(\bar{c}) \text { and } w \in T_{C_{k}}(\bar{c}) .
$$

Directions of Non-Ascent and Multipliers

Directions of non-ascent:

$$
\begin{align*}
D(x): & :=\left\{d \in \mathbb{R}^{n} \mid f^{\prime}(x: d) \leq 0\right\} \\
& =\left\{d \in \mathbb{R}^{n} \mid h^{\prime}(c(x) ; \nabla c(x) d) \leq 0\right\} \tag{BCQ}
\end{align*}
$$

The Multiplier Set:
$M(\bar{x}):=\operatorname{ker} \nabla c(\bar{x})^{\top} \cap \partial h(c(\bar{x}))=\left\{y \left\lvert\,\binom{ 0}{0} \in\binom{\partial_{x} L(\bar{x}, y)}{\partial_{y}(-L)(\bar{x}, y)}\right.\right\}$

The Second Directional Derivative

The PLQ second directional derivative:
(Rockafellar-Wets (97))

$$
\begin{aligned}
0 \leq h^{\prime \prime}(\bar{c} ; w) & :=\lim _{t \searrow 0} \frac{h(\bar{c}+t w)-h(\bar{c})-t h^{\prime}(\bar{c} ; w)}{\frac{1}{2} t^{2}} \\
& = \begin{cases}\left\langle w, Q_{k} w\right\rangle & \text { when } w \in T_{C_{k}}(\bar{c}) \\
\infty & \text { when } w \notin T_{\operatorname{dom} h}(\bar{c})\end{cases}
\end{aligned}
$$

and $h^{\prime \prime}(\bar{c} ; \cdot)$ is PLQ, but not necessarily convex.

The Second Directional Derivative

The PLQ second directional derivative:

(Rockafellar-Wets (97))

$$
\begin{aligned}
0 \leq h^{\prime \prime}(\bar{c} ; w) & :=\lim _{t \searrow 0} \frac{h(\bar{c}+t w)-h(\bar{c})-t h^{\prime}(\bar{c} ; w)}{\frac{1}{2} t^{2}} \\
& = \begin{cases}\left\langle w, Q_{k} w\right\rangle & \text { when } w \in T_{C_{k}}(\bar{c}) \\
\infty & \text { when } w \notin T_{\operatorname{dom} h}(\bar{c}) .\end{cases}
\end{aligned}
$$

and $h^{\prime \prime}(\bar{c} ; \cdot)$ is PLQ, but not necessarily convex.

Moreover, there exists a neighborhood V of \bar{c} such that

$$
h(c)=h(\bar{c})+h^{\prime}(\bar{c} ; c-\bar{c})+\frac{1}{2} h^{\prime \prime}(\bar{c} ; c-\bar{c}) \text { for } c \in V \cap \operatorname{dom} h .
$$

PLQ-Composite $2^{\text {nd_}}$-Order Nec. and Suff. Conditions

(Rockafellar-Wets (97))
Let $\bar{x} \in \operatorname{dom} f$ such that f satisfies BCQ at \bar{x}.
(1) (Nec.) If f has a local minimum at \bar{x}, then $0 \in \nabla c(\bar{x})^{\top} \partial h(c(\bar{x}))$ and, $\forall d \in D(\bar{x})$, $h^{\prime \prime}(c(\bar{x}) ; \nabla c(\bar{x}) d)+\max \left\{\left\langle d, \nabla_{x x}^{2} L(\bar{x}, y) d\right\rangle \mid y \in M(\bar{x})\right\} \geq 0$.
(2) (Suff.) If $0 \in \nabla c(\bar{x})^{\top} \partial h(c(\bar{x}))$ and, $\forall d \in D(\bar{x}) \backslash\{0\}$,
$h^{\prime \prime}(c(\bar{x}) ; \nabla c(\bar{x}) d)+\max \left\{\left\langle d, \nabla_{x x}^{2} L(\bar{x}, y) d\right\rangle \mid y \in M(\bar{x})\right\}>0$,
then \bar{x} is a strong local minimizer of f, that is, there exists $\varepsilon>0, \mu>0$ such that

$$
f(x) \geq f(\bar{x})+\frac{\mu}{2}\|x-\bar{x}\|_{2}^{2} \quad \forall x \in B(\bar{x}, \varepsilon)
$$

Convex-Composite Generalized Equations

Let $f:=h \circ c$ be convex-composite, and define the set-valued mapping $g+G: \mathbb{R}^{n+m} \rightrightarrows \mathbb{R}^{n+m}$ by

$$
g(x, y)=\binom{\nabla c(x)^{\top} y}{-c(x)^{\top}}, \quad G(x, y)=\binom{\{0\}^{n}}{\partial h^{\star}(y)}
$$

The associated generalized equation for \mathbf{P} is $g+G \ni 0$.

Convex-Composite Generalized Equations

Let $f:=h \circ c$ be convex-composite, and define the set-valued mapping $g+G: \mathbb{R}^{n+m} \rightrightarrows \mathbb{R}^{n+m}$ by

$$
g(x, y)=\binom{\nabla c(x)^{\top} y}{-c(x)^{\top}}, \quad G(x, y)=\binom{\{0\}^{n}}{\partial h^{\star}(y)} .
$$

The associated generalized equation for \mathbf{P} is $g+G \ni 0$.

For a fixed $(\bar{x}, \bar{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$, define the linearization mapping

$$
\begin{aligned}
\mathcal{G}:(x, y) & \mapsto g(\bar{x}, \bar{y})+\nabla g(\bar{x}, \bar{y})\binom{x-\bar{x}}{y-\bar{y}}+G(x, y), \\
\text { where } \nabla g(\bar{x}, \bar{y}) & =\left(\begin{array}{cc}
\nabla^{2}(\bar{y} c)(\bar{x}) & \nabla c(\bar{x})^{\top} \\
-\nabla c(\bar{x}) & 0
\end{array}\right)
\end{aligned}
$$

Newton's Method for Generalized Equations

- Let $f:=h \circ c$ be convex-composite.
- For $(\hat{x}, \hat{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ set $\widehat{H}:=\nabla_{x x}^{2} L(\hat{x}, \hat{y})$.
- Assume f satisfies BCQ at \hat{x}.

Then, $(\tilde{x}, \tilde{y}) \in \mathbb{R}^{n} \times \mathbb{R}^{m}$ satisfy the optimality conditions for

$$
\min _{x \in \mathbb{R}^{n}} h\left(c(\hat{x})+\nabla c(\hat{x})(x-\hat{x})+\frac{1}{2}(x-\hat{x})^{\top} \widehat{H}(x-\hat{x})\right.
$$

if and only if (\tilde{x}, \tilde{y}) solves the Newton equations for $g+G$:

$$
0 \in g(\hat{x}, \hat{y})+\nabla g(\hat{x}, \hat{y})\binom{x-\hat{x}}{y-\hat{y}}+G(x, y)
$$

Strong Metric Subregularity

A set-valued mapping $S: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$ is strongly metrically subregular at \bar{u} for \bar{v} if $(\bar{u}, \bar{v}) \in \operatorname{graph}(S)$ and there exists $\kappa \geq 0$ and a neighborhood U of \bar{u} such that

$$
\|u-\bar{u}\| \leq \kappa \operatorname{dist}(\bar{v} \mid S(u)) \text { for all } u \in U
$$

Strong Metric Subregularity

A set-valued mapping $S: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$ is strongly metrically subregular at \bar{u} for \bar{v} if $(\bar{u}, \bar{v}) \in \operatorname{graph}(S)$ and there exists $\kappa \geq 0$ and a neighborhood U of \bar{u} such that

$$
\|u-\bar{u}\| \leq \kappa \operatorname{dist}(\bar{v} \mid S(u)) \text { for all } u \in U
$$

Theorem: (B-Engel(18)) $h: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ convex PLQ and $f:=h \circ c$ satisfies BCQ at $\bar{x} \in \operatorname{dom} f$. Then, the following are equivalent:
(1) The multiplier set $M(\bar{x}):=\operatorname{ker} \nabla c(\bar{x})^{\top} \cap \partial h(c(\bar{x}))$ is a singleton $\{\bar{y}\}$ and the second-order sufficient conditions are satisfied at \bar{x}.
(2) The mapping $g+G$ is strongly metrically subregular at (\bar{x}, \bar{y}) for 0 and \bar{x} is a strong local minimizer of f.

Strong Metric Subregularity

A set-valued mapping $S: \mathbb{R}^{n} \rightrightarrows \mathbb{R}^{m}$ is strongly metrically subregular at \bar{u} for \bar{v} if $(\bar{u}, \bar{v}) \in \operatorname{graph}(S)$ and there exists $\kappa \geq 0$ and a neighborhood U of \bar{u} such that

$$
\|u-\bar{u}\| \leq \kappa \operatorname{dist}(\bar{v} \mid S(u)) \text { for all } u \in U
$$

Theorem: (B-Engel(18)) $h: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ convex PLQ and $f:=h \circ c$ satisfies BCQ at $\bar{x} \in \operatorname{dom} f$. Then, the following are equivalent:
(1) The multiplier set $M(\bar{x}):=\operatorname{ker} \nabla c(\bar{x})^{\top} \cap \partial h(c(\bar{x}))$ is a singleton $\{\bar{y}\}$ and the second-order sufficient conditions are satisfied at \bar{x}.
(2) The mapping $g+G$ is strongly metrically subregular at (\bar{x}, \bar{y}) for 0 and \bar{x} is a strong local minimizer of f.

Corollary: The matrix secant method converges superlinearly if the Dennis-Móre condition holds.

Partial Smoothness: Lewis (02)

- $h: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ is a closed and proper function.
- \mathcal{M} a \mathcal{C}^{2}-smooth manifold and $\bar{c} \in \mathcal{M} \subset \mathbb{R}^{m}$.

The function h is partly smooth at \bar{c} relative to \mathcal{M} if \mathcal{M} the following four properties hold:
(1) (restricted smoothness) the restriction $\left.h\right|_{\mathcal{M}}$ is smooth around \bar{c}, in that there exists a neighborhood V of \bar{c} and a \mathcal{C}^{2}-smooth function g defined on V such that $h=g$ on $V \cap \mathcal{M}$;
(2) (existence of subgradients) at every point $c \in \mathcal{M}$ close to $\bar{c}, \partial h(c) \neq \emptyset ;$
(3) (normals and subgradients parallel) $\operatorname{par} \partial h(\bar{c})=N_{\mathcal{M}}(\bar{c})$;
(4) (subgradient inner semicontinuity) the subdifferential map ∂h is inner semicontinuous at \bar{c} relative to \mathcal{M}.

Partial Smoothness: Lewis (02)

- $h: \mathbb{R}^{m} \rightarrow \overline{\mathbb{R}}$ is a closed and proper function.
- \mathcal{M} a \mathcal{C}^{2}-smooth manifold and $\bar{c} \in \mathcal{M} \subset \mathbb{R}^{m}$.

The function h is partly smooth at \bar{c} relative to \mathcal{M} if \mathcal{M} the following four properties hold:
(1) (restricted smoothness) the restriction $\left.h\right|_{\mathcal{M}}$ is smooth around \bar{c}, in that there exists a neighborhood V of \bar{c} and a \mathcal{C}^{2}-smooth function g defined on V such that $h=g$ on $V \cap \mathcal{M}$;
(2) (existence of subgradients) at every point $c \in \mathcal{M}$ close to $\bar{c}, \partial h(c) \neq \emptyset ;$
(3) (normals and subgradients parallel) $\operatorname{par} \partial h(\bar{c})=N_{\mathcal{M}}(\bar{c})$;
(4) (subgradient inner semicontinuity) the subdifferential map ∂h is inner semicontinuous at \bar{c} relative to \mathcal{M}.

Generalizes classical notions of nondegeneracy, strict complementarity, and active constraint identification.

Partial Smoothness

Rockafellar-Wets Representation (RWR)

h is PLQ and $\operatorname{int}(\operatorname{dom} h) \neq \emptyset$. Then, WLOG, the polyhedral sets $\left\{C_{k}\right\}_{k=1}^{\mathcal{K}}$ are given in terms of a common set of $s>0$ hyperplanes $\mathcal{H}:=\left\{\left(a_{j}, \alpha_{j}\right)\right\}_{j=1}^{s} \subset\left(\mathbb{R}^{m} \backslash\{0\}\right) \times \mathbb{R}$, so that $\forall k \in\{1, \ldots, \mathcal{K}\}$,

$$
C_{k}=\left\{c \mid\left\langle\omega_{k j} a_{j}, c\right\rangle \leq \omega_{k j} \alpha_{j}, \text { for all } j \in\{1, \ldots, s\}\right\}
$$

with $\omega_{k j} \in\{ \pm 1\}$,

$$
I_{k}(c)=\left\{j \mid\left\langle\omega_{k j} a_{j}, c\right\rangle=\omega_{k j} \alpha_{j}\right\}=\left\{j \mid\left\langle a_{j}, c\right\rangle=\alpha_{j}\right\} \subset\{1, \ldots, s\}
$$

and
(i) $\emptyset \neq \operatorname{int}\left(C_{k}\right)=\left\{\begin{array}{l|l}c & \begin{array}{l}\left\langle\omega_{k j} a_{j}, c\right\rangle<\omega_{k j} \alpha_{j}, \\ \forall j \in\left\{1, \ldots, s_{k}\right\}\end{array}\end{array}\right\}, \forall k \in\{1, \ldots, \mathcal{K}\}$,
(ii) $\operatorname{int}\left(C_{k_{1}}\right) \cap \operatorname{int}\left(C_{k_{2}}\right)=\emptyset$ when $k_{1} \neq k_{2}$.

Condition (b) implies that if $c \in C_{k_{1}} \cap C_{k_{2}}$, then $c \in \operatorname{bdry} C_{k_{1}} \cap$ bdry $C_{k_{2}}$ when $k_{1} \neq k_{2}$.

The Active Manifold

- \mathcal{M} Active set: $\mathcal{K}(c):=\left\{k \in \mathbb{R}^{m} \mid c \in C_{k}, k \in\{1,2, \ldots, \mathcal{K}\}\right\}$
- Active Manifold: $\mathcal{M}_{\bar{c}}:=\operatorname{ri} \bigcap_{k \in \mathcal{K}(\bar{c})} C_{k}$
- Active set (RWR) for

$$
C_{k}=\left\{c \mid\left\langle\omega_{k j} a_{j}, c\right\rangle \leq \omega_{k j} \alpha_{j}, \text { for all } j \in\{1, \ldots, s\}\right\},
$$

with $\omega_{k j} \in\{ \pm 1\}$, is
$I_{k}(c)=\left\{j \mid\left\langle\omega_{k j} a_{j}, c\right\rangle=\omega_{k j} \alpha_{j}\right\}=\left\{j \mid\left\langle a_{j}, c\right\rangle=\alpha_{j}\right\} \subset\{1, \ldots, s\}$.

The Active Manifold

Lemma: Let $\bar{c} \in \operatorname{dom} f$ and assume $\operatorname{dom} h$ is given by an RWR. Then, for all $c \in \mathcal{M}_{\bar{c}}$ and $k \in \mathcal{K}(\bar{c})$,

$$
\mathcal{K}(c)=\mathcal{K}(\bar{c}), \mathcal{M}_{c}=\mathcal{M}_{\bar{c}} \text { and } I_{k}(c)=I_{k}(\bar{c})
$$

Moreover,

$$
\mathcal{M}_{\bar{c}}=\left\{\begin{array}{c|c}
c & \left\langle c, a_{j}\right\rangle=\alpha_{j} \text { for all } k \in \mathcal{K}(\bar{c}), j \in I_{k}(\bar{c}) \\
\left\langle c, \omega_{k j} a_{j}\right\rangle<\omega_{k j} \alpha_{j} \text { for all } k \in \mathcal{K}(\bar{c}), j \notin I_{k}(\bar{c})
\end{array}\right\}
$$

The Active Manifold

Lemma: Let $\bar{c} \in \operatorname{dom} f$ and assume $\operatorname{dom} h$ is given by an RWR. Then, for all $c \in \mathcal{M}_{\bar{c}}$ and $k \in \mathcal{K}(\bar{c})$,

$$
\mathcal{K}(c)=\mathcal{K}(\bar{c}), \mathcal{M}_{c}=\mathcal{M}_{\bar{c}} \text { and } I_{k}(c)=I_{k}(\bar{c})
$$

Moreover,

$$
\mathcal{M}_{\bar{c}}=\left\{\begin{array}{c|c}
c & \left\langle c, a_{j}\right\rangle=\alpha_{j} \text { for all } k \in \mathcal{K}(\bar{c}), j \in I_{k}(\bar{c}) \\
\left\langle c, \omega_{k j} a_{j}\right\rangle<\omega_{k j} \alpha_{j} \text { for all } k \in \mathcal{K}(\bar{c}), j \notin I_{k}(\bar{c})
\end{array}\right\}
$$

For $k \in \mathcal{M}_{\bar{c}}$ set $A:=A_{k}(\bar{c})$ whose columns are $\left\{a_{j} \mid k \in \mathcal{K}(\bar{c}), j \in I_{k}(\bar{c})\right\}$.
Then \exists diagonal P_{j} with entries ± 1 on the diagonal such that

$$
A P_{j}=A_{k_{j}}(c) \quad \forall c \in \mathcal{M}_{\bar{c}}
$$

and, for any $k \in \mathcal{K}(\bar{c})$ and $c \in \mathcal{M}_{\bar{c}}$,

$$
T_{\mathcal{M}_{\bar{c}}}(c)=\operatorname{ker} A^{\top}, \text { and } N_{\mathcal{M}_{\bar{c}}}(c)=\operatorname{Ran}(A)
$$

The Subdifferential of h

We let $\bar{k}=\mid \mathcal{K}(\bar{c})$ and $\ell:=\left|I_{k}(\bar{c})\right|=\left|I_{k^{\prime}}(\bar{c})\right|$ for all $k, k^{\prime} \in \mathcal{K}(\bar{c})$, so that $A \in \mathbb{R}^{m \times \ell}, P_{j} \in \mathbb{R}^{\ell \times \ell}, P_{\bar{k}}=I_{\ell}$, and define block matrices $\hat{\mathcal{Q}}:=\operatorname{diag}\left(Q_{k}\right), \hat{\mathcal{A}}:=\operatorname{diag} A P_{j}$

$$
\begin{gathered}
\mathcal{A}:=\left(\begin{array}{cccc}
(1-\bar{k}) A P_{1} & A P_{2} & \cdots & A \\
A P_{1} & (1-\bar{k}) A P_{2} & \cdots & A \\
\vdots & \ddots & \ddots & \vdots \\
A P_{1} & A P_{2} & \cdots & (1-\bar{k}) A
\end{array}\right), \\
\mathcal{Q}:=\left[\begin{array}{c}
Q_{k_{1}} \\
Q_{k_{2}} \\
\vdots \\
Q_{k_{\bar{k}}}
\end{array}\right], \mathcal{B}:=\left[\begin{array}{c}
c_{k_{1}} \\
b_{k_{2}} \\
\vdots \\
b_{k_{\bar{k}}}
\end{array}\right], J:=\left[\begin{array}{c}
I_{m} \\
I_{m} \\
\vdots \\
I_{m}
\end{array}\right]
\end{gathered}
$$

and averaged quantities
$\bar{Q}=(1 / \bar{k}) J^{\top} \hat{\mathcal{Q}} J, \quad \bar{A}=(1 / \bar{k}) J^{\top} \hat{\mathcal{A}}, \quad \bar{b}=(1 / \bar{k}) J^{\top} \mathcal{B}, \quad \lambda_{0}(\bar{c})=\bar{Q} \bar{c}+\bar{b}$.

The Subdifferential of h

For any $c \in \mathcal{M}_{\bar{c}}, \partial h(c)$ can be given by two equivalent formulations:

$$
\partial h(c)=\left\{\begin{array}{l|l}
y & \begin{array}{l}
\exists \mu=\left(\mu_{1}^{\top}, \ldots, \mu_{\bar{k}}^{\top}\right)^{\top} \geq 0 \\
\text { such that } J y=\mathcal{Q} c+\mathcal{B}+\hat{\mathcal{A}} \mu
\end{array}
\end{array}\right\}=\lambda_{0}(c)+\bar{A} \mathcal{U}(c),
$$

where

$$
\mathcal{U}(c):=\{\mu \geq 0 \mid \mathcal{A} \mu=\bar{k}[\mathcal{Q} c+\mathcal{B}-J(\bar{Q} c+\bar{b})]\} .
$$

The Subdifferential of h

For any $c \in \mathcal{M}_{\bar{c}}, \partial h(c)$ can be given by two equivalent formulations:

$$
\partial h(c)=\left\{\begin{array}{l|l}
y & \begin{array}{l}
\exists \mu=\left(\mu_{1}^{\top}, \ldots, \mu_{\bar{k}}^{\top}\right)^{\top} \geq 0 \\
\text { such that } J y=\mathcal{Q} c+\mathcal{B}+\hat{\mathcal{A}} \mu
\end{array}
\end{array}\right\}=\lambda_{0}(c)+\bar{A} \mathcal{U}(c),
$$

where

$$
\mathcal{U}(c):=\{\mu \geq 0 \mid \mathcal{A} \mu=\bar{k}[\mathcal{Q} c+\mathcal{B}-J(\bar{Q} c+\bar{b})]\} .
$$

Structure Functional of Osborne (01)

The Subdifferential of h

For any $c \in \mathcal{M}_{\bar{c}}, \partial h(c)$ can be given by two equivalent formulations:

$$
\partial h(c)=\left\{\begin{array}{l|l}
y & \begin{array}{l}
\exists \mu=\left(\mu_{1}^{\top}, \ldots, \mu_{\bar{k}}^{\top}\right)^{\top} \geq 0 \\
\text { such that } J y=\mathcal{Q} c+\mathcal{B}+\hat{\mathcal{A}} \mu
\end{array}
\end{array}\right\}=\lambda_{0}(c)+\bar{A} \mathcal{U}(c),
$$

where

$$
\mathcal{U}(c):=\{\mu \geq 0 \mid \mathcal{A} \mu=\bar{k}[\mathcal{Q} c+\mathcal{B}-J(\bar{Q} c+\bar{b})]\} .
$$

Nondegeneracy: We say $\mathcal{M}_{\bar{c}}$ satisfies the nondegenercy condition if $\operatorname{ker}(A)=\{0\}$.

The Subdifferential of h

For any $c \in \mathcal{M}_{\bar{c}}, \partial h(c)$ can be given by two equivalent formulations:

$$
\partial h(c)=\left\{\begin{array}{l|l}
y & \begin{array}{l}
\exists \mu=\left(\mu_{1}^{\top}, \ldots, \mu_{\bar{k}}^{\top}\right)^{\top} \geq 0 \\
\text { such that } J y=\mathcal{Q} c+\mathcal{B}+\hat{\mathcal{A}} \mu
\end{array}
\end{array}\right\}=\lambda_{0}(c)+\bar{A} \mathcal{U}(c),
$$

where

$$
\mathcal{U}(c):=\{\mu \geq 0 \mid \mathcal{A} \mu=\bar{k}[\mathcal{Q} c+\mathcal{B}-J(\bar{Q} c+\bar{b})]\} .
$$

Nondegeneracy: We say $\mathcal{M}_{\bar{c}}$ satisfies the nondegenercy condition if $\operatorname{ker}(A)=\{0\}$.

Lemma: Let $c \in \mathcal{M}_{\bar{c}}$. If $\operatorname{ker} A=\{0\}$, then, for every $y \in \partial h(c)$, there is a unique $\mu(c, y) \in \mathcal{U}(c)$ such that $y=\lambda_{0}(c)+\bar{A} \mu(c, y)$.

k-Strict Complementarity

Let $\bar{c} \in \operatorname{dom} h$. We say k-strict complementarity holds at $(c, y) \in \operatorname{graph}(\partial h)$ for $\mu=\left(\mu_{1}^{\top}, \ldots, \mu_{\bar{k}}^{\top}\right)^{\top} \in \mathcal{U}(c)$ wrt $\mathcal{M}_{\bar{c}}$ if
(1) $c \in \mathcal{M}_{\bar{c}}$ and $y=\lambda_{0}(c)+\bar{A} \mu$,
(2) $\exists k \in \mathcal{K}(\bar{c})$ with $\mu_{k}>0$,
(3) if $j \in \mathcal{K}(c) \backslash\{k\}$ and $i \in\{1, \ldots, \ell\}$ with $\left(\mu_{j}\right)_{i}=0$, then the scalars $\left(P_{j^{\prime}}\right)_{i i}=1$ for all $j^{\prime} \in \mathcal{K}(c)$.

k-Strict Complementarity

Let $\bar{c} \in \operatorname{dom} h$. We say k-strict complementarity holds at $(c, y) \in \operatorname{graph}(\partial h)$ for $\mu=\left(\mu_{1}^{\top}, \ldots, \mu_{\bar{k}}^{\top}\right)^{\top} \in \mathcal{U}(c)$ wrt $\mathcal{M}_{\bar{c}}$ if
(1) $c \in \mathcal{M}_{\bar{c}}$ and $y=\lambda_{0}(c)+\bar{A} \mu$,
(2) $\exists k \in \mathcal{K}(\bar{c})$ with $\mu_{k}>0$,
(3) if $j \in \mathcal{K}(c) \backslash\{k\}$ and $i \in\{1, \ldots, \ell\}$ with $\left(\mu_{j}\right)_{i}=0$, then the scalars $\left(P_{j^{\prime}}\right)_{i i}=1$ for all $j^{\prime} \in \mathcal{K}(c)$.
Lemma: Let $\bar{c} \in \operatorname{dom} h$. If $\mathcal{M}_{\bar{c}}$ is nondegenerate and for some $c \in \mathcal{M}_{\bar{c}}$ and there is a $(c, y) \in \operatorname{graph}(\partial h)$ such that k-strict complementarity holds at (c, y) wrt $\mathcal{M}_{\bar{c}}$, then $\mathcal{M}_{\bar{c}}$ is partly smooth.

k-Strict Complementarity

Let $\bar{c} \in \operatorname{dom} h$. We say k-strict complementarity holds at $(c, y) \in \operatorname{graph}(\partial h)$ for $\mu=\left(\mu_{1}^{\top}, \ldots, \mu_{\bar{k}}^{\top}\right)^{\top} \in \mathcal{U}(c)$ wrt $\mathcal{M}_{\bar{c}}$ if
(1) $c \in \mathcal{M}_{\bar{c}}$ and $y=\lambda_{0}(c)+\bar{A} \mu$,
(2) $\exists k \in \mathcal{K}(\bar{c})$ with $\mu_{k}>0$,
(3) if $j \in \mathcal{K}(c) \backslash\{k\}$ and $i \in\{1, \ldots, \ell\}$ with $\left(\mu_{j}\right)_{i}=0$, then the scalars $\left(P_{j^{\prime}}\right)_{i i}=1$ for all $j^{\prime} \in \mathcal{K}(c)$.
Lemma: Let $\bar{c} \in \operatorname{dom} h$. If $\mathcal{M}_{\bar{c}}$ is nondegenerate and for some $c \in \mathcal{M}_{\bar{c}}$ and there is a $(c, y) \in \operatorname{graph}(\partial h)$ such that k-strict complementarity holds at (c, y) wrt $\mathcal{M}_{\bar{c}}$, then $\mathcal{M}_{\bar{c}}$ is partly smooth.
Moreover, if $\bar{x} \in \operatorname{dom} f$ and $\bar{y} \in \partial h(\bar{c})$ are such that $\bar{c}=c(\bar{x})$ and

$$
\left.\operatorname{ker} \nabla c(\bar{x})^{\top} \cap \operatorname{ri}(\partial h(\bar{c}))=\{\bar{y}\}, \quad \text { (Strict Criticality }(\mathrm{SC})\right)
$$

then

$$
D(\bar{x})=\left\{d \mid h^{\prime}(c(\bar{x}) ; \nabla c(\bar{x}) d) \leq 0\right\}=\operatorname{ker} A^{\top} \nabla c(\bar{x})
$$

Newton's Method Hypotheses

Let $f=h \circ c$ be PLQ convex composite, $\bar{x} \in \operatorname{dom} f, \bar{y} \in \partial h(c(\bar{x}))$, and set $\bar{c}:=c(\bar{x})$.

Assumptions:

(a) c is \mathcal{C}^{3}-smooth,
(b) $\mathcal{M}_{\bar{c}}$ satisfies the nondegeneracy condition,
(c) f satisfies SC at \bar{x} for \bar{y},
(d) \bar{x} satisfies the second-order sufficient conditions, i.e.,

$$
h^{\prime \prime}(c(\bar{x}) ; \nabla c(\bar{x}) d)+\left\langle d, \nabla_{x x}^{2} L(\bar{x}, \bar{y}) d\right\rangle>0 \quad \forall d \in \operatorname{ker} A^{\top} \nabla c(\bar{x}) \backslash\{0\},
$$ where $M(\bar{x})=\{\bar{y}\}$ and $D(\bar{x})=\operatorname{ker} A^{\top} \nabla c(\bar{x})$.

Newton's Method Hypotheses

Let $f=h \circ c$ be PLQ convex composite, $\bar{x} \in \operatorname{dom} f, \bar{y} \in \partial h(c(\bar{x}))$, and set $\bar{c}:=c(\bar{x})$.

Assumptions:

(a) c is \mathcal{C}^{3}-smooth,
(b) $\mathcal{M}_{\bar{c}}$ satisfies the nondegeneracy condition,
(c) f satisfies SC at \bar{x} for \bar{y},
(d) \bar{x} satisfies the second-order sufficient conditions, i.e.,

$$
h^{\prime \prime}(c(\bar{x}) ; \nabla c(\bar{x}) d)+\left\langle d, \nabla_{x x}^{2} L(\bar{x}, \bar{y}) d\right\rangle>0 \quad \forall d \in \operatorname{ker} A^{\top} \nabla c(\bar{x}) \backslash\{0\}
$$ where $M(\bar{x})=\{\bar{y}\}$ and $D(\bar{x})=\operatorname{ker} A^{\top} \nabla c(\bar{x})$.

NLP Analogues:
(b) linear independence of the active constraint gradients,
(c) strict complementary slackness, and
(d) strong second-order sufficiency condition.

Convergence of Newton's Method

There exists a neighborhood \mathcal{N} of (\bar{x}, \bar{y}) such that if $\left(x^{0}, y^{0}\right) \in \mathcal{N}$, then there exists a unique sequence $\left\{\left(x^{k}, y^{k}\right)\right\}$ satisfying the optimality conditions of $\mathbf{P}_{\mathbf{k}}$ with $H_{k}:=\nabla_{x x}^{2} L\left(x^{k}, y^{k}\right)$ such that, for all $k \in \mathbb{N}$,
(i) $c\left(x^{k-1}\right)+\nabla c\left(x^{k-1}\right)\left[x^{k}-x^{k-1}\right] \in \mathcal{M}_{\bar{c}}$,
(ii) $y^{k} \in \operatorname{ri} \partial h\left(c\left(x^{k-1}\right)+\nabla c\left(x^{k-1}\right)\left[x^{k}-x^{k-1}\right]\right)$,
(iii) $H_{k-1}\left[x^{k}-x^{k-1}\right]+\nabla c\left(x^{k-1}\right)^{\top} y^{k}=0$,
(iv) x^{k+1} is a strong local minimizer of $\mathbf{P}_{\mathbf{k}}$.

Moreover, the sequence $\left(x^{k}, y^{k}\right)$ converges to (\bar{x}, \bar{y}) at a quadratic rate.

